
Operating Systems I- Lecture Lecturer: Dr. Sura Z. Alrashid

1

 Process Management
A process can be thought of as a program in execution. A process will need certain

resources — such as CPU time, memory, files, and I/O devices —to accomplish its task.

These resources are allocated to the process either when it is created or while it is executing.

A process is the unit of work in most systems. Systems consist of a collection of processes:

Operating-system processes execute system code, and user processes execute user code.

All these processes may execute concurrently(parallel).

Although traditionally a process contained only a single thread of control as it ran, most

modern operating systems now support processes that have multiple threads.

The operating system is responsible for the following activities in connection with process

and thread management: the creation and deletion of both user and system processes; the

scheduling of processes; and the provision of mechanisms for synchronization,

communication, and deadlock handling for processes.

Table of Contents

1	 PROCESSES	 2	

1.1	 PROCESS	CONCEPT	 2	

1.1.1	 The	Process	 3	

1.1.2	 Process	State	 4	

1.1.3	 Process	Control	Block	 5	

1.1.4	 Threads	 	 6	

1.2	 PROCESS	SCHEDULING	 7	

1.2.1	 Scheduling	Queues	 7	

1.2.2	 Schedulers	 9	

1.2.3	 Context	Switch	 10	

1.3	 OPERATIONS	ON	PROCESSES	 10	

1.3.1	 Process	Creation	 10	

Operating Systems I- Lecture Lecturer: Dr. Sura Z. Alrashid

2

1.4	 SUMMARY	 11	

1 Processes

Early computer systems allowed only one program to be executed at a time. This program

had complete control of the system and had access to all the system’s resources. In contrast,

current-day computer systems allow multiple programs to be loaded into memory and

executed concurrently. This evolution required firmer control and more

compartmentalization of the various programs, and these needs resulted in the notion of a

process, which is a program in execution. A process is the unit of work in a modern time-

sharing system.

A system consists of a collection of processes: operating- system processes executing

system code and user processes executing user code. Potentially, all these processes can

execute concurrently, with the CPU (or CPUs) multiplexed among them. By switching the

CPU between processes, the operating system can make the computer more productive.

CHAPTER OBJECTIVES

- To introduce the notion of a process—a program in execution that forms the basis of all
computation.  	

- To describe the various features of processes, including scheduling, creation and termination,
and communication.  

- To describe communication in client–server systems.  

1.1 Process Concept

A question that arises in discussing operating systems involves what to call all the CPU

activities. A batch system executes jobs, whereas a time-shared system has user programs,

or tasks. Even on a single-user system such as the original Microsoft Windows, a user may

Operating Systems I- Lecture Lecturer: Dr. Sura Z. Alrashid

3

be able to run several programs at one time: a word processor, a Web browser, and an e-

mail package. And even if the user can execute only one program at a time, the operating

system may need to support its own internal programmed activities, such as memory

management. In many respects, all these activities are similar, so we call all of them

processes.

1.1.1 The Process

A process is a program in execution. A process is more than the program code, which is

sometimes known as the text section. It also includes the current activity, as represented

by the value of the program counter and the contents of the processor’s registers. A

process generally also includes the process stack, which contains temporary data (such as

function parameters, return addresses, and local variables), and a data section, which

contains global variables. A process may also include a heap(mass), which is memory that

is dynamically allocated during process run time. The structure of a process in memory is

shown in Figure 3.1.

We emphasize(highlight) that a program by itself is not a process; a program is a passive

entity, such as a file containing a list of instructions stored on disk (often called an

executable file), whereas a process is an active entity, with a program counter specifying

the next instruction to execute and a set of associated resources. A program becomes a

process when an executable file is loaded into memory. Two common techniques for

loading executable files are double-clicking an icon representing the executable file and

entering the name of the executable file on the command line (as in prog.exe or a.out).

Operating Systems I- Lecture Lecturer: Dr. Sura Z. Alrashid

4

Figure 3.1 Process in memory.

Figure 3.2 Diagram of process state.

Although two processes may be associated with the same program, they are nevertheless

considered two separate execution sequences. For instance, several users may be running

different copies of the mail program, or the same user may invoke many copies of the Web

browser program. Each of these is a separate process, and although the text sections are

equivalent, the data, heap, and stack sections vary.

1.1.2 Process State

As a process executes, it changes state. The state of a process is defined in part by the

current activity of that process. Each process may be in one of the following states:

New. The process is being created.  

