Lldal) ddia acd [Guenal) dudigh) 48 [il Gawa ol el a0 1) [MATLAB 4l Agea)
Gl ead) dtia g

Solving Algebraic
Equations and Other
Symbolic Tools

In this chapter we will begin to look at using MATLARB to solve equations. We start
with simple algebraic eguations considering solutions for single wariables and
solving systems of equations. Then we will look at working with transcendental.
trig, and hyperbolic functions. Finally we will see how MATLAB handles complex
numbers. In the next chapter we will take a look at using MATLAB to solve
differential equations.

Solving Basic Algebraic Equations

To solve an algebraic equation in MATLAB we can call upon the sofve command.
At its most basic all we hawve to do is type in the equation we want to solve enclosed
in gquotes and hit return. Let’s start by looking at a trivial example. Suppose that we
wanted to use MATLAB to find the value of x that solves:

x+3=0

MNow the suspense is building—but many clever readers will deduce the answer
15 x = —3 and wonder why we're bothering with this. Well the reason is that it will
make seeing how to use MATLAB for symbolic computing a snap. We can find the
solution in one step. All we do is create a variable and assign it the value returned
by solve in the following way:

== X = golwvel"x + 2 = 0"]

MNow it isn’t necessary to include the right-hand side of the equation. As you can
see from the following example, MATLAB assumes that when you pass x + 8 to
solve that yvou mean x + 8 = (. To verify this, we run this command line:

== X = s2olwel "x+8"')

50 enter the equations whichever way you want. | prefer to be as clear as possible
with my intentions, so would rather use x + 8 = () as the argument.

Lldal) ddia acd [Guenal) dudigh) 48 [il Gawa ol el a0 1) [MATLAB 4l Agea)
Gl ead) dtia g

It is possible to include multiple symbols in the egquation you pass to solve. For
instance, we might want to have a constant included in an eguation like this:

axr+5=10

If we enter the eguation in MATLAB, it seems to just assume that we want to
solve for x:

== golwve{'av*xs+S"])
ang =
-5/ =

Howewer, there is a second way to call solve. We can tell it what symbol we want
it to solve for. This is done using the following syntax:

zsclwve (egquation, wariable]

Like the equation that you pass to solve, the vanable must be enclosed in single
quotes. Returning to the equation ax + 5 =), let’s tell MATLAB to find a instead.
We do this by typing:

== solve('a*x + 5", 'a')
MATLAB responds with the output:

ans =

-5/ /x

Solving Quadratic Equations

The solve command can be used to solve higher order equations, to the delight of
algebra students everywhere. For those of us who have moved beyond algebra
MATLARB offers us a way to check results when gquadratic or cubic equations pop
up or to save us from the tedium of solving the equations.

The procedure used is basically the same as we’ve used so far, we just use a caret
character (*) to indicate exponentiation. Let’s consider the equation:

—b6x—12=0

We could solve it by hand. You can complete the square or just apply the quadratic
formula. To solve it using MATLAB, we write:

== 8 = solve ("x"2 —6%x -12 = 0')
MATLARB responds with the two roots of the equation:

3 =

3+21%(1/2)
3-217(1/2)

Lldal) ddia acd [Guenal) dudigh) 48 [il Gawa ol el a0 1) [MATLAB 4l Agea)
Gl ead) dtia g

Movar, how do yvou work with the resulis returned by solve? We can extract them and
use them just like any other MATLARB wvariable. In the case of two roots like this
one., the roots are stored as s01) and s(Z). S50 we can use one of the noots to define a
new uanbiby:

W =

E+2Z1 (12D

Here is another example where we refer to both roots returned by solve:

== =al1l} + a3{2Z}

When using solve to return a single vanable, the array syntax 1s not necessary.
For example, we use x to store the solution of the following equation:

=% X = solve("3*u + % = B')
MATLAB dutifully tells us that:

=

-1/73

MNow we can use the result in another equation:

== T o= 2 + 1

= =

2/3

It is possible to assign an eguation to a vanable and then pass the varable to
solve. For instance, let’s create an equation {generated at random on the spot) and
assign it to a vaniable with the meaningless name d:

==» d = "x72 4+ 9%x -7 = 0";

Mow we call solve this way:
== solwve (d4d)

MATLARB correctly tells us the two roots of the equation:
ana =

—9/24+1/2%109™ (1/2)

—9, 2-1/2%*109" (1/2)

Lldal) ddia acd [Guenal) dudigh) 48 [il Gawa ol el a0 1) [MATLAB 4l Agea)
Gl ead) dtia g

Plotting Symbolic Equations

Let’s take a little detour from solving equations, to see how we can plot symbohcally
entered matenial. OK while | argued that wnting ‘x*2 — 6*x — 12 = " was better
than ‘x*2 — 6*x — 12" it turns out there is a good reason why you might choose the
latter method. The reason is that MATLARB allows us to generate plots of symbolic
equations we’ve entered. This can be done using the ezplot command. Let's do that
for this example.

