
Getting Started with Android
Programming

WHAT YOU WILL LEARN IN THIS CHAPTER

 ➤ What is Android?

 ➤ Android versions and its feature set

 ➤ The Android architecture

 ➤ The various Android devices on the market

 ➤ The Android Market application store

 ➤ How to obtain the tools and SDK for developing Android

applications

 ➤ How to develop your fi rst Android application

Welcome to the world of Android! When I was writing my fi rst book on Android (which was

just less than a year ago), I stated that Android was ranked second in the U.S. smartphone

market, second to Research In Motion’s (RIM) BlackBerry, and overtaking Apple’s iPhone.

Shortly after the book went to press, comScore (a global leader in measuring the digital world

and the preferred source of digital marketing intelligence) reported that Android has overtaken

BlackBerry as the most popular smartphone platform in the U.S.

A few months later, Google released Android 3.0, code named Honeycomb. With Android 3.0,

Google’s focus in the new Software Development Kit was the introduction of several new features

1

www.it-ebooks.info

2 ❘ CHAPTER 1 GETTING STARTED WITH ANDROID PROGRAMMING

designed for widescreen devices, specifi cally tablets. If you are writing apps for Android smartphones,

Android 3.0 is not really useful, as the new features are not supported on smartphones. At the same

time that Android 3.0 was released, Google began working on the next version of Android, which

can be

used on both smartphones and tablets. In October 2011, Google released Android 4.0, code named

Ice Cream Sandwich, and that is the focus of this book.

In this chapter you will learn what Android is, and what makes it so compelling to both developers

and device manufacturers alike. You will also get started with developing your fi rst Android

application, and learn how to obtain all the necessary tools and set them up so that you can test

your application on an Android 4.0 emulator. By the end of this chapter, you will be equipped with

the basic knowledge you need to explore more sophisticated techniques and tricks for developing

your next killer Android application.

WHAT IS ANDROID?

Android is a mobile operating system that is based on a modifi ed version of Linux. It was originally

developed by a startup of the same name, Android, Inc. In 2005, as part of its strategy to enter

the mobile space, Google purchased Android and took over its development work (as well as its

development team).

Google wanted Android to be open and free; hence, most of the Android code was released under

the open source Apache License, which means that anyone who wants to use Android can do so by

downloading the full Android source code. Moreover, vendors (typically hardware manufacturers)

can add their own proprietary extensions to Android and customize Android to differentiate their

products from others. This simple development model makes Android very attractive and has thus

piqued the interest of many vendors. This has been especially true for companies affected by the

phenomenon of Apple’s iPhone, a hugely successful product that revolutionized the smartphone

industry. Such companies include Motorola and Sony Ericsson, which for many years have been

developing their own mobile operating systems. When the iPhone was launched, many of these

manufacturers had to scramble to fi nd new ways of revitalizing their products. These manufacturers

see Android as a solution — they will continue to design their own hardware and use Android as the

operating system that powers it.

The main advantage of adopting Android is that it offers a unifi ed approach to application

development. Developers need only develop for Android, and their applications should be able

to run on numerous different devices, as long as the devices are powered using Android. In the

world of smartphones, applications are the most important part of the success chain. Device

manufacturers therefore see Android as their best hope to challenge the onslaught of the iPhone,

which already commands a large base of applications.

Android Versions

Android has gone through quite a number of updates since its fi rst release. Table 1-1 shows the

various versions of Android and their codenames.

www.it-ebooks.info

What Is Android? ❘ 3

TABLE 1-1: A Brief History of Android Versions

ANDROID VERSION RELEASE DATE CODENAME

1.1 9 February 2009

1.5 30 April 2009 Cupcake

1.6 15 September 2009 Donut

2.0/2.1 26 October 2009 Eclair

2.2 20 May 2010 Froyo

2.3 6 December 2010 Gingerbread

3.0/3.1/3.2 22 February 2011 Honeycomb

4.0 19 October 2011 Ice Cream Sandwich

In February 2011, Google released Android 3.0, a tablet-only release supporting widescreen devices.

The key changes in Android 3.0 are as follows.

 ➤ New user interface optimized for tablets

 ➤ 3D desktop with new widgets

 ➤ Refi ned multi-tasking

 ➤ New web browser features, such as tabbed browsing, form auto-fi ll, bookmark

synchronization, and private browsing

 ➤ Support for multi-core processors

Applications written for versions of Android prior to 3.0 are compatible with Android 3.0 devices,

and they run without modifi cations. Android 3.0 tablet applications that make use of the newer

features available in 3.0, however, will not be able to run on older devices. To ensure that an Android

tablet application can run on all versions of devices, you must programmatically ensure that you only

make use of features that are supported in specifi c versions of Android.

