Logarithm function

The logarithm function with base b is the function $y = \log_b x$ where b > 0 and The function is defined for all x > 0. $b \ne 1$.

Here is its graph for any base b.

Note the following:

- 1. For any base, the *x*-intercept is 1. $\Rightarrow \log_b 1 = 0$.
- 2. The graph passes through the point (b, 1). $\Rightarrow \log_b b = 1$.
- 3. The graph is below the x-axis -- the logarithm is negative -- for 0 < x < 1
- 4. The function is defined only for positive values of x.
- 5. The range of the function is all real numbers.
- 6. The negative y-axis is a vertical asymptote.
- 7. $\log_b(xy) = \log_b x + \log_b y.$
- 8. $\log_b\left(\frac{x}{y}\right) = \log_b x \log_b y$.
- $9. \quad \log_b\left(\frac{1}{x}\right) = -\log_b x.$
- 10. $\log_b x^y = y \log_b x$.
- 11. For each strictly positive real number a and b, different from 1, we have

$$\log_b x = \frac{\log_a x}{\log_a b}$$

The natural logarithm $y = \ln x$

The system of natural logarithms has the number called e as its base. e is an irrational number; its decimal value is approximately 2.71828182845904.

To indicate the natural logarithm of a number we write "ln." $\ln x$ means $\log_e x$.

So we have

1.
$$\ln e = 1$$

$$2. \log_b x = \frac{\ln x}{\ln b}$$

3.
$$\ln(xy) = \ln x + \ln y$$

$$4. \ln\left(\frac{x}{y}\right) = \ln x - \ln y$$

5.
$$\ln x^n = n \ln x$$

Derivative of natural logarithm function

If u is a function x, then

$$\frac{d}{dx}(\ln u) = \frac{1}{u} \cdot \frac{du}{dx}$$

Example 1: Find derivatives of the functions

1.
$$y = \ln(5x + 1)$$

$$\frac{dy}{dx} = \frac{1}{5x+1} \times 5 = \frac{5}{5x+1}$$

2.
$$y = 2x \tan^{-1} x - \ln(x^2 + 1)$$

$$\frac{dy}{dx} = \frac{2x}{1+x^2} + 2\tan^{-1}x - \frac{2x}{x^2+1} = 2\tan^{-1}x$$

3.
$$y = \ln(\sin 3x)$$

$$\frac{dy}{dx} = \frac{1}{\sin 3x} \times 3\cos 3x = 3\cot 3x$$

4.
$$y = \ln(x^2 + 3)^{(x^2 + 3)}$$
 $\Rightarrow y = (x^2 + 3)\ln(x^2 + 3)$

$$\frac{dy}{dx} = (x^2 + 3) \times \frac{2x}{(x^2 + 3)} + 2x \ln(x^2 + 3) = 2x + 2x \ln(x^2 + 3)$$

Exponential functions

For any positive number a>0, $a\neq 1$, there is a function called an exponential function that is defined as $f(x)=a^x$

For example

$$y = 2^x , y = \left(\frac{1}{2}\right)^x$$

Now, let's talk about some of the properties of exponential functions.

- 1. The graph of $f(x) = a^x$ will always contain the point (0,1). Or put another way, $a^0 = 1$ regardless of the value of a.
- 2. For every possible a, $a^x > 0$. Note that this implies that $a^x \neq 0$.
- 3. If 0 < a < 1 then the graph of a^x will decrease as we move from left to right.
- 4. If a > 1 then the graph of a^x will increase as we move from left to right.
- 5. If $a^x = b^x$ then a = b.

Basic rules for exponents

- 1. The product rule $a^x \cdot a^y = a^{x+y}$
- 2. The quotient rule $\frac{a^x}{a^y} = a^{x-y}$
- 3. The rule for power of a power $(a^x)^y = a^{x \cdot y}$

Natural exponential function

The function $f(x) = e^x$ is often called exponential function or natural exponential function which is an important function. The exponential function $f(x) = e^x$ is the inverse of the logarithm function $f(x) = \ln x$.

Derivatives of exponential function

If u is a function x, then

$$\frac{d}{dx}(e^u) = e^u \cdot \frac{du}{dx}$$

Example 2: Find y' and y'' of the functions

1.
$$y = e^{3x-2}$$

 $y' = e^{3x-2} \times 3 = 3e^{3x-2}$
 $y'' = 3e^{3x-2} \times 3 = 9e^{3x-2}$
2. $y = 2xe^{1-5x}$
 $y' = 2xe^{1-5x} \times (-5) + 2e^{1-5x} = e^{1-5x}(-10x + 2)$
 $y'' = e^{1-5x} \times (-10) + (-10x + 2)e^{1-5x} \times (-5)$
 $= -5e^{1-5x}(2 - 10x + 2) = 10e^{1-5x}(5x - 2)$
3. $y = e^{-3x} \sin 2x$
 $y' = 2e^{-3x} \cos 2x - 3e^{-3x} \sin 2x = e^{-3x}(\cos 2x - 3\sin 2x)$
 $y'' = e^{-3x}(-4\sin 2x - 6\cos 2x) - 3e^{-3x}(\cos 2x - 3\sin 2x)$