Running. Instructions are being executed.  

104 Chapter 3 Processes

Microsoft Windows, a user may be able to run several programs at one time:
a word processor, a Web browser, and an e-mail package. And even if the
user can execute only one program at a time, the operating system may need to
support its own internal programmed activities, such as memory management.
In many respects, all these activities are similar, so we call all of them processes.

The terms job and process are used almost interchangeably in this text.
Although we personally prefer the term process, much of operating-system
theory and terminology was developed during a time when the major activity
of operating systems was job processing. It would be misleading to avoid
the use of commonly accepted terms that include the word job (such as job
scheduling) simply because process has superseded job.

3.1.1 The Process

Informally, as mentioned earlier, a process is a program in execution. A process
is more than the program code, which is sometimes known as the text section.
It also includes the current activity, as represented by the value of the program
counter and the contents of the processor’s registers. A process generally also
includes the process stack, which contains temporary data (such as function
parameters, return addresses, and local variables), and a data section, which
contains global variables. A process may also include a heap, which is memory
that is dynamically allocated during process run time. The structure of a process
in memory is shown in Figure 3.1.

We emphasize that a program by itself is not a process; a program is a passive
entity, such as a file containing a list of instructions stored on disk (often called
an executable file), whereas a process is an active entity, with a program counter
specifying the next instruction to execute and a set of associated resources. A
program becomes a process when an executable file is loaded into memory.
Two common techniques for loading executable files are double-clicking an
icon representing the executable file and entering the name of the executable
file on the command line (as in prog.exe or a.out).

text

0

max

data

heap

stack

Figure 3.1 Process in memory.

3.1 Process Concept 105

new terminated

runningready

admitted interrupt

scheduler dispatch
I/O or event completion I/O or event wait

exit

waiting

Figure 3.2 Diagram of process state.

Although two processes may be associated with the same program, they
are nevertheless considered two separate execution sequences. For instance,
several users may be running different copies of the mail program, or the same
user may invoke many copies of the Web browser program. Each of these is a
separate process, and although the text sections are equivalent, the data, heap,
and stack sections vary. It is also common to have a process that spawns many
processes as it runs. We discuss such matters in Section 3.4.

3.1.2 Process State

As a process executes, it changes state. The state of a process is defined in
part by the current activity of that process. Each process may be in one of the
following states:

• New. The process is being created.

• Running. Instructions are being executed.

• Waiting. The process is waiting for some event to occur (such as an I/O
completion or reception of a signal).

• Ready. The process is waiting to be assigned to a processor.

• Terminated. The process has finished execution.

These names are arbitrary, and they vary across operating systems. The states
that they represent are found on all systems, however. Certain operating
systems also delineate process states more finely. It is important to realize
that only one process can be running on any processor at any instant. Many
processes may be ready and waiting, however. The state diagram corresponding
to these states is presented in Figure 3.2.

3.1.3 Process Control Block

Each process is represented in the operating system by a process control block
(PCB)—also called a task control block. A PCB is shown in Figure 3.3. It contains
many pieces of information associated with a specific process, including these:

Operating Systems I- Lecture Lecturer: Dr. Sura Z. Alrashid

5

Waiting. The process is waiting for some event to occur (such as an I/O completion or reception of a
signal).  

Ready. The process is waiting to be assigned to a processor.  

Terminated. The process has finished execution.  

The state diagram corresponding to these states is presented in Figure 3.2.  

1.1.3 Process Control Block

Each process is represented in the operating system by a process control block (PCB)—

also called a task control block. A PCB is shown in Figure 3.3. It contains many pieces of

information associated with a specific process, including these:

Figure 3.3 Process control block (PCB).

Process state. The state may be new, ready, running, waiting, halted, and  so on.  

Program counter. The counter indicates the address of the next instruction to be executed for this process.

CPU registers. The registers vary in number and type, depending on the computer architecture. They
include accumulators, index registers, stack pointers, and general-purpose registers, plus any condition-
code information. Along with the program counter, this state information must be saved when an interrupt
occurs, to allow the process to be continued correctly afterward (Figure 3.4).  

CPU-scheduling information. This information includes a process priority, pointers to scheduling queues,
and any other scheduling parameters.

106 Chapter 3 Processes

process state

process number

program counter

memory limits

list of open files

registers

• • •

Figure 3.3 Process control block (PCB).