In October 2011, Google released Android 4.0, a version that brought all the features introduced in

Android 3.0 to smartphones, along with some new features such as facial recognition unlock, data

usage monitoring and control, Near Field Communication (NFC), and more.

Features of Android

Because Android is open source and freely available to manufacturers for customization, there are no

fi xed hardware or software confi gurations. However, Android itself supports the following features:

 ➤ Storage — Uses SQLite, a lightweight relational database, for data storage. Chapter 6

discusses data storage in more detail.

 ➤ Connectivity — Supports GSM/EDGE, IDEN, CDMA, EV-DO, UMTS, Bluetooth (includes

A2DP and AVRCP), Wi-Fi, LTE, and WiMAX. Chapter 8 discusses networking in more detail.

www.it-ebooks.info

4 ❘ CHAPTER 1 GETTING STARTED WITH ANDROID PROGRAMMING

 ➤ Messaging — Supports both SMS and MMS. Chapter 8 discusses messaging in more detail.

 ➤ Web browser — Based on the open source WebKit, together with Chrome’s V8 JavaScript

engine

 ➤ Media support — Includes support for the following media: H.263, H.264 (in 3GP or MP4

container), MPEG-4 SP, AMR, AMR-WB (in 3GP container), AAC, HE-AAC (in MP4 or

3GP container), MP3, MIDI, Ogg Vorbis, WAV, JPEG, PNG, GIF, and BMP

 ➤ Hardware support — Accelerometer Sensor, Camera, Digital Compass, Proximity Sensor,

and GPS

 ➤ Multi-touch — Supports multi-touch screens

 ➤ Multi-tasking — Supports multi-tasking applications

 ➤ Flash support — Android 2.3 supports Flash 10.1.

 ➤ Tethering — Supports sharing of Internet connections as a wired/wireless hotspot

Architecture of Android

In order to understand how Android works, take a look at Figure 1-1, which shows the various

layers that make up the Android operating system (OS).

The Android OS is roughly divided into fi ve sections in four main layers:

 ➤ Linux kernel — This is the kernel on which Android is based. This layer contains all the low-

level device drivers for the various hardware components of an Android device.

 ➤ Libraries — These contain all the code that provides the main features of an Android OS. For

example, the SQLite library provides database support so that an application can use it for

data storage. The WebKit library provides functionalities for web browsing.

 ➤ Android runtime — At the same layer as the libraries, the Android runtime provides a set

of core libraries that enable developers to write Android apps using the Java programming

language. The Android runtime also includes the Dalvik virtual machine, which enables every

Android application to run in its own process, with its own instance of the Dalvik virtual

machine (Android applications are compiled into Dalvik executables). Dalvik is a specialized

virtual machine designed specifi cally for Android and optimized for battery-powered mobile

devices with limited memory and CPU.

 ➤ Application framework — Exposes the various capabilities of the Android OS to application

developers so that they can make use of them in their applications.

 ➤ Applications — At this top layer, you will fi nd applications that ship with the Android device

(such as Phone, Contacts, Browser, etc.), as well as applications that you download and

install from the Android Market. Any applications that you write are located at this layer.

www.it-ebooks.info

FIGURE 1-1

Home Contacts Browser ...

APPLICATIONS

APPLICATION FRAMEWORK

LIBRARIES ANDROID RUNTIME

Phone

Package Manager Telephony Manager Location Manager Notification ManagerResource Manager

Surface Manager Media Framework SQLite

OpenGL / ES FreeType WebKit

SGL SSL Iibc

Activity Manager Window Manager View System

Dalvik Virtual Machine

Core Libraries

Content Providers

LINUX KERNEL

Keypad Driver Wi-Fi Driver Power ManagementAudio Drivers

Display Driver Camera Driver Binder (IPC) DriverFlash Memory Driver

w
w
w
.it-e

b
o
o
k
s
.in
fo

6 ❘ CHAPTER 1 GETTING STARTED WITH ANDROID PROGRAMMING

Android Devices in the Market

Android devices come in all shapes and sizes. As of late November 2011, the Android OS powers the

following types of devices:

 ➤ Smartphones

 ➤ Tablets

 ➤ E-reader devices

 ➤ Netbooks

 ➤ MP4 players

 ➤ Internet TVs

Chances are good that you own at least one of the preceding devices. Figure 1-2 shows (left to right)

the Samsung Galaxy S II, the Motorola Atrix 4G, and the HTC EVO 4G smartphones.