4.
$$y = e^{\sqrt{1-2x}}$$

 $y'' = (5\sin 2x - 2\cos 2x)e^{-3x}$

$$y' = \frac{-e^{\sqrt{1-2x}}}{\sqrt{1-2x}}$$

$$y'' = \frac{\sqrt{1-2x} \times \frac{e^{\sqrt{1-2x}}}{\sqrt{1-2x}} - \left(-e^{\sqrt{1-2x}}\right) \times \frac{-1}{\sqrt{1-2x}}}{1-2x} = \frac{e^{\sqrt{1-2x}} - \frac{e^{\sqrt{1-2x}}}{\sqrt{1-2x}}}{1-2x}$$

$$= \frac{e^{\sqrt{1-2x}} \left(1 - \frac{1}{\sqrt{1-2x}}\right)}{1-2x} = \frac{e^{\sqrt{1-2x}} \left(\frac{\sqrt{1-2x}-1}{\sqrt{1-2x}}\right)}{1-2x} = \frac{e^{\sqrt{1-2x}} \left(\sqrt{1-2x}-1\right)}{(1-2x)^{3/2}}$$

Solving exponential and logarithm equations

Logarithms are the "opposite" of exponentials. In practical terms, I have found it useful to think of logarithm in terms of the relationship:

$$y = \log_b x$$
 \Leftrightarrow $x = b^y$
 $y = \ln x$ \Leftrightarrow $x = e^y$

Physical application:

i- Radioactive Decay: The amount of a radioactive element *A* at time *t* is given by:

$$A = A_0 e^{kt}$$

Where A_0 is the initial amount of the element and k is the constant of proportionality.

Example 3: The radioactive element radium-226 has a half-life of 1620 years. If a sample initially contains 120 gm, find the constant k.

$$t = 1620$$
 \Rightarrow $A = \frac{1}{2}A_0$ \Rightarrow $A = \frac{1}{2} \times 120 = 60 \text{ gm}$

$$A = A_0 e^{kt}$$
 \Rightarrow $60 = 120 e^{k \times 1620}$

$$e^{1620k} = \frac{60}{120} = 0.5$$

$$1620k = \ln(0.5)$$

$$k = \frac{\ln(0.5)}{1620} = \frac{-0.6931}{1620} = -4.28 \times 10^{-4}$$

Example 4: The radioactive element Iodine-131 has a half-life of 8 days. If a sample initially contains 5 gm. Find a function which gives the amount at any time *t*.

$$t = 8$$
 \Rightarrow $A = \frac{1}{2}A_0$ \Rightarrow $A = \frac{1}{2} \times 5 = 2.5 \text{ gm}$

$$A = A_0 e^{kt} \quad \Rightarrow \ 2.5 = 5 \ e^{k \times 8}$$

$$e^{8k} = 0.5 \implies k = \frac{\ln(0.5)}{8} = -0.0866$$

So
$$A = A_0 e^{-0.0866 t}$$

ii- Newton's low of cooling

The temperature T of an object at time t is given by: $T = T_s + ce^{-kt}$

Where T_s the temperature of the surrounding medium and c, k are constants.

Example 5: Placed a metal bar, at a temperature of 100° F in a room with constant temperature of 0° F. After 20 minutes the temperature of the bar is 50° F. Find c and k.

Solution:
$$T_s = 0^{\circ}\mathrm{F}$$

$$T = T_s + ce^{-kt} \& (T_s = 0) \Rightarrow T = ce^{-kt}$$
(Initial condition) $t = 0$, $T = 100^{\circ}\mathrm{F} \Rightarrow 100 = ce^{-k \times 0} \Rightarrow c = 100$

$$T = 100e^{-kt}$$
To find k we have $t = 20 \, min$, $T = 50^{\circ}\mathrm{F} \Rightarrow 50 = 100e^{-k \times 20}$

$$e^{-20k} = 0.5 \Rightarrow -20k = \ln(0.5)$$

$$\therefore k = \frac{\ln(0.5)}{20} = 0.0347$$

Example 6: A body at an unknown temperature is placed in a room which is held at a constant temperature of 30° F. If after 10 min the temperature of the body is 0° F and after 20 min the temperature of the body is 15° F, find the unknown initial temperature.

Solution:
$$T_s = 30^{\circ} \text{F}$$

$$T = T_s + ce^{-kt} & (T_s = 30) \Rightarrow T = 30 + ce^{-kt}$$

$$t = 10 , T = 0 \Rightarrow 0 = 30 + ce^{-10k}$$

$$ce^{-10k} = -30 \cdots (1)$$

$$t = 20 , T = 15 \Rightarrow 15 = 30 + ce^{-20k}$$

$$ce^{-20k} = -15 \cdots (2)$$

$$(1) \div (2) \Rightarrow e^{10k} = 2$$

$$10 k = \ln 2 = 0.693$$

$$k = 0.0693$$

$$To find $c : ce^{-10 \times 0.0693} = -30$

$$c = -30 \times e^{0.693} = -60$$

$$T = 30 - 60e^{-0.0693t}$$

$$t = 0 \Rightarrow T = 30 - 60e^{-0.0693 \times 0} \Rightarrow T = -30^{\circ} \text{ F}$$$$

Exercises

Find derivative in each of the following problems (1-4)

1.
$$y = \ln(x^2 + x)$$

2.
$$y = x^3 \ln(x^2 - 2x + 5)$$

3.
$$y = e^{\sin^{-1} x}$$

4.
$$y = x^3 e^{-5x}$$

- 5. The radioactive element Chromium- 51, has a half-life of 27.7 days. If a sample initially contains 75 milligrams. Find a function which gives the amount at any time *t*.
- 6. A 40°F roast is cooked in a 350°F oven. After 2 hours, the temperature of the roast is 125°F.
- a. Find a formula for the temperature of the roast as a function of t.
- b. The roast is done when the internal temperature reaches 165°F. When will the roast be done?
- 7. A body at a temperature of 50° F is placed in an oven whose temperature is kept at 7 150° F. If after 10 minutes the temperature of the body is 75° F, find the time required for the body to reach a temperature of 100° F.