Numerical Analysis

Using MATLAB® and Spreadsheets

Second Edition

Steven T. Karris

\[
A = \begin{bmatrix}
 a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\
 a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\
 a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn}
\end{bmatrix}
\]
Table of Contents

Chapter 1

Introduction to MATLAB

- Command Window ... 1-1
- Roots of Polynomials ... 1-3
- Polynomial Construction from Known Roots 1-4
- Evaluation of a Polynomial at Specified Values 1-5
- Rational Polynomials ... 1-7
- Using MATLAB to Make Plots .. 1-9
- Subplots .. 1-18
- Multiplication, Division and Exponentiation 1-18
- Script and Function Files ... 1-25
- Display Formats .. 1-29
- Summary ... 1-30
- Exercises .. 1-35
- Solutions to Exercises ... 1-36

Chapter 2

Root Approximations

- Newton’s Method for Root Approximation 2-1
- Approximations with Spreadsheets .. 2-7
- The Bisection Method for Root Approximation 2-19
- Summary ... 2-27
- Exercises .. 2-28
- Solutions to Exercises ... 2-29

Chapter 3

Sinusoids and Phasors

- Alternating Voltages and Currents ... 3-1
- Characteristics of Sinusoids .. 3-2
- Inverse Trigonometric Functions ... 3-10
- Phasors .. 3-10
- Addition and Subtraction of Phasors 3-11
- Multiplication of Phasors .. 3-12
- Division of Phasors ... 3-12
Exponential and Polar Forms of Phasors

Exponential and Polar Forms of Phasors .. 3-13
Summary ... 3-18
Exercises ... 3-21
Solutions to Exercises .. 3-22

Chapter 4

Matrices and Determinants

Matrix Definition .. 4-1
Matrix Operations ... 4-2
Special Forms of Matrices .. 4-5
Determinants ... 4-9
Minors and Cofactors .. 4-12
Cramer’s Rule .. 4-16
Gaussian Elimination Method ... 4-18
The Adjoint of a Matrix .. 4-19
Singular and Non-Singular Matrices ... 4-20
The Inverse of a Matrix .. 4-21
Solution of Simultaneous Equations with Matrices ... 4-23
Summary ... 4-29
Exercises ... 4-33
Solutions to Exercises .. 4-35

Chapter 5

Differential Equations, State Variables, and State Equations

Simple Differential Equations .. 5-1
Classification ... 5-2
Solutions of Ordinary Differential Equations (ODE) .. 5-5
Solution of the Homogeneous ODE ... 5-8
Using the Method of Undetermined Coefficients for the Forced Response 5-10
Using the Method of Variation of Parameters for the Forced Response 5-19
Expressing Differential Equations in State Equation Form 5-23
Solution of Single State Equations .. 5-27
The State Transition Matrix ... 5-28
Computation of the State Transition Matrix .. 5-30
Eigenvectors .. 5-37
Summary ... 5-41
Exercises ... 5-46
Solutions to Exercises .. 5-47
Chapter 6

Fourier, Taylor, and Maclaurin Series

Wave Analysis .. 6-1
Evaluation of the Coefficients ... 6-2
Symmetry ... 6-7
Waveforms in Trigonometric Form of Fourier Series ... 6-12
Alternate Forms of the Trigonometric Fourier Series ... 6-25
The Exponential Form of the Fourier Series .. 6-28
Line Spectra .. 6-33
Numerical Evaluation of Fourier Coefficients .. 6-36
Power Series Expansion of Functions .. 6-37
Taylor and Maclaurin Series .. 6-40
Summary ... 6-47
Exercises .. 6-50
Solutions to Exercises ... 6-52

Chapter 7

Finite Differences and Interpolation

Divided Differences .. 7-1
Factorial Polynomials .. 7-6
Antidifferences .. 7-11
Newton’s Divided Difference Interpolation Method ... 7-15
Lagrange’s Interpolation Method ... 7-18
Gregory-Newton Forward Interpolation Method ... 7-19
Gregory-Newton Backward Interpolation Method .. 7-20
Interpolation with MATLAB ... 7-23
Summary .. 7-37
Exercises .. 7-42
Solutions to Exercises ... 7-43

Chapter 8

Linear and Parabolic Regression

Curve Fitting .. 8-1
Linear Regression ... 8-2
Parabolic Regression .. 8-7
Regression with Power Series Approximations ... 8-14
Summary .. 8-24
Chapter 9

Solution of Differential Equations by Numerical Methods

Taylor Series Method... 9-1
Runge-Kutta Method... 9-5
Adams’ Method... 9-13
Milne’s Method... 9-16
Summary... 9-17
Exercises.. 9-20
Solutions to Exercises... 9-21

Chapter 10

Integration by Numerical Methods

The Trapezoidal Rule... 10-1
Simpson’s Rule ... 10-6
Summary... 10-13
Exercises.. 10-15
Solution to Exercises... 10-16

Chapter 11

Difference Equations

Definition, Solutions, and Applications.. 11-1
Fibonacci Numbers ... 11-7
Summary... 11-10
Exercises.. 11-13
Solutions to Exercises... 11-14

Chapter 12

Partial Fraction Expansion

Partial Fraction Expansion... 12-1
Alternate Method of Partial Fraction Expansion............................... 12-13
Summary... 12-18
Exercises.. 12-21
Solutions to Exercises... 12-22
Chapter 13