FIGURE 1-2

Another popular category of devices that manufacturers are rushing out is the tablet. Tablets

typically come in two sizes: seven inches and ten inches, measured diagonally. Figure 1-3 shows the

Samsung Galaxy Tab 10.1 (left) and the Asus Eee Pad Transformer TF101 (right), both 10.1-inch

tablets. Both the Samsung Galaxy 10.1 and the Asus Eee Pad Transfer TF101 run on Android 3.

www.it-ebooks.info

What Is Android? ❘ 7

Besides smartphones and tablets, Android is also beginning to appear in dedicated devices, such as

e-book readers. Figure 1-4 shows the Barnes and Noble’s NOOK Color (left) and Amazon’s Kindle

Fire (right), both of which are color e-Book readers running the Android OS.

FIGURE 1-3

FIGURE 1-4

In addition to these popular mobile devices, Android is also slowly fi nding its way into your

living room. People of Lava, a Swedish company, has developed an Android-based TV, called the

Scandinavia Android TV (see Figure 1-5).

Google has also ventured into a proprietary smart TV platform based on Android and codeveloped

with companies such as Intel, Sony, and Logitech. Figure 1-6 shows Sony’s Google TV.

www.it-ebooks.info

8 ❘ CHAPTER 1 GETTING STARTED WITH ANDROID PROGRAMMING

At the time of writing, the Samsung Galaxy Nexus (see Figure 1-7) is the only device running on

Android 4.0. However, Google has promised that existing devices (such as the Nexus S) will be able

to upgrade to Android 4.0. By the time you are reading this, there should be a plethora of devices

running Android 4.0.

FIGURE 1-5 FIGURE 1-6

FIGURE 1-7

The Android Market

As mentioned earlier, one of the main factors determining the success of a smartphone platform is

the applications that support it. It is clear from the success of the iPhone that applications play a

very vital role in determining whether a new platform swims or sinks. In addition, making these

applications accessible to the general user is extremely important.

www.it-ebooks.info

Obtaining the Required Tools ❘ 9

As such, in August 2008, Google announced Android Market, an online application store for

Android devices, and made it available to users in October 2008. Using the Market application that

is preinstalled on their Android device, users can simply download third-party applications directly

onto their devices. Both paid and free applications are supported on the Android Market, though

paid applications are available only to users in certain countries due to legal issues.

Similarly, in some countries, users can buy paid applications from the Android Market, but

developers cannot sell in that country. As an example, at the time of writing, users in India can buy

apps from the Android Market, but developers in India cannot sell apps on the Android Market.

The reverse may also be true; for example, users in South Korea cannot buy apps, but developers in

South Korea can sell apps on the Android Market.

NOTE Chapter 12 discusses more about the Android Market and how you can

sell your own applications in it.

The Android Developer Community

With Android in its fourth version, there is a large developer community all over the world. It is

now much easier to get solutions to problems, and fi nd like-minded developers to share app ideas

and exchange experiences.

Here are some developer communities/sites that you can turn to for help if you run into problems

while working with Android:

 ➤ Stack Overfl ow (www.stackoverflow.com) — Stack Overfl ow is a collaboratively edited

question and answer site for developers. If you have a question about Android, chances are

someone at Stack Overfl ow is probably already discussing the same question and someone

else had already provided the answer. Best of all, other developers can vote for the best

answer so that you can know which are the answers that are trustworthy.

 ➤ Google Android Training (http://developer.android.com/training/index

.html) — Google has launched the Android Training site that contains a number of useful

classes grouped by topics. At the time of writing, the classes mostly contain useful code

snippets that are very useful to Android developers once they have started with the basics.

Once you have learned the basics in this book, I strongly suggest you take a look at the classes.

 ➤ Android Discuss (http://groups.google.com/group/android-discuss) — Android

Discuss is a discussion group hosted by Google using the Google Groups service. Here, you

will be able to discuss the various aspects of Android programming. This group is monitored

closely by the Android team at Google, and so this is good place to clarify your doubts and

learn new tips and tricks.

OBTAINING THE REQUIRED TOOLS

Now that you know what Android is and what its feature set contains, you are probably anxious to

get your hands dirty and start writing some applications! Before you write your fi rst app, however,

you need to download the required tools and SDKs.

www.it-ebooks.info

10 ❘ CHAPTER 1 GETTING STARTED WITH ANDROID PROGRAMMING

For Android development, you can use a Mac, a Windows PC, or a Linux machine. All the tools

needed are free and can be downloaded from the Web. Most of the examples provided in this book

should work fi ne with the Android emulator, with the exception of a few examples that require

access to the hardware. For this book, I am using a Windows 7 computer to demonstrate all the

code samples. If you are using a Mac or Linux computer, the screenshots should look similar; some

minor differences may be present, but you should be able to follow along without problems.