• Process state. The state may be new, ready, running, waiting, halted, and
so on.

• Program counter. The counter indicates the address of the next instruction
to be executed for this process.

• CPU registers. The registers vary in number and type, depending on
the computer architecture. They include accumulators, index registers,
stack pointers, and general-purpose registers, plus any condition-code
information. Along with the program counter, this state information must
be saved when an interrupt occurs, to allow the process to be continued
correctly afterward (Figure 3.4).

• CPU-scheduling information. This information includes a process priority,
pointers to scheduling queues, and any other scheduling parameters.
(Chapter 5 describes process scheduling.)

• Memory-management information. This information may include such
information as the value of the base and limit registers, the page tables,
or the segment tables, depending on the memory system used by the
operating system (Chapter 8).

• Accounting information. This information includes the amount of CPU
and real time used, time limits, account numbers, job or process numbers,
and so on.

• I/O status information. This information includes the list of I/O devices
allocated to the process, a list of open files, and so on.

In brief, the PCB simply serves as the repository for any information that may
vary from process to process.

3.1.4 Threads

The process model discussed so far has implied that a process is a program
that performs a single thread of execution. For example, when a process is
running a word-processing program, a single thread of instructions is being
executed. This single thread of control allows the process to perform only one

Operating Systems I- Lecture Lecturer: Dr. Sura Z. Alrashid

6

Memory-management information. This information may include such information as the value of the
base and limit registers, the page tables, or the segment tables, depending on the memory system used by
the operating system. 

Accounting information. This information includes the amount of CPU and real time used, time limits,
account numbers, job or process numbers, and so on.  

I/O status information. This information includes the list of I/O devices allocated to the process, a list of

open files, and so on.  In brief, the PCB simply serves as the repository for any information that may vary

from process to process.  	

1.1.4 Threads  	

The process model discussed so far has implied that a process is a program that performs

a single thread of execution. For example, when a process is running a word-processing

program, a single thread of instructions is being executed. This single of control allows the

process to perform only one task at a time. The user cannot simultaneously type in

characters and run the spell checker within the same process, for example. Many modern

operating systems have extended the process concept to allow a process to have multiple

threads of execution and thus to perform more than one task at a time. On a system that

supports threads, the PCB is expanded to include information for each thread. Other

changes throughout the system are also needed to support threads.

3.2 Process Scheduling 107

process P0 process P1

save state into PCB0

save state into PCB1

reload state from PCB1

reload state from PCB0

operating system

idle

idle

executingidle

executing

executing

interrupt or system call

interrupt or system call

•
•
•

•
•
•

Figure 3.4 CPU switch from process to process.

task at a time. The user cannot simultaneously type in characters and run the
spell checker within the same process, for example. Many modern operating
systems have extended the process concept to allow a process to have multiple
threads of execution and thus to perform more than one task at a time. On a
system that supports threads, the PCB is expanded to include information for
each thread. Other changes throughout the system are also needed to support
threads. Chapter 4 explores multithreaded processes in detail.

3.2 Process Scheduling

The objective of multiprogramming is to have some process running at all
times, to maximize CPU utilization. The objective of time sharing is to switch the
CPU among processes so frequently that users can interact with each program
while it is running. To meet these objectives, the process scheduler selects
an available process (possibly from a set of several available processes) for
program execution on the CPU. For a single-processor system, there will never
be more than one running process. If there are more processes, the rest will
have to wait until the CPU is free and can be rescheduled.

3.2.1 Scheduling Queues

As processes enter the system, they are put into a job queue that consists of
all processes in the system. The processes that are residing in main memory
and are ready and waiting to execute are kept on a list called the ready queue.
This queue is generally stored as a linked list. A ready-queue header contains

Operating Systems I- Lecture Lecturer: Dr. Sura Z. Alrashid

7

Figure 3.4 CPU switch from process to process.

1.2 Process Scheduling

The objective of multiprogramming is to have some process running at all times, to

maximize CPU utilization. The objective of time sharing is to switch the CPU among

processes so frequently that users can interact with each program while it is running. To

meet these objectives, the process scheduler selects an available process (possibly from a

set of several available processes) for program execution on the CPU. For a single-

processor system, there will never be more than one running process. If there are more

processes, the rest will have to wait until the CPU is free and can be rescheduled.