The Gamma and Beta Functions and Distributions

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Gamma Function</td>
<td>13-1</td>
</tr>
<tr>
<td>The Gamma Distribution</td>
<td>13-15</td>
</tr>
<tr>
<td>The Beta Function</td>
<td>13-17</td>
</tr>
<tr>
<td>The Beta Distribution</td>
<td>13-20</td>
</tr>
<tr>
<td>Summary</td>
<td>13-21</td>
</tr>
<tr>
<td>Exercises</td>
<td>13-24</td>
</tr>
<tr>
<td>Solutions to Exercises</td>
<td>13-25</td>
</tr>
</tbody>
</table>

Chapter 14

Orthogonal Functions and Matrix Factorizations

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orthogonal Functions</td>
<td>14-1</td>
</tr>
<tr>
<td>Orthogonal Trajectories</td>
<td>14-2</td>
</tr>
<tr>
<td>Orthogonal Vectors</td>
<td>14-4</td>
</tr>
<tr>
<td>The Gram-Schmidt Orthogonalization Procedure</td>
<td>14-7</td>
</tr>
<tr>
<td>The LU Factorization</td>
<td>14-9</td>
</tr>
<tr>
<td>The Cholesky Factorization</td>
<td>14-15</td>
</tr>
<tr>
<td>The QR Factorization</td>
<td>14-17</td>
</tr>
<tr>
<td>Singular Value Decomposition</td>
<td>14-20</td>
</tr>
<tr>
<td>Summary</td>
<td>14-21</td>
</tr>
<tr>
<td>Exercises</td>
<td>14-23</td>
</tr>
<tr>
<td>Solutions to Exercises</td>
<td>14-25</td>
</tr>
</tbody>
</table>

Chapter 15

Bessel, Legendre, and Chebyshev Functions

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Bessel Function</td>
<td>15-1</td>
</tr>
<tr>
<td>Legendre Functions</td>
<td>15-10</td>
</tr>
<tr>
<td>Laguerre Polynomials</td>
<td>15-20</td>
</tr>
<tr>
<td>Chebyshev Polynomials</td>
<td>15-21</td>
</tr>
<tr>
<td>Summary</td>
<td>15-26</td>
</tr>
<tr>
<td>Exercises</td>
<td>15-32</td>
</tr>
<tr>
<td>Solutions to Exercises</td>
<td>15-33</td>
</tr>
</tbody>
</table>
Chapter 16

Optimization Methods

- Linear Programming ... 16-1
- Dynamic Programming .. 16-4
- Network Analysis .. 16-14
- Summary .. 16-19
- Exercises .. 16-20
- Solutions to Exercises ... 16-22
Chapter 1

Introduction to MATLAB

This chapter is an introduction of the basic MATLAB commands and functions, procedures for naming and saving the user generated files, comment lines, access to MATLAB's Editor/Debugger, finding the roots of a polynomial, and making plots. Several examples are provided with detailed explanations.

1.1 Command Window

To distinguish the screen displays from the user commands, important terms and MATLAB functions, we will use the following conventions:

Click: Click the left button of the mouse

Courier Font: Screen displays

Helvetica Font: User inputs at MATLAB's command window prompt EDU>> *

Helvetica Bold: MATLAB functions

Times Bold Italic: Important terms and facts, notes, and file names

When we first start MATLAB, we see the toolbar on top of the command screen and the prompt EDU>>. This prompt is displayed also after execution of a command; MATLAB now waits for a new command from the user. We can use the Editor/Debugger to write our program, save it, and return to the command screen to execute the program as explained below.

To use the Editor/Debugger:

1. From the File menu on the toolbar, we choose New and click on M-File. This takes us to the Editor Window where we can type our code (list of statements) for a new file, or open a previously saved file. We must save our program with a file name which starts with a letter. Important! MATLAB is case sensitive, that is, it distinguishes between upper- and lower-case letters. Thus, t and T are two different characters in MATLAB language. The files that we create are saved with the file name we use and the extension .m; for example, myfile01.m. It is a good practice to save the code in a file name that is descriptive of our code content. For instance, if the code performs some matrix operations, we ought to name and save that file as matrices01.m or any other similar name. We should also use a separate disk to backup our files.

* EDU>> is the MATLAB prompt in the Student Version.
2. Once the code is written and saved as an m-file, we may exit the Editor/Debugger window by clicking on Exit Editor/Debugger of the File menu, and MATLAB returns to the command window.

3. To execute a program, we type the file name without the .m extension at the EDU>> prompt; then, we press <enter> and observe the execution and the values obtained from it. If we have saved our file in drive a or any other drive, we must make sure that it is added it to the desired directory in MATLAB’s search path. The MATLAB User’s Guide provides more information on this topic.

Henceforth, it will be understood that each input command is typed after the EDU>> prompt and followed by the <enter> key.

The command help matlab iofun will display input/output information. To get help with other MATLAB topics, we can type help followed by any topic from the displayed menu. For example, to get information on graphics, we type help matlab graphics. We can also get help from the Help pull-down menu. The MATLAB User’s Guide contains numerous help topics.

To appreciate MATLAB’s capabilities, we type demo and we see the MATLAB Demos menu. We can do this periodically to become familiar with them. Whenever we want to return to the command window, we click on the Close button.

When we are done and want to leave MATLAB, we type quit or exit. But if we want to clear all previous values, variables, and equations without exiting, we should use the clear command. This command erases everything; it is like exiting MATLAB and starting it again. The clc command clears the screen but MATLAB still remembers all values, variables and equations which we have already used. In other words, if we want MATLAB to retain all previously entered commands, but leave only the EDU>> prompt on the upper left of the screen, we can use the clc command.