Let the fun begin!

JAVA JDK

The Android SDK makes use of the Java SE Development Kit (JDK). If your

computer does not have the JDK installed, you should start by downloading it

from www.oracle.com/technetwork/java/javase/downloads/index.html and

installing it prior to moving to the next section.

Android SDK

The fi rst and most important piece of software you need to download is, of course, the Android

SDK. The Android SDK contains a debugger, libraries, an emulator, documentation, sample code,

and tutorials.

You can download the Android SDK from http://developer.android.com/sdk/index.html (see

Figure 1-8).

FIGURE 1-8

www.it-ebooks.info

Obtaining the Required Tools ❘ 11

The Android SDK is packaged in a zip fi le. You can download it and unzip its content (the

android-sdk-windows folder) into a folder, say C:\Android 4.0\. For Windows user, Google

recommends that you download the installer_r15-windows.exe fi le instead and use it to set up

the tools for you automatically. The following steps walk you through the installation process using

this approach.

Installing the Android SDK Tools

When you have downloaded the installer_r15-windows.exe fi le, double-click it to start the

installation of the Android tools. In the welcome screen of the Setup Wizard, click Next to continue.

If your computer does not have Java installed, you will see the error dialog shown in Figure 1-9.

However, even if you have Java installed, you may still see this error. If this is the case, click the

Report error button and then click Next.

FIGURE 1-9

You will be asked to provide a destination folder to install the Android SDK tools. Enter a

destination path (see Figure 1-10) and click Next.

When you are asked to choose a Start Menu folder to create the program’s shortcut, take the default

“Android SDK Tools” and click Install. When the setup is done, check the “Start SDK Manager (to

download system images, etc.)” option and click Finish (see Figure 1-11). This will start the SDK

Manager.

www.it-ebooks.info

12 ❘ CHAPTER 1 GETTING STARTED WITH ANDROID PROGRAMMING

FIGURE 1-10

FIGURE 1-11

Confi guring the Android SDK Manager

The Android SDK Manager manages the various versions of the Android SDK currently installed

on your computer. When it is launched, you will see a list of items and whether or not they are

currently installed on your computer (see Figure 1-12).

Check the relevant tools, documentation, and platforms you need for your project. Once you have

selected the items you want, click the Install button to download them. Because it takes a while

to download from Google’s server, it is a good idea to download only what you need immediately,

and download the rest when you have more time. For now, you may want to check the items shown

in the fi gure.

www.it-ebooks.info

Obtaining the Required Tools ❘ 13

Each version of the Android OS is identifi ed by an API level number. For example, Android 2.3.3 is

level 10 (API 10), while Android 3.0 is level 11 (API 11), and so on. For each level, two platforms are

available. For example, level 14 offers the following:

 ➤ SDK Platform

 ➤ Google APIs by Google Inc.

The key difference between the two is that the Google APIs platform contains additional APIs

provided by Google (such as the Google Maps library). Therefore, if the application you are writing

requires Google Maps, you need to create an AVD using the Google APIs platform (more on this is

provided in Chapter 9, “Location-Based Services.”

FIGURE 1-12

NOTE For a start, you should at least select the latest Android 4.0 SDK platform

and the Extras. At the time of writing, the latest SDK platform is SDK Platform

Android 4.0, API 14.

www.it-ebooks.info

14 ❘ CHAPTER 1 GETTING STARTED WITH ANDROID PROGRAMMING

You will be asked to choose the packages to install (see Figure 1-13). Check the Accept All option

and click Install.

FIGURE 1-13

The SDK Manager will proceed to download the packages that you have selected. The installation

takes some time, so be patient. When all the packages are installed, you will be

asked to restart the ADB (Android Debug Bridge). Click Yes.

Eclipse

The next step is to obtain the integrated development environment (IDE) for

developing your Android applications. In the case of Android, the recommended

IDE is Eclipse, a multi-language software development environment featuring an

extensible plug-in system. It can be used to develop various types of applications,

using languages such as Java, Ada, C, C++, COBOL, Python, and others.

For Android development, you should download the Eclipse IDE for Java

EE Developers (www.eclipse.org/downloads/). Six editions are available:

Windows (32- and 64-bit), Mac OS X (Cocoa 32- and 64), and Linux

(32- and 64-bit). Simply select the relevant one for your operating system. All

the examples in this book were tested using the 32-bit version of Eclipse for

Windows.