First let’s create the string to represent the equation:

»» d = 'x"2 -6%*x - 12';
MNow we call ezplot:

=% ezplot (d)

MATLARB responds with the graph shown in Figure 5-1.
A couple of things to notice are:

= ezplot has conveniently generated a title for the plot shown at the top,
without us having to do any work.

+ [t has labeled the x axis for us.

- —fx— 12

Figure 5-1 A plot of a symbolic function generated using ezplot
4

Lldal) ddia acd [Guenal) dudigh) 48 [il Gawa ol el a0 1) [MATLAB 4l Agea)
Gl ead) dtia g

x2—-6x— 12

sk =

I\ i

Figure 5-2 Using ezplot while specifying the domain

The function also picked what values to use for the domain and range in the ploL
Of course we may not like what it picked. We can specify what we want by
specifying the domain with the following syntax:

ezplot (£, [x,, x])

1

This plots f for x, < x < x,. Returning to the previous example, let's say we
wanted to plot it for —" < x < 8. We can do that using the following command:

s> d = "x"2 —6%*x - 12";
== ezplot{d, [-2,8])

The plot generated this time is shown in Figure 5-2.
Before we go any further. let’s get back to the ** = 07 issue. Suppose we tried to
plot:

>> ezplot({'x+3=0")

MATLAB doesn’t like this at all. It spits out a series of meaningless error
messages:
?7? Erxrror using ==> inlineeval

Error in inline expression ==> x+3=0

7?7 Error: The sxpression to thes left of the eguals sign is=
not a wvalid target for an assigomeant .

Error in === inline.fewal at 324
INLINE OUT_ = inlineeval (INLINE INPUTS_ , INLINE OBJ_

imputExpr, INLINE OBJ _ .expr) ;

Error in ==»> apecgraph'ZwprivatelZwszplotfewval at 54
=z = Feval (E,x(11]) ;

Error in ==» ezplotszezplotl at 2448
[, £, loopflag]l = szplotfewal (£, x) ;

Error in ==> ezplot at 148
[hp,cax] = ezplotlicax,£f{1},var=s,labels,arg=s{:}];

Lldal) ddia acd [Guenal) dudigh) 48 [il Gawa ol el a0 1) [MATLAB 4l Agea)
Gl ead) dtia g

Now, if we instead type:

== ezplot ["x+3')

It happily generates the straight line shown in Figure 5-3.

%+ 3

ll}—l L] L] L] L] L] |_
]

al i
sl A
a1 i
2L i
Ll = o -
- / 7
— [1 1 1 1 1 1 L]
—5 —d —2] z 4 &

X

Filpure -3 Using ezplot{‘x + 3" works, but ezplot{“*x + 3 = 0") will zenerate an ermor

Now we just mentioned a while ago that we could tell ezplot how to specify the
domain to include in the plot. Naturally it also allows us to specify the range. Just
for gigeles, let's say we wanted to plot:

x+3=0
~4<xr<d -2yl

We can do this by typing:
»» ezgplot('x+3", [-4,4,-2,2])

The plot generated is shown in Figure 3-4. So. to specify you want the plot to be
over x, <x<x and y, <y <y, include [x, x,, v..v,] in your call to ezplot.

Lldal) ddia acd [Guenal) dudigh) 48 [il Gawa ol el a0 1) [MATLAB 4l Agea)
Gl ead) dtia g

EXAMPLE 5-1
Find the roots of x2 +x—~2 =0 and plot the function. Determine the numerical
value of the roobs.

X+ 3

z T T T T

1.5 -

1 -
5 —

0 .
—A5 —
—1 -
—1.5} -
7 1 1 L 1 1 1 1

—4 —3 —2 —1 o I x 3 4

SOLUTION 5-1

First let’s create a string to represent the equation. First as an aside. note that you
can include predefined MATLAB expressions in your eguation. So it would be
perfectly OK to enter the equation as:

== =g = "X 2 + x — =grt (2} "
Or if you like, you could write:

== oag = "2 + x o— 27172y
Mext we call solve to find the roots:

== =2 = solwe [agl

= =
—A1 /2412 (LA™ (L2)7 (1L/2)
—1 /21 2% (Lsaw2 ™ (1207 (1/2)