All text after the % (percent) symbol is interpreted by MATLAB as a comment line and thus it is ignored during the execution of a program. A comment can be typed on the same line as the function or command or as a separate line. For instance,

```
conv(p,q)    % performs multiplication of polynomials p and q
% The next statement performs partial fraction expansion of p(x) / q(x)
```

are both correct.

One of the most powerful features of MATLAB is the ability to do computations involving complex numbers. We can use either i, or j to denote the imaginary part of a complex number, such as 3 – 4i or 3 – 4j. For example, the statement

```
z=3-4j
```

displays
\(z = 3.0000 - 4.0000i \)
In the example above, a multiplication (*) sign between 4 and j was not necessary because the complex number consists of numerical constants. However, if the imaginary part is a function or variable such as $\cos(x)$, we must use the multiplication sign, that is, we must type $\cos(x)*j$ or $j*\cos(x)$.

1.2 Roots of Polynomials

In MATLAB, a polynomial is expressed as a **row vector** of the form $[a_n \ a_{n-1} \ a_2 \ a_1 \ a_0]$. The elements a_i of this vector are the coefficients of the polynomial in descending order. **We must include terms whose coefficients are zero.**

We can find the roots of any polynomial with the `roots(p)` function where p is a row vector containing the polynomial coefficients in descending order.

Example 1.1

Find the roots of the polynomial

$$p_1(x) = x^4 - 10x^3 + 35x^2 - 50x + 24$$ \hspace{1cm} (1.1)

Solution:

The roots are found with the following two statements. We have denoted the polynomial as $p1$, and the roots as `roots_p1`.

```matlab
p1=[1 -10 35 -50 24] % Specify the coefficients of p1(x)
p1 =
   1   -10    35   -50    24
roots_p1=roots(p1)  % Find the roots of p1(x)
roots_p1 =
   4.0000
   3.0000
   2.0000
   1.0000
```

We observe that MATLAB displays the polynomial coefficients as a row vector, and the roots as a column vector.

Example 1.2

Find the roots of the polynomial

$$p_2(x) = x^5 - 7x^4 + 16x^2 + 25x + 52$$ \hspace{1cm} (1.2)
Solution:

There is no cube term; therefore, we must enter zero as its coefficient. The roots are found with the statements below where we have defined the polynomial as \(p_2 \), and the roots of this polynomial as \(\text{roots}_p_2 \). The result indicates that this polynomial has three real roots, and two complex roots. Of course, complex roots always occur in complex conjugate pairs.

\[
p_2 = [1 -7 0 16 25 52] \\
\text{roots}_p_2 = \text{roots}(p_2)
\]

\[
roots_p_2 = \\
6.5014 \\
2.7428 \\
-1.5711 \\
-0.3366 + 1.3202i \\
-0.3366 - 1.3202i
\]

1.3 Polynomial Construction from Known Roots

We can compute the coefficients of a polynomial from a given set of roots with the \texttt{poly(r)} function where \texttt{r} is a row vector containing the roots.

Example 1.3

It is known that the roots of a polynomial are 1, 2, 3, and 4. Compute the coefficients of this polynomial.

Solution:

We first define a row vector, say \(r_3 \), with the given roots as elements of this vector; then, we find the coefficients with the \texttt{poly(r)} function as shown below.

\[
r_3 = [1 2 3 4] \quad \% \text{ Specify the roots of the polynomial} \\
r_3 = \\
1 \quad 2 \quad 3 \quad 4
\]

\[
\text{poly}_r_3 = \text{poly}(r_3) \quad \% \text{ Find the polynomial coefficients} \\
\text{poly}_r_3 = \\
1 \quad -10 \quad 35 \quad -50 \quad 24
\]

* By definition, the conjugate of a complex number \(A = a + jb \) is \(A* = a - jb \)
Evaluation of a Polynomial at Specified Values

We observe that these are the coefficients of the polynomial \(p_1(x) \) of Example 1.1.

Example 1.4

It is known that the roots of a polynomial are \(-1, -2, -3, 4 + j5, \) and \(4 - j5 \). Find the coefficients of this polynomial.

Solution:

We form a row vector, say \(r_4 \), with the given roots, and we find the polynomial coefficients with the \texttt{poly(r)} function as shown below.

\[
\begin{align*}
r_4 &= \begin{bmatrix} -1 & -2 & -3 & 4 + 5j & 4 - 5j \end{bmatrix} \\
r_4 &= \begin{bmatrix} -1.0000 & -2.0000 & -3.0000 & -4.0000 + 5.0000i \\
Column 5 & -4.0000 - 5.0000i \\
poly_r4 &= \texttt{poly(r4)} \\
poly_r4 &= \begin{bmatrix} 1 & 14 & 100 & 340 & 499 & 246 \end{bmatrix}
\end{align*}
\]

Therefore, the polynomial is

\[
p_4(x) = x^5 + 14x^4 + 100x^3 + 340x^2 + 499x + 246 \tag{1.3}
\]

1.4 Evaluation of a Polynomial at Specified Values

The \texttt{polyval(p,x)} function evaluates a polynomial \(p(x) \) at some specified value of the independent variable \(x \).

Example 1.5

Evaluate the polynomial

\[
p_5(x) = x^6 - 3x^5 + 5x^3 - 4x^2 + 3x + 2 \tag{1.4}
\]

at \(x = -3 \).