1.2.1 Scheduling Queues

As processes enter the system, they are put into a job queue that consists of all processes

in the system. The processes that are residing in main memory and are ready and waiting

to execute are kept on a list called the ready queue. This queue is generally stored as a

linked list.

Operating Systems I- Lecture Lecturer: Dr. Sura Z. Alrashid

8

Figure 3.6 The ready queue and various I/O device queues.

The system also includes other queues. When a process is allocated the CPU, it executes

for a while and eventually quits, is interrupted, or waits for the occurrence of a particular

event, such as the completion of an I/O request. Suppose the process makes an I/O request

to a shared device, such as a disk. Since there are many processes in the system, the disk

may be busy with the I/O request of some other process. The process therefore may have

to wait for the disk. The list of processes waiting for a particular I/O device is called a

device queue. Each device has its own device queue (Figure 3.6).

A common representation of process scheduling is a queueing diagram, such as that in

Figure 3.7. Each rectangular box represents a queue. Two types of queues are present: the

ready queue and a set of device queues. The circles represent the resources that serve the

queues, and the arrows indicate the flow of processes in the system.

A new process is initially put in the ready queue. It waits there until it is selected for

3.2 Process Scheduling 109

queue header PCB7

PCB3

PCB5

PCB14 PCB6

PCB2

head

head

head

head

head

ready
queue

disk
unit 0

terminal
unit 0

mag
tape

unit 0

mag
tape

unit 1

tail registers registers

tail

tail

tail

tail
•
•
•

•
•
•

•
•
•

Figure 3.6 The ready queue and various I/O device queues.

The system also includes other queues. When a process is allocated the
CPU, it executes for a while and eventually quits, is interrupted, or waits for
the occurrence of a particular event, such as the completion of an I/O request.
Suppose the process makes an I/O request to a shared device, such as a disk.
Since there are many processes in the system, the disk may be busy with the
I/O request of some other process. The process therefore may have to wait for
the disk. The list of processes waiting for a particular I/O device is called a
device queue. Each device has its own device queue (Figure 3.6).

A common representation of process scheduling is a queueing diagram,
such as that in Figure 3.7. Each rectangular box represents a queue. Two types
of queues are present: the ready queue and a set of device queues. The circles
represent the resources that serve the queues, and the arrows indicate the flow
of processes in the system.

A new process is initially put in the ready queue. It waits there until it is
selected for execution, or is dispatched. Once the process is allocated the CPU
and is executing, one of several events could occur:

• The process could issue an I/O request and then be placed in an I/O queue.

• The process could create a new subprocess and wait for the subprocess’s
termination.

• The process could be removed forcibly from the CPU, as a result of an
interrupt, and be put back in the ready queue.

Operating Systems I- Lecture Lecturer: Dr. Sura Z. Alrashid

9

execution, or is dispatched. Once the process is allocated the CPU and is executing, one

of several events could occur:

• The process could issue an I/O request and then be placed in an I/O queue.  
• The process could create a new subprocess and wait for the subprocess’s termination. 
• The process could be removed forcibly from the CPU, as a result of an interrupt, and be put back

in the ready queue.  

Figure 3.7 Queueing-diagram representation of process scheduling.

In the first two cases, the process eventually switches from the waiting state to the ready

state and is then put back in the ready queue. A process continues this cycle until it

terminates, at which time it is removed from all queues and has its PCB and resources

deallocated.

1.2.2 Schedulers

A process migrates among the various scheduling queues throughout its lifetime. The

operating system must select, for scheduling purposes, processes from these queues in

some fashion. The selection process is carried out by the appropriate scheduler.

110 Chapter 3 Processes

ready queue CPU

I/O I/O queue I/O request

time slice
expired

fork a
child

wait for an
interrupt

interrupt
occurs

child
executes

Figure 3.7 Queueing-diagram representation of process scheduling.

In the first two cases, the process eventually switches from the waiting state
to the ready state and is then put back in the ready queue. A process continues
this cycle until it terminates, at which time it is removed from all queues and
has its PCB and resources deallocated.

3.2.2 Schedulers

A process migrates among the various scheduling queues throughout its
lifetime. The operating system must select, for scheduling purposes, processes
from these queues in some fashion. The selection process is carried out by the
appropriate scheduler.