Once the Eclipse IDE is downloaded, unzip its content (the eclipse folder) into

a folder, say C:\Android 4.0\. Figure 1-14 shows the content of the eclipse

folder.

To launch Eclipse, double-click on the eclipse.exe fi le. You are fi rst asked to specify your

workspace. In Eclipse, a workspace is a folder where you store all your projects. Take the default

suggested (or you can specify your own folder as the workspace) and click OK.

FIGURE 1-14

www.it-ebooks.info

Obtaining the Required Tools ❘ 15

Android Development Tools (ADT)

When Eclipse is launched, select Help ➪ Install New Software (see Figure 1-15) to install the

Android Development Tools (ADT) plug-in for Eclipse.

FIGURE 1-15

The ADT is an extension to the Eclipse IDE that supports the creation and debugging of Android

applications. Using the ADT, you will be able to do the following in Eclipse:

 ➤ Create new Android application projects.

 ➤ Access the tools for accessing your Android emulators and devices.

 ➤ Compile and debug Android applications.

 ➤ Export Android applications into Android Packages (APKs).

 ➤ Create digital certifi cates for code-signing your APK.

In the Install dialog that appears, specify https://dl-ssl.google.com/android/eclipse/ and

press Enter. After a while, you will see the Developer Tools item appear in the middle of the window

(see Figure 1-16). Expand it to reveal its content: Android DDMS, Android Development Tools,

Android Hierarchy Viewer, and Android Traceview. Check all of them and click Next twice.

www.it-ebooks.info

16 ❘ CHAPTER 1 GETTING STARTED WITH ANDROID PROGRAMMING

You will be asked to review and accept the

licenses. Check the “I accept the terms of the

license agreements” option and click Finish. Once

the installation is completed, you will be asked to

restart Eclipse. Go ahead and restart Eclipse now.

When Eclipse is restarted, you are asked to confi gure

your Android SDK (see Figure 1-17). As the

Android SDK has already been downloaded earlier

in the previous section, check the “Use existing

SDKs” option and specify the directory where you

have installed the Android SDK. Click Next.

After this step, you are asked to send your usage

statistics to Google. Once you have selected your

choice, click Finish.

FIGURE 1-16

NOTE If you have any problems downloading the ADT, check out Google’s help

at http://developer.android.com/sdk/eclipse-adt.html#installing.

FIGURE 1-17

www.it-ebooks.info

Obtaining the Required Tools ❘ 17

Creating Android Virtual Devices (AVDs)

The next step is to create an Android Virtual Device (AVD) to be used for testing your Android

applications. An AVD is an emulator instance that enables you to model an actual device. Each AVD

consists of a hardware profi le; a mapping to a system image; as well as emulated storage, such as a

secure digital (SD) card.

You can create as many AVDs as you want in order to test your applications with several different

confi gurations. This testing is important to confi rm the behavior of your application when it is run

on different devices with varying capabilities.

NOTE As each new version of the SDK is released, the installation steps tend to

di6 er slightly. If you do not experience the same steps as described here, don’t

worry — just follow the instructions on screen.

NOTE Appendix B discusses some of the capabilities of the Android emulator.

To create an AVD, select Window ➪ AVD Manager (see Figure 1-18).

FIGURE 1-18

www.it-ebooks.info

18 ❘ CHAPTER 1 GETTING STARTED WITH ANDROID PROGRAMMING

In the Android Virtual Device Manager dialog (see Figure 1-19), click the New... button to create a

new AVD.

FIGURE 1-19

In the Create new Android Virtual Device (AVD) dialog, enter the items as shown in Figure 1-20.

Click the Create AVD button when you are done.

FIGURE 1-20

www.it-ebooks.info

Obtaining the Required Tools ❘ 19

In this case, you have created an AVD (put simply, an Android emulator) that emulates an Android

device running version 4.0 of the OS with a built-in 10-MB SD card. In addition to what you

have created, you also have the option to emulate the device with different screen densities and

resolutions.

NOTE Appendix B explains how to emulate the di2 erent types of Android

devices.

It is preferable to create a few AVDs with different API levels and hardware confi gurations so that

your application can be tested on different versions of the Android OS.

Once your ADV has been created, it is time to test it. Select the AVD that you want to test and click

the Start… button. The Launch Options dialog will appear (see Figure 1-21). If you have a small

monitor, it is recommended that you check the “Scale display to real size” option so that you can set

the emulator to a smaller size. Click the Launch button to start the emulator.