Solution:

\[
p5 = \begin{bmatrix} 1 & -3 & 0 & 5 & -4 & 3 & 2 \end{bmatrix}; \quad \% \text{ These are the coefficients} \\
% The semicolon (;) after the right bracket suppresses the display of the row vector \\
% that contains the coefficients of p5. \\
% val_minus3 = \texttt{polyval(p5, -3)} \% Evaluate p5 at x=-3; no semicolon is used here \\
% because we want the answer to be displayed
\]
val_minus3 =
1280

Other MATLAB functions used with polynomials are the following:

- `conv(a,b)` – multiplies two polynomials `a` and `b`
- `[q,r]=deconv(c,d)` – divides polynomial `c` by polynomial `d` and displays the quotient `q` and remainder `r`.
- `polyder(p)` – produces the coefficients of the derivative of a polynomial `p`.

Example 1.6

Let

\[
p_1 = x^5 - 3x^4 + 5x^2 + 7x + 9
\]
\[
p_2 = 2x^6 - 8x^4 + 4x^2 + 10x + 12
\]

Compute the product \(p_1 \cdot p_2 \) with the `conv(a,b)` function.

Solution:

\[
p1=[1 -3 0 5 7 9];
p2=[2 0 -8 0 4 10 12];
p1p2=conv(p1,p2)
\]

\[
p1p2 =
2 -6 -8 34 18 -24 -74 -88 78 166 174 108
\]

Therefore,

\[
p_1 \cdot p_2 = 2x^{11} - 6x^{10} - 8x^9 + 34x^8 + 18x^7 - 24x^6
\]
\[
-74x^5 - 88x^4 + 78x^3 + 166x^2 + 174x + 108
\]

We can write MATLAB statements in one line if we separate them by commas or semicolons. **Commas will display the results whereas semicolons will suppress the display.**

Example 1.7

Let

\[
p_3 = x^7 - 3x^5 + 5x^3 + 7x + 9
\]
\[
p_4 = 2x^6 - 8x^5 + 4x^2 + 10x + 12
\]

Compute the quotient \(p_3/p_4 \) using the `deconv(p,q)` function.

Solution:

\[
p3=[1 0 -3 0 5 7 9]; p4=[2 -8 0 0 4 10 12]; [q,r]=deconv(p3,p4)
\]
Rational Polynomials

\(q = \begin{array}{l}
0.5000 \\
\end{array} \)

\(r = \begin{array}{cccccc}
0 & 4 & -3 & 0 & 3 & 2 & 3 \\
\end{array} \)

Therefore, the quotient \(q(x) \) and remainder \(r(x) \) are

\[q(x) = 0.5 \quad r(x) = 4x^5 - 3x^4 + 3x^2 + 2x + 3 \]

Example 1.8

Let

\[p_5 = 2x^6 - 8x^4 + 4x^2 + 10x + 12 \]

Compute the derivative \(dp_5/dx \) using the \texttt{polyder(p)} function.

Solution:

\[
p_5 = [2 \; 0 \; -8 \; 0 \; 4 \; 10 \; 12] \\
\text{der}_p5 = \text{polyder(p5)}
\]

\[
\text{der}_p5 =
\begin{array}{cccc}
12 & 0 & -32 & 0 & 8 & 10 \\
\end{array}
\]

Therefore,

\[
dp_5/dx = 12x^5 - 32x^3 + 4x^2 + 8x + 10
\]

1.5 Rational Polynomials

Rational Polynomials are those which can be expressed in ratio form, that is, as

\[
R(x) = \frac{\text{Num}(x)}{\text{Den}(x)} = \frac{b_nx^n + b_{n-1}x^{n-1} + b_{n-2}x^{n-2} + \ldots + b_0}{a_mx^m + a_{m-1}x^{m-1} + a_{m-2}x^{m-2} + \ldots + a_0}
\]

where some of the terms in the numerator and/or denominator may be zero. We can find the roots of the numerator and denominator with the \texttt{roots(p)} function as before.

Example 1.9

Let

\[
R(x) = \frac{P_{num}}{P_{den}} = \frac{x^5 - 3x^4 + 5x^2 + 7x + 9}{2x^6 - 8x^4 + 4x^2 + 10x + 12}
\]

Express the numerator and denominator in factored form, using the \texttt{roots(p)} function.

Solution:

\[
um=[1 \; -3 \; 0 \; 5 \; 7 \; 9]; \text{den}=[2 \; 0 \; -8 \; 0 \; 4 \; 10 \; 12]; \%
\text{Do not display num and den coefficients}
\]
roots_num=roots(num), roots_den=roots(den) \% Display num and den roots

roots_num =
2.4186 + 1.0712i 2.4186 - 1.0712i -1.1633
-0.3370 + 0.9961i -0.3370 - 0.9961i

roots_den =
1.6760 + 0.4922i 1.6760 - 0.4922i -1.9304
-0.2108 + 0.9870i -0.2108 - 0.9870i -1.0000

As expected, the complex roots occur in complex conjugate pairs.