Often, in a batch system, more processes are submitted than can be executed
immediately. These processes are spooled to a mass-storage device (typically a
disk), where they are kept for later execution. The long-term scheduler, or job
scheduler, selects processes from this pool and loads them into memory for
execution. The short-term scheduler, or CPU scheduler, selects from among
the processes that are ready to execute and allocates the CPU to one of them.

The primary distinction between these two schedulers lies in frequency
of execution. The short-term scheduler must select a new process for the CPU
frequently. A process may execute for only a few milliseconds before waiting
for an I/O request. Often, the short-term scheduler executes at least once every
100 milliseconds. Because of the short time between executions, the short-term
scheduler must be fast. If it takes 10 milliseconds to decide to execute a process
for 100 milliseconds, then 10/(100 + 10) = 9 percent of the CPU is being used
(wasted) simply for scheduling the work.

The long-term scheduler executes much less frequently; minutes may sep-
arate the creation of one new process and the next. The long-term scheduler
controls the degree of multiprogramming (the number of processes in mem-
ory). If the degree of multiprogramming is stable, then the average rate of
process creation must be equal to the average departure rate of processes

Operating Systems I- Lecture Lecturer: Dr. Sura Z. Alrashid

10

1.2.3 Context Switch

The interrupts cause the operating system to change a CPU from its current task and to run

a kernel routine. Such operations happen frequently on general-purpose systems. When an

interrupt occurs, the system needs to save the current context of the process running on the

CPU so that it can restore that context when its processing is done, essentially suspending

the process and then resuming it. The context is represented in the PCB of the process; it

includes the value of the CPU registers, the process state (see Figure 3.2), and memory-

management information. Generically, we perform a state save of the current state of the

CPU, be it in kernel or user mode, and then a state restore to resume operations.

Switching the CPU to another process requires performing a state save of the current

process and a state restore of a different process. This task is known as a context switch.

When a context switch occurs, the kernel saves the context of the old process in its PCB

and loads the saved context of the new process scheduled to run. Context-switch time is

pure overhead, because the system does no useful work while switching. Context-switching

speed varies from machine to machine, depending on the memory speed, the number of

registers that must be copied, and the existence of special instructions (such as a single

instruction to load or store all registers). Typical speeds are a few milliseconds.

1.3 Operations on Processes

1.3.1 Process Creation

A process may create several new processes, via a create-process system call, during the

course of execution. The creating process is called a parent process, and the new processes

are called the children of that process. Each of these new processes may in turn create

other processes, forming a tree of processes.

Most operating systems (including UNIX and the Windows family of operating systems)

Operating Systems I- Lecture Lecturer: Dr. Sura Z. Alrashid

11

identify processes according to a unique process identifier (or pid), which is typically an

integer number.

1.4 Summary

A process is a program in execution. As a process executes, it changes state. The state of a

process is defined by that process’s current activity. Each process may be in one of the

following states: new, ready, running, waiting, or terminated. Each process is represented

in the operating system by its own process control block (PCB).

A process, when it is not executing, is placed in some waiting queue. There are two major

classes of queues in an operating system: I/O request queues and the ready queue. The

ready queue contains all the processes that are ready to execute and are waiting for the

CPU. Each process is represented by a PCB, and the PCBs can be linked together to form

a ready queue. Long-term (job) scheduling is the selection of processes that will be allowed

to contend for the CPU. Normally, long-term scheduling is heavily influenced by resource-

allocation considerations, especially memory management. Short-term (CPU) scheduling

is the selection of one process from the ready queue.

Operating systems must provide a mechanism for parent processes to create new child

processes. The parent may wait for its children to terminate before proceeding, or the parent

and children may execute concurrently. There are several reasons for allowing concurrent

execution: information sharing, computation speedup, modularity, and convenience.

The processes executing in the operating system may be either independent processes or

cooperating processes. Cooperating processes require an interpro- cess communication

mechanism to communicate with each other. Principally, communication is achieved

through two schemes: shared memory and mes- sage passing. The shared-memory method

requires communicating processes to share some variables. The processes are expected to

exchange information through the use of these shared variables. In a shared-memory

Operating Systems I- Lecture Lecturer: Dr. Sura Z. Alrashid

12

system, the responsibility for providing communication rests with the application pro-

grammers; the operating system needs to provide only the shared memory. The message-

passing method allows the processes to exchange messages. The responsibility for

providing communication may rest with the operating system itself. These two schemes

are not mutually exclusive and can be used simultaneously within a single operating

system.