To determine the numerical value of the roots, we need to extract them from the
array and convert them into type double. This is done by simply passing them to the
double(.) command. For example, we get the first root out by wnting:

== m = double{zai{l}]

0.7900
And the second root:
== ¥ = double{s(Z}]
:El' =

—1.7900

Lldal) ddia acd [Guenal) dudigh) 48 [il Gawa ol el a0 1) [MATLAB 4l Agea)
Gl ead) dtia g

To plot the funciion, we use a call to ezplok:

== e=plot (e

The result 1s shown in Figure 5-5_

s x— 2072

h &8 & & &

w e o H
I —
-
,,f
-,
1 1 1

-
/
\

|
Ln
X

Figure 5-5 A plot of the guadratic egquation solved in Example 5-1

Solving Higher Order Equations

Of course we can use MATLARB to solve higher order equations. Let’s try a cubic.
Suppose we are told that:

x+ 1¥ix—2)=0

Solving an eguation like this is no different than what we ve done so far. We find
that the roots are:

== 8 = solwve (adgl)
= =
2

-1
-1

EXAMPLE S5-2
Find the roots of the fourth order eguation

¥ —5x+4xT — S+ 6 =10

and plot the function for —10 < x < 10.

Lldal) ddia acd [Guenal) dudigh) 48 [il Gawa ol el a0 1) [MATLAB 4l Agea)
Gl ead) dtia g
SOLUTION 5-2
First we define the function by creating a character string to represent it:

== 2gl = "mTA4 S R AWyt _Swax S ;
Then we call solve o find the noots:
== 2 = solwve (aegl) ;

Mow let’s define some wariables to extract the roots from s. If yvou list them
symbolically, you will get a big mess. We show part of the first root here:

== a = s(1]
= =

C/4+1 /123 (L, 2 ((42v (BO900+12*S493093 (1,21) T (1L/ 3 +2"(2900+
12549093 (1L 23 T (230 +1048)

Try it and you will see this term goes on a long way. So let’s use double to get a
numerical result:

== a = double{s(l1}]

4 2588

Mow that is much micer. We get the rest of the roots. Since it's a fourth order
equation, well there are four roots:

== b = doublel{al(2}]
=] =
1.1154
== = = double(={3))

—iOD . 1878 4+ 1 .107&a4
== & = doubles(=40{X2))
3l =

—o_ 1876 — L1L.107&aed

Motice two of the roots are complex numbers. MNow let™s plot the function owver

the domain indicated:
== emploti{egl, [0 1] ¥

The result is shown in Figure 5-6.

¥ SxF £ AxT — Sm + &

|
=)
b
b
A
b

"D
Wk
"
)
1]
e

Lldal) ddia acd [Guenal) dudigh) 48 [il Gawa ol el a0 1) [MATLAB 4l Agea)
Gl ead) dtia g

Basic Syvmbolic
Calculus and
Differential Equations

Im this chapter we will learn how to use MATLARBR to do symbolic calculus.
Specifically, we will start by examining limits and derivatives, and then see how o
solve differental eguations. We will cover imtegration in the next chapter.

Calculating Limits

MATLAB can be used to calculate limits by making a call to the s commeand.
The most basic way to use this command is to type in the expression you want to
use. MATLAER will then find the limit of the expression as the independent variable

goes to zers. For example., if you enter a function Ff (x), MATLAB will then find
lim f(x). Here is an example:

] arym=sE X

== 1limit ({23 + 1), {x"2 + 23}
ars =

1.2

Remember, the limit command falls in the realm of symbolic computing, so be sure
to use the syms command to tell MATLARB which symbolic variables you are using.

To compute lim f(x} the limit command is called using the syntax Limit(f, a). For
example:

== limitd{zx + 5,3)]

arns =

B

EXAMPLE 6-1

Let fixy =‘;+"-3 and g{x) =x* + 1. Compute the limit as x — 3 of both functions and

verify the basic properties of limits using these two functions and MATLAB.

SOLUTIOMN 6-1
First we tell MATL AR what symbolic variables we will use and define the functions:

o SIS
== E = (2% 4+ 1)/ {x—2) ;
= b= =]‘:AE =+ 1.;

Mo let’s find the limmit of each function, and store the result 1n a variable we can
use later:

== Fl = I1imitilE, 3]}
Fl =

-

== F2 = limit(g,2)
FzZz =

1a

ERV)

Lldal) ddia acd [Guenal) dudigh) 48 [il Gawa ol el a0 1) [MATLAB 4l Agea)
Gl ead) dtia g