For the numerator, we have the factored form
\[
p_{num} = (x-2.4186-j1.0712) \cdot (x-2.4186+j1.0712) \cdot (x + 1.1633) \cdot (x + 0.3370 - j0.9961) \cdot (x + 0.3370 + j0.9961)
\]

and for the denominator, we have
\[
p_{den} = (x-1.6760-j0.4922) \cdot (x-1.6760+j0.4922) \cdot (x + 1.9304) \cdot (x + 0.2108 - j0.9870) \cdot (x + 0.2108 + j0.9870) \cdot (x + 1.0000)
\]

We can also express the numerator and denominator of this rational function as a combination of linear and quadratic factors. We recall that in a quadratic equation of the form \(x^2 + bx + c = 0\) whose roots are \(x_1\) and \(x_2\), the negative sum of the roots is equal to the coefficient \(b\) of the \(x\) term, that is, \((-x_1 + x_2) = b\), while the product of the roots is equal to the constant term \(c\), that is, \(x_1 \cdot x_2 = c\). Accordingly, we form the coefficient \(b\) by addition of the complex conjugate roots and this is done by inspection; then we multiply the complex conjugate roots to obtain the constant term \(c\) using MATLAB as indicated below.

\((2.4186+1.0712i)\cdot(2.4186-1.0712i)\) \% Form the product of the 1st set of complex conjugates
ans = 6.9971

\((-0.3370+0.9961i)\cdot(-0.3370-0.9961i)\) \% Form the product of the 2nd set of complex conjugates
ans = 1.1058

\((1.6760+0.4922i)\cdot(1.6760-0.4922i)\)
ans = 3.0512

\((-0.2108+0.9870i)\cdot(-0.2108-0.9870i)\)
ans = 1.0186
1.6 Using MATLAB to Make Plots

Quite often, we want to plot a set of ordered pairs. This is a very easy task with the MATLAB `plot(x,y)` command which plots y versus x. Here, x is the horizontal axis (abscissa) and y is the vertical axis (ordinate).

Example 1.10

Consider the electric circuit of Figure 1.1, where the radian frequency ω (radians/second) of the applied voltage was varied from 300 to 3000 in steps of 100 radians/second, while the amplitude was held constant. The ammeter readings were then recorded for each frequency. The magnitude of the impedance $|Z|$ was computed as $|Z| = |V/A|$ and the data were tabulated in Table 1.1.

![Electric Circuit](image)

Figure 1.1. Electric circuit for Example 1.10

| ω (rads/s) | $|Z|$ Ohms | ω (rads/s) | $|Z|$ Ohms |
|-------------------|-----------|-------------------|-----------|
| 300 | 39.339 | 1700 | 90.603 |
| 400 | 52.589 | 1800 | 81.088 |
| 500 | 71.184 | 1900 | 73.588 |
| 600 | 97.665 | 2000 | 67.513 |
| 700 | 140.437 | 2100 | 62.481 |
| 800 | 222.182 | 2200 | 58.240 |
| 900 | 436.056 | 2300 | 54.611 |
| 1000 | 1014.938 | 2400 | 51.428 |
| 1100 | 469.83 | 2500 | 48.717 |
| 1200 | 266.032 | 2600 | 46.286 |
| 1300 | 187.052 | 2700 | 44.122 |
| 1400 | 145.751 | 2800 | 42.182 |
| 1500 | 120.353 | 2900 | 40.432 |
| 1600 | 103.111 | 3000 | 38.845 |

Plot the magnitude of the impedance, that is, $|Z|$ versus radian frequency ω.
Solution:

We cannot type ω (omega) in the MATLAB command window, so we will use the English letter w instead.

If a statement, or a row vector is too long to fit in one line, it can be continued to the next line by typing three or more periods, then pressing $<\text{enter}>$ to start a new line, and continue to enter data. This is illustrated below for the data of w and z. Also, as mentioned before, we use the semi-colon (;) to suppress the display of numbers which we do not care to see on the screen.

The data are entered as follows:

\[
\begin{align*}
\text{w} &= [300 \ 400 \ 500 \ 600 \ 700 \ 800 \ 900 \ 1000 \ 1100 \ 1200 \ 1300 \ 1400 \ \\
&\quad \quad 1500 \ 1600 \ 1700 \ 1800 \ 1900 \ 2000 \ 2100 \ 2200 \ 2300 \ 2400 \ 2500 \
&\quad \quad 2600 \ 2700 \ 2800 \ 2900 \ 3000]; \quad \% \text{Use 4 periods to continue} \\
\text{z} &= [39.339 \ 52.789 \ 71.104 \ 97.665 \ 140.437 \ 222.182 \ 436.056 \\
&\quad \quad 1014.938 \ 469.830 \ 266.032 \ 187.052 \ 145.751 \ 120.353 \ 103.111 \\
&\quad \quad 90.603 \ 81.088 \ 73.588 \ 67.513 \ 62.481 \ 58.240 \ 54.611 \ 51.468 \\
&\quad \quad 48.717 \ 46.286 \ 44.122 \ 42.182 \ 40.432 \ 38.845]; \\
\end{align*}
\]

Of course, if we want to see the values of w or z or both, we simply type w or z, and we press $<\text{enter}>$.

To plot z (y–axis) versus w (x–axis), we use the \texttt{plot(x,y)} command. For this example, we use \texttt{plot(w,z)}. When this command is executed, MATLAB displays the plot on MATLAB’s graph screen. This plot is shown in Figure 1.2.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{impedance_graph.png}
\caption{Plot of impedance $|z|$ versus frequency ω for Example 1.10}
\end{figure}

This plot is referred to as the amplitude frequency response of the circuit.
To return to the command window, we press any key, or from the Window pull-down menu, we select MATLAB Command Window. To see the graph again, we click on the Window pull-down menu, and we select Figure.

We can make the above, or any plot, more presentable with the following commands:

* **grid on**: This command adds grid lines to the plot. The **grid off** command removes the grid. The command **grid** toggles them, that is, changes from off to on or vice versa. The default* is off.