FIGURE 1-21

The Android emulator will start, and after a while it will be ready for use (see Figure 1-22). Go

ahead and try out the emulator. It will behave just like a real Android device. After that, in the next

section you will learn how to write your fi rst Android application!

www.it-ebooks.info

20 ❘ CHAPTER 1 GETTING STARTED WITH ANDROID PROGRAMMING

CREATING YOUR FIRST ANDROID APPLICATION

With all the tools and the SDK downloaded and installed, it is now time to start your engine. As in

all programming books, the fi rst example uses the ubiquitous Hello World application. This will

give you a detailed look at the various components that make up an Android project.

TRY IT OUT Creating Your First Android Application

codefi le HelloWorld.zip available for download at Wrox.com

 1. Using Eclipse, create a new project by selecting File ➪ New ➪ Project . . . (see Figure 1-23).

FIGURE 1-22

www.it-ebooks.info

Creating Your First Android Application ❘ 21

FIGURE 1-23

NOTE After you have created your fi rst Android application, subsequent

Android projects can be created by selecting File ➪ New ➪ Android Project.

2. Expand the Android folder and select Android Project (see Figure 1-24). Click Next.

3. Name the Android project HelloWorld, as shown in Figure 1-25, and then click Next.

FIGURE 1-24

www.it-ebooks.info

22 ❘ CHAPTER 1 GETTING STARTED WITH ANDROID PROGRAMMING

 4. Select the Android 4.0 target and click Next.

 5. Fill in the Application Info details as shown in Figure 1-26. Click Finish.

FIGURE 1-26

FIGURE 1-25

www.it-ebooks.info

Creating Your First Android Application ❘ 23

NOTE You need to have at least a period (.) in the package name. The

recommended convention for the package name is to use your domain name in

reverse order, followed by the project name. For example, my company’s

domain name is learn2develop.net; hence, my package name would be

net.learn2develop.HelloWorld.

6. The Eclipse IDE should now look like Figure 1-27.

FIGURE 1-27

7. In the Package Explorer (located on the left of the Eclipse IDE), expand the HelloWorld project by

clicking on the various arrows displayed to the left of each item in the project (see Figure 1-28). In

the res/layout folder, double-click the main.xml fi le.

8. The main.xml fi le defi nes the user interface (UI) of your application. The default view is the

Layout view, which lays out the activity graphically. To modify the UI by hand, click the

main.xml tab located at the bottom (see Figure 1-29).

www.it-ebooks.info

24 ❘ CHAPTER 1 GETTING STARTED WITH ANDROID PROGRAMMING

FIGURE 1-29

 9. Add the following code in bold to the main.xml fi le:

<?xml version=”1.0” encoding=”utf-8”?>

<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/

android”

 android:layout_width=”fill_parent”

FIGURE 1-28

www.it-ebooks.info

Creating Your First Android Application ❘ 25

 android:layout_height=”fill_parent”

 android:orientation=”vertical” >

 <TextView

 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content”

 android:text=”@string/hello” />

 <TextView

 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content”

 android:text=”This is my first Android Application!” />

 <Button

 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content”

 android:text=”And this is a clickable button!” />

</LinearLayout>

 10. To save the changes made to your project, press Ctrl+S.

 11. You are now ready to test your application on the Android emulator. Right-click the project name

in Eclipse and select Run As ➪ Android Application (see Figure 1-30).

FIGURE 1-30

www.it-ebooks.info

26 ❘ CHAPTER 1 GETTING STARTED WITH ANDROID PROGRAMMING

FIGURE 1-31

 12. If you have not made any mistakes in the project, you should now be able to see the application

installed and running on the Android emulator (see Figure 1-31).

 13. Click the Home button (the house icon in the lower-left corner above the keyboard) so that it now

shows the Home screen (see Figure 1-32).

 14. Click the application launcher icon to display the list of applications installed on the device.

Note that the HelloWorld application is now installed in the application launcher (see

Figure 1-33).

www.it-ebooks.info

Creating Your First Android Application ❘ 27

FIGURE 1-32

FIGURE 1-33

www.it-ebooks.info

28 ❘ CHAPTER 1 GETTING STARTED WITH ANDROID PROGRAMMING

WHICH AVD WILL BE USED TO TEST YOUR APPLICATION?

Recall that earlier you created a few AVDs using the AVD Manager. So which one

will be launched by Eclipse when you run an Android application? Eclipse checks the

target that you specifi ed (when you created a new project), comparing it against

the list of AVDs that you have created. The fi rst one that matches will be launched to

run your application.