The first property of limits we wish to verify 1s:
Lim({ f{x)+ glx)) =lim F{x)+ hm g(x)
From our calculations so far we see that:
IIi_l;J;LfI:x‘.l+]Ii_|né_lg[.ﬂ= T+10=17
MNow let’s verify the relation by calculating the left-hand side:
== limit (£+g, 3}
amns =
17
MNext we can verify:
!i_l;];t.k flx)= .‘.'!.[_'l'.l‘;l.fli.l'-:l
for any constant k. Let’s let k= 3 for which we should find:
Imk fix)=KkElim f(x)=(3KT)=21I:
== kk=3;
== limit (k*£, 3}
ans =
21

MNow let's check the fact that the limit of the product of two functions is the
product of their limits, that is:

Im fix)g(xd=lim f{x)lim g{x)

The product of the limits is:
== F1*F2

ans =

T0O

11

Lldal) ddia acd [Guenal) dudigh) 48 [il Gawa ol el a0 1) [MATLAB 4l Agea)
Gl ead) dtia g

And we find the limit of the product o be:
== 1imit (E%*g, 3}
a3 =
0

Finally. let™s werify that:
— Ky ELED - A
!L—au:l f{ -:l (!"—m f" I}J

We can create F (o™ in MATLAB:
== h = £ g
h =
[{Z2wac4 1) /S {22—23 F T (2™ 2221}
Computing the limait:
== 1imit (ka, 32}
ans =
28247524 9
Checking the right side of the relation. we find that they are equal:
== P = FLTFZ
B o=
28247524 9

Acs an aside, we can check if two gquantities in MATL AR are egqual by calling the
iregeal command. If two guantities are not egual. isegual returms 0. Recall that
earlier we defined a constant & = 3. Here is what MATL AR retums if we compars
it o A — F1F2:

== dsmecual (B, k)

On the other hamd:
= dmegual (&, limit{lk, 2F 3
ans =
a1

Computing Lo 70 xh
We can calculate limits of the form limn #(x) by using the syntasx:

limit (£, imf)

. 1
Let’'s use MATI AR to show that linm -.'_::2+I—_r:]=—:
A =
== A1imit (asgrt {x"2+x) —zc, inaf)
anmn=s =
o
We can also calculate Im fF{x). For example:
i
== Aimit ({(S*2x™3 5+ Z2%®ac) S (x™21L0 + 2 =+ T, —dimfF)

aans =

]
ABMMATLAB will also tell us if the resualt of a limit is o=, For example, we wverify

that lem 3 — -z
T—e

[ES
== ITdmit (1L aks(x)d]

aans =

ImiE

Lldal) ddia acd [Guenal) dudigh) 48 [il Gawa ol el a0 1) [MATLAB 4l Agea)
Gl ead) dtia g

LEFT- AND RIGHT-SIDED LIMITS

When a function has a discontinuity. the limit does not exist at that point. To handle
limuits in the case of a discontinuity at x = a. we define the notion of feff-handed and
righr-honded limits, & left-handed limit is defined as the limit as x — a from the
left. that is x approaches a for values of x < a. In calculus we write:

Limn)

T

For a right-handed limit, where x — a from the right, we consider the case when
x approaches a for values of x > a. The notation used for right-handed limits is:

lim f(x)

If these limits are equal, then lim f{x) exists. In MATLAB, we can compute left-
and nght-handed limits by passiﬁﬁuthe character strings “left” and “right” to the limit
command as the last argsument. We must also tell MATLARB the vanable we are
using to compute the limit in this case. Let’s illustrate with an example.

EXAMPLE 6-2

Show that lin;l':%gl does not exist.

SOLUTIHOM 6-2
First let’s define the function in MATLAR:

== F = (x — 3)/aba (x-3);

If we plot the function, the discontinuity at x =3 is apparent, as shown in Figure 6-1.
MNote that we have to give MATLAB the domain over which we want to plot in order
to get it to show us the discontinuity:

== ezplot (£, [-1,5]1])

(X — Jvabsix — 3
T

0S5 - =

|
N
(=]
-
M b
1 =
i
LA

Figure 6-1 A plot showing the discontinuity in (r — 3wx — 3|

13

Lldal) ddia acd [Guenal) dudigh) 48 [il Gawa ol el a0 1) [MATLAB 4l Agea)
Gl ead) dtia g

Mow let™s compute the left-handed limit. To do this, we must pass the function,
the wvariable we are using to take the limit. and the string “left” as a comma-delimited
list:

= @ = A1imit{f_x,3F, "lLefEft"])

-2

Mo let's take the right-handed ot
== B = d1idmitd{Ef, 2 I, "right"]
b =

1

ra—3

lim———=— does mot
=—3 | x— 3|

Since these two terms are not egual. we have shown that
exist.

14