* **box off**: This command removes the box (the solid lines which enclose the plot), and **box on** restores the box. The command **box** toggles them. The default is on.

* **title('string')**: This command adds a line of the text **string** (label) at the top of the plot.

* **xlabel('string')** and **ylabel('string')** are used to label the - and -axis respectively.

The amplitude frequency response is usually represented with the -axis in a logarithmic scale. We can use the **semilogx(x,y)** command that is similar to the **plot(x,y)** command, except that the -axis is represented as a log scale, and the -axis as a linear scale. Likewise, the **semilogy(x,y)** command is similar to the **plot(x,y)** command, except that the -axis is represented as a log scale, and the -axis as a linear scale. The **loglog(x,y)** command uses logarithmic scales for both axes.

Throughout this text, it will be understood that **log** is the common (base 10) logarithm, and **ln** is the natural (base e) logarithm. We must remember, however, the function **log(x)** in MATLAB is the natural logarithm, whereas the common logarithm is expressed as **log10(x)**. Likewise, the logarithm to the base 2 is expressed as **log2(x)**.

Let us now redraw the plot with the above options, by adding the following statements:

```matlab
semilogx(w,z); grid; % Replaces the plot(w,z) command
title('Magnitude of Impedance vs. Radian Frequency');
xlabel('w in rads/sec'); ylabel('|Z| in Ohms')
```

After execution of these commands, our plot is as shown in Figure 1.3.

If the -axis represents power, voltage, or current, the -axis of the frequency response is more often shown in a logarithmic scale, and the -axis in dB (decibels) scale. A review of the decibel unit follows.

The ratio of any two values of the same quantity (power, voltage, or current) can be expressed in **decibels (dB)**. Thus, we say that an amplifier has **10 dB** power gain, or a transmission line has a power loss of **7 dB** (or gain **–7 dB**). If the gain (or loss) is **0 dB** the output is equal to the input.

* Default is a particular value for a variable or condition that is assigned automatically by an operating system, and remains in effect unless canceled or overridden by the operator.
By definition,

\[
dB = 10 \log \left(\frac{P_{\text{out}}}{P_{\text{in}}} \right)
\]

(1.10)

Therefore,

- 10 dB represents a power ratio of 10
- 10n dB represents a power ratio of \(10^n\)

It is very useful to remember that:

- 20 dB represents a power ratio of 100
- 30 dB represents a power ratio of 1,000
- 60 dB represents a power ratio of 1,000,000

Also,

- 1 dB represents a power ratio of approximately 1.25
- 3 dB represents a power ratio of approximately 2
- 7 dB represents a power ratio of approximately 5

From these, we can estimate other values. For instance,

4 dB = 3 dB + 1 dB and since 3 dB \(\approx\) power ratio of 2 and 1 dB \(\approx\) power ratio of 1.25 then,

4 dB \(\approx\) ratio of \((2 \times 1.25) = \text{ratio of} \ 2.5\)
Likewise, \(27 \text{ dB} = 20 \text{ dB} + 7 \text{ dB}\) and this is equivalent to a power ratio of approximately \(100 \times 5 = 500\)

Using the relations

\[
y = \log x^2 = 2\log x
\]

and

\[
P = \frac{V^2}{Z} = I^2Z
\]

if we let \(Z = 1\), the \(\text{dB}\) values for voltage and current ratios become

\[
\begin{align*}
\text{dB}_v &= 10\log \left| \frac{V_{\text{out}}}{V_{\text{in}}} \right|^2 = 20\log \left| \frac{V_{\text{out}}}{V_{\text{in}}} \right| \\
\text{dB}_i &= 10\log \left| \frac{I_{\text{out}}}{I_{\text{in}}} \right|^2 = 20\log \left| \frac{I_{\text{out}}}{I_{\text{in}}} \right|
\end{align*}
\]

To display the voltage \(v\) in a \(\text{dB}\) scale on the \(y\)–\(axis\), we add the relation \(\text{dB}=20\log_{10}(v)\), and we replace the \text{semilogx}(w,z)\ command with \text{semilogx}(w,\text{dB}).

The command \text{gtext}('string') switches to the current \textit{Figure Window}, and displays a cross-hair which can be moved around with the mouse. For instance, we can use the command \text{gtext}('Impedance |Z| versus Frequency'), and this will place a cross-hair in the \textit{Figure} window. Then, using the mouse, we can move the cross-hair to the position where we want our label to begin, and we press \texttt{<enter>}.

The command \text{text}(x,y,'string') is similar to \text{gtext}('string'). It places a label on a plot in some specific location specified by \(x\) and \(y\), and \textit{string} is the label which we want to place at that location. We will illustrate its use with the following example which plots a \textit{3-phase} sinusoidal waveform.

The first line of the code below has the form

\begin{verbatim}
\textbf{linspace(first_value, last_value, number_of_values)}
\end{verbatim}

This command specifies \textit{the number of data points} but not the increments between data points. An alternate command uses the \textit{colon notation} and has the format

\begin{verbatim}
\textbf{x=first: increment: last}
\end{verbatim}

This format specifies \textit{the increments between points} but not the number of data points.