If you have more than one suitable AVD running prior to debugging the application,

Eclipse will display the Android Device Chooser dialog, which enables you to select

the desired emulator/device to debug the application (see Figure 1-34).

FIGURE 1-34

How It Works

To create an Android project using Eclipse, you need to supply the information shown in Table 1-2.

TABLE 1-2: Project Files Created by Default

PROPERTIES DESCRIPTION

Project name The name of the project

Application name A user-friendly name for your application

Package name The name of the package. You should use a reverse domain name for this.

Create Activity The name of the fi rst activity in your application

Min SDK Version The minimum version of the SDK that your project is targeting

www.it-ebooks.info

Anatomy of an Android Application ❘ 29

In Android, an activity is a window that contains the user interface of your applications. An

application can have zero or more activities; in this example, the application contains one activity:

HelloWorldActivity. This HelloWorldActivity is the entry point of the application, which is

displayed when the application is started. Chapter 2 discusses activities in more detail.

In this simple example, you modifi ed the main.xml fi le to display the string “This is my fi rst Android

Application!” and a button. The main.xml fi le contains the user interface of the activity, which is

displayed when HelloWorldActivity is loaded.

When you debug the application on the Android emulator, the application is automatically installed on

the emulator. And that’s it — you have developed your fi rst Android application!

The next section unravels how all the various fi les in your Android project work together to make your

application come alive.

ANATOMY OF AN ANDROID APPLICATION

Now that you have created your fi rst Hello World Android

application, it is time to dissect the innards of the Android

project and examine all the parts that make everything work.

First, note the various fi les that make up an Android project in

the Package Explorer in Eclipse (see Figure 1-35).

The various folders and their fi les are as follows:

 ➤ src — Contains the .java source fi les for your project.

In this example, there is one fi le, HelloWorldActivity

.java. The HelloWorldActivity.java fi le is the

source fi le for your activity. You write the code for your

application in this fi le. The Java fi le is listed under the

package name for your project, which in this case is net

.learn2develop.HelloWorld.

 ➤ gen — Contains the R.java fi le, a compiler-generated

fi le that references all the resources found in your project.

You should not modify this fi le. All the resources in your

project are automatically compiled into this class so that

you can refer to them using the class.

 ➤ Android 4.0 library — This item contains one fi le,

android.jar, which contains all the class libraries

needed for an Android application.

 ➤ assets — This folder contains all the assets used by your

application, such as HTML, text fi les, databases, etc.

 ➤ bin — This folder contains the fi les built by the ADT during the build process. In particular,

it generates the .apk fi le (Android Package). An .apk fi le is the application binary of an

Android application. It contains everything needed to run an Android application.

FIGURE 1-35

www.it-ebooks.info

30 ❘ CHAPTER 1 GETTING STARTED WITH ANDROID PROGRAMMING

 ➤ res — This folder contains all the resources used in your application. It also contains a few

other subfolders: drawable-<resolution>, layout, and values. Chapter 3 talks more

about how you can support devices with different screen resolutions and densities.

 ➤ AndroidManifest.xml — This is the manifest fi le for your Android application. Here you

specify the permissions needed by your application, as well as other features (such as intent-fi lters,

receivers, etc.). Chapter 2 discusses the use of the AndroidManifest.xml fi le in more detail.

The main.xml fi le defi nes the user interface for your activity. Observe the following in bold:

 <TextView

 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content”

 android:text=”@string/hello” />

The @string in this case refers to the strings.xml fi le located in the res/values folder. Hence,

@string/hello refers to the hello string defi ned in the strings.xml fi le, which is “Hello World,

HelloWorldActivity!”:

<?xml version=”1.0” encoding=”utf-8”?>

<resources>

 <string name=”hello”>Hello World, HelloWorldActivity!</string>

 <string name=”app_name”>HelloWorld</string>

</resources>

It is recommended that you store all the string constants in your application in this strings.xml

fi le and reference these strings using the @string identifi er. That way, if you ever need to localize

your application to another language, all you need to do is make a copy of the entire values folder

and modify the values of strings.xml to contain the string in the language that you want to

display. Figure 1-36 shows that I have another folder named values-fr with the strings.xml fi le

containing the same hello string in French.

FIGURE 1-36

www.it-ebooks.info

Anatomy of an Android Application ❘ 31

If the user loads the same application on a phone confi gured to display French as the default

language, your application will automatically display the hello string in French.