The code for the \textit{3-phase} plot is as follows:

\begin{verbatim}
x=linspace(0, 2*pi, 60); % pi is a built-in function in MATLAB; \%
\text{we could have used} x=0:0.02*pi:2*pi \text{or} x = (0: 0.02: 2)*pi \text{instead};
y=sin(x); u=sin(x+2*pi/3); v=sin(x+4*pi/3);
\end{verbatim}
plot(x,y,x,u,v); % The x-axis must be specified for each function
grid on, box on, % turn grid and axes box on
text(0.75, 0.65, 'sin(x)'); text(2.85, 0.65, 'sin(x+2*pi/3)'); text(4.95, 0.65, 'sin(x+4*pi/3)')

These three waveforms are shown on the same plot of Figure 1.4.

In our previous examples, we did not specify line styles, markers, and colors for our plots. However, MATLAB allows us to specify various line types, plot symbols, and colors. These, or a combination of these, can be added with the plot(x,y,s) command, where s is a character string containing one or more characters shown on the three columns of Table 1.2.

MATLAB has no default color; it starts with blue and cycles through the first seven colors listed in Table 1.2 for each additional line in the plot. Also, there is no default marker; no markers are drawn unless they are selected. The default line is the solid line.

For example, plot(x,y,'m*:') plots a magenta dotted line with a star at each data point, and plot(x,y,'rs') plots a red square at each data point, but does not draw any line because no line was selected. If we want to connect the data points with a solid line, we must type plot(x,y,'rs-'). For additional information we can type help plot in MATLAB’s command screen.

The plots which we have discussed thus far are two-dimensional, that is, they are drawn on two axes. MATLAB has also a three-dimensional (three-axes) capability and this is discussed next.
Using MATLAB to Make Plots

The `plot3(x,y,z)` command plots a line in 3-space through the points whose coordinates are the elements of \(x, y, \) and \(z \), where \(x, y, \) and \(z \) are three vectors of the same length.

The general format is `plot3(x_1,y_1,z_1,s_1,x_2,y_2,z_2,s_2,x_3,y_3,z_3,s_3,...)` where \(x_n, y_n \) and \(z_n \) are vectors or matrices, and \(s_n \) are strings specifying color, marker symbol, or line style. These strings are the same as those of the two-dimensional plots.

Example 1.11

Plot the function

\[
 z = -2x^3 + x + 3y^2 - 1
\]

Solution:

We arbitrarily choose the interval (length) shown on the code below.

\[
\begin{align*}
x &= -10: 0.5: 10; & \quad \text{\% Length of vector } x \\
y &= x; & \quad \text{\% Length of vector } y \text{ must be same as } x \\
z &= -2 \cdot x \cdot ^3 + x +3 \cdot y \cdot ^2 - 1; & \quad \text{\% Vector } z \text{ is function of both } x \text{ and } y^* \\
\text{plot3(x,y,z); grid}
\end{align*}
\]

The three-dimensional plot is shown in Figure 1.5.

* This statement uses the so called dot multiplication, dot division, and dot exponentiation where these operations are preceded by a dot (period). These operations will be explained in Section 1.8.
The command `plot3(x,y,z,'bd−')` will display the plot in blue diamonds, connected with a solid line.

In a three-dimensional plot, we can use the `zlabel('string')` command in addition to the `xlabel('string')` and `ylabel('string')`.

In a two-dimensional plot, we can set the limits of the x- and y-axes with the `axis([xmin xmax ymin ymax])` command. Likewise, in a three-dimensional plot we can set the limits of all three axes with the `axis([xmin xmax ymin ymax zmin zmax])` command. It must be placed after the `plot(x,y)` or `plot3(x,y,z)` commands, or on the same line without first executing the `plot` command. This must be done for each plot. The three-dimensional `text(x,y,z,'string')` command will place `string` beginning at the co-ordinate (x, y, z) on the plot.

For three-dimensional plots, `grid on` and `box off` are the default states.

The `mesh(x,y,z)` command displays a three-dimensional plot. Another command, `contour(Z,n)`, draws contour lines for n levels. We can also use the `mesh(x,y,z)` command with two vector arguments. These must be defined as $\text{length}(x) = n$ and $\text{length}(y) = m$ where $[m,n] = \text{size}(Z)$. In this case, the vertices of the mesh lines are the triples $(x(j), y(i), Z(i,j))$. We observe that x corresponds to the columns of Z, and y corresponds to the rows of Z.

To produce a mesh plot of a function of two variables, say $z = f(x, y)$, we must first generate the X and Y matrices which consist of repeated rows and columns over the range of the variables x and y. We can generate the matrices X and Y with the `[X,Y]=meshgrid(x,y)` function which creates the matrix X whose rows are copies of the vector x, and the matrix Y whose columns are copies of the vector y.
Example 1.12

The volume V of a right circular cone of radius r and height h is given by

$$V = \frac{1}{3} \pi r^2 h$$ (1.14)

Plot the volume of the cone as r and h vary on the intervals $0 \leq r \leq 4$ and $0 \leq h \leq 6$ meters.

Solution:

The volume of the cone is a function of both the radius r and the height h, that is, $V = f(r, h)$

The three-dimensional plot is created with the following MATLAB code where, as in the previous example, in the second line we have used the dot multiplication, division, and exponentiation. As mentioned in the footnote of the previous page, this topic will be explained in Section 1.8.

```
[R,H]=meshgrid(0: 4, 0: 6);                     % Creates R and H matrices from vectors r and h
V=(pi .* R .^ 2 .* H) ./ 3;  mesh(R, H, V)
xlabel('x-axis, radius r (meters)'); ylabel('y-axis, altitude h (meters)');
zlabel('z-axis, volume (cubic meters)'); title('Volume of Right Circular Cone'); box on
```

The three-dimensional plot of Figure 1.6, shows how the volume of the cone increases as the radius and height are increased.