The next important fi le in an Android project is the manifest fi le. Note the content of the

AndroidManifest.xml fi le:

<?xml version=”1.0” encoding=”utf-8”?>

<manifest xmlns:android=”http://schemas.android.com/apk/res/android”

 package=”net.learn2develop.HelloWorld”

 android:versionCode=”1”

 android:versionName=”1.0” >

 <uses-sdk android:minSdkVersion=”14” />

 <application

 android:icon=”@drawable/ic_launcher”

 android:label=”@string/app_name” >

 <activity

 android:label=”@string/app_name”

 android:name=”.HelloWorldActivity” >

 <intent-filter >

 <action android:name=”android.intent.action.MAIN” />

 <category android:name=”android.intent.category.LAUNCHER” />

 </intent-filter>

 </activity>

 </application>

</manifest>

The AndroidManifest.xml fi le contains detailed information about the application:

 ➤ It defi nes the package name of the application as net.learn2develop.HelloWorld.

 ➤ The version code of the application is 1 (set via the android:versionCode attribute).

This value is used to identify the version number of your application. It can be used to

programmatically determine whether an application needs to be upgraded.

 ➤ The version name of the application is 1.0 (set via the android:versionName attribute).

This string value is mainly used for display to the user. You should use the format

<major>.<minor>.<point> for this value.

 ➤ The android:minSdkVersion attribute of the <uses-sdk> element specifi es the minimum

version of the OS on which the application will run.

 ➤ The application uses the image named ic_launcher.png located in the drawable folders.

 ➤ The name of this application is the string named app_name defi ned in the strings.xml fi le.

 ➤ There is one activity in the application represented by the HelloWorldActivity.java fi le.

The label displayed for this activity is the same as the application name.

www.it-ebooks.info

32 ❘ CHAPTER 1 GETTING STARTED WITH ANDROID PROGRAMMING

 ➤ Within the defi nition for this activity, there is an element named <intent-filter>:

 ➤ The action for the intent fi lter is named android.intent.action.MAIN to indicate

that this activity serves as the entry point for the application.

 ➤ The category for the intent-fi lter is named android.intent.category.LAUNCHER

to indicate that the application can be launched from the device’s launcher icon.

Chapter 2 discusses intents in more detail.

As you add more fi les and folders to your project, Eclipse will automatically generate the content of

R.java, which currently contains the following:

/* AUTO-GENERATED FILE. DO NOT MODIFY.

 *

 * This class was automatically generated by the

 * aapt tool from the resource data it found. It

 * should not be modified by hand.

 */

package net.learn2develop.HelloWorld;

public final class R {

 public static final class attr {

 }

 public static final class drawable {

 public static final int ic_launcher=0x7f020000;

 }

 public static final class layout {

 public static final int main=0x7f030000;

 }

 public static final class string {

 public static final int app_name=0x7f040001;

 public static final int hello=0x7f040000;

 }

}

You are not supposed to modify the content of the R.java fi le; Eclipse automatically generates the

content for you when you modify your project.

NOTE If you delete R.java manually, Eclipse will regenerate it for you

immediately. Note that in order for Eclipse to generate the R.java fi le for you,

the project must not contain any errors. If you realize that Eclipse has not

regenerated R.java after you have deleted it, check your project again. The

code may contain syntax errors, or your XML fi les (such as AndroidManifest

.xml, main.xml, etc.) may not be well-formed.

www.it-ebooks.info

Summary ❘ 33

Finally, the code that connects the activity to the UI (main.xml) is the setContentView() method,

which is in the HelloWorldActivity.java fi le:

package net.learn2develop.HelloWorld;

import android.app.Activity;

import android.os.Bundle;

public class HelloWorldActivity extends Activity {

 /** Called when the activity is first created. */

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 }

}

Here, R.layout.main refers to the main.xml fi le located in the res/layout folder. As you add

additional XML fi les to the res/layout folder, the fi lenames will automatically be generated in

the R.java fi le. The onCreate() method is one of many methods that are fi red when an activity is

loaded. Chapter 2 discusses the life cycle of an activity in more detail.

SUMMARY

This chapter has provided a brief overview of Android, and highlighted some of its capabilities. If

you have followed the sections on downloading the tools and the Android SDK, you should now

have a working system — one that is capable of developing more interesting Android applications

other than the Hello World application. In the next chapter, you will learn about the concepts of

activities and intents, and the very important roles they play in Android.

EXERCISES

 1. What is an AVD?

 2. What is the di. erence between the android:versionCode and android:versionName attributes

in the AndroidManifest.xml fi le?

 3. What is the use of the strings.xml fi le?

Answers to the exercises can be found in Appendix C.

www.it-ebooks.info