![Figure 1.6. Volume of a right circular cone.](image)

This, and the plot of Figure 1.5, are rudimentary; MATLAB can generate very sophisticated and impressive three-dimensional plots. The MATLAB User’s manual contains more examples.
1.7 Subplots

MATLAB can display up to four windows of different plots on the Figure window using the command `subplot(m,n,p)`. This command divides the window into an $m \times n$ matrix of plotting areas and chooses the pth area to be active. No spaces or commas are required between the three integers m, n, and p. The possible combinations are shown in Figure 1.7.

We will illustrate the use of the `subplot(m,n,p)` command following the discussion on multiplication, division and exponentiation that follows.

![Figure 1.7. Possible subplot arrangements in MATLAB](image)

1.8 Multiplication, Division and Exponentiation

MATLAB recognizes two types of multiplication, division, and exponentiation. These are the matrix multiplication, division, and exponentiation, and the element-by-element multiplication, division, and exponentiation. They are explained in the following paragraphs.

In Section 1.2, the arrays $[a \ b \ c \ …]$, such a those that contained the coefficients of polynomials, consisted of one row and multiple columns, and thus are called row vectors. If an array has one column and multiple rows, it is called a column vector. We recall that the elements of a row vector are separated by spaces. To distinguish between row and column vectors, the elements of a column vector must be separated by semicolons. An easier way to construct a column vector, is to write it first as a row vector, and then transpose it into a column vector. MATLAB uses the single quotation character (') to transpose a vector. Thus, a column vector can be written either as

$$b=\begin{bmatrix} -1 \\ 3 \\ 6 \\ 11 \end{bmatrix}$$

or as

$$b=[-1 \ 3 \ 6 \ 11]'$$

MATLAB produces the same display with either format as shown below.

$$b=\begin{bmatrix} -1; 3; 6; 11 \end{bmatrix}$$
Multiplication, Division and Exponentiation

\[
b = \\
\begin{bmatrix}
-1 \\
3 \\
6 \\
11
\end{bmatrix}
\]

\[
b = [\begin{array}{c}-1 \\
3 \\
6 \\
11\end{array}]'
\]

We will now define Matrix Multiplication and Element-by-Element multiplication.

1. **Matrix Multiplication** (multiplication of row by column vectors)

Let \(\mathbf{A} = [a_1 \ a_2 \ a_3 \ \ldots \ a_n] \) and \(\mathbf{B} = [b_1 \ b_2 \ b_3 \ \ldots \ b_n]' \) be two vectors. We observe that \(\mathbf{A} \) is defined as a row vector whereas \(\mathbf{B} \) is defined as a column vector, as indicated by the transpose operator (\(' \)). Here, multiplication of the row vector \(\mathbf{A} \) by the column vector \(\mathbf{B} \), is performed with the matrix multiplication operator (*)).

Then,

\[
\mathbf{A} \times \mathbf{B} = [a_1 b_1 + a_2 b_2 + a_3 b_3 + \ldots + a_n b_n] = \text{single value}
\]

For example, if \(\mathbf{A} = [1 \ 2 \ 3 \ 4 \ 5] \) and \(\mathbf{B} = [-2 \ 6 \ -3 \ 8 \ 7]' \), the matrix multiplication \(\mathbf{A} \times \mathbf{B} \) produces the single value 68, that is,

\[
\mathbf{A} \times \mathbf{B} = 1 \times (-2) + 2 \times 6 + 3 \times (-3) + 4 \times 8 + 5 \times 7 = 68
\]

This can be verified with MATLAB as follows.

\[
\text{A=}[1 \ 2 \ 3 \ 4 \ 5]; \ \text{B=}[\begin{array}{c}-2 \\
6 \\
-3 \\
8 \\
7\end{array}]'; \ \text{A*B}
\]

\[
\text{ans} = 68
\]

Now, let us suppose that both \(\mathbf{A} \) and \(\mathbf{B} \) are row vectors, and we attempt to perform a row-by-row multiplication with the following MATLAB statements.

\[
\text{A=}[1 \ 2 \ 3 \ 4 \ 5]; \ \text{B=}[\begin{array}{c}-2 \\
6 \\
-3 \\
8 \\
7\end{array}]; \ \text{A*B}
\]

When these statements are executed, MATLAB displays the following message:

```
??? Error using ==> *
Inner matrix dimensions must agree.
```

Here, because we have used the matrix multiplication operator (*) in $\mathbf{A} \mathbf{B}$, MATLAB expects vector \mathbf{B} to be a column vector, not a row vector as it was specified. MATLAB recognizes that \mathbf{B} is a row vector, and warns us that we cannot perform this multiplication using the matrix multiplication operator (*). Accordingly, we must perform this type of multiplication with a different operator. This operator is defined below.

2. Element-by-Element Multiplication (multiplication of a row vector by another row vector)

Let $\mathbf{C} = [c_1 \ c_2 \ c_3 \ \ldots \ c_n]$ and $\mathbf{D} = [d_1 \ d_2 \ d_3 \ \ldots \ d_n]$ be two row vectors. Here, multiplication of the row vector \mathbf{C} by the row vector \mathbf{D} is performed with the dot multiplication operator (\cdot). There is no space between the dot and the multiplication symbol. Thus,

$$\mathbf{C} \cdot \mathbf{D} = [c_1d_1 \ c_2d_2 \ c_3d_3 \ \ldots \ c_nd_n]$$

(1.16)

and this product is another row vector with the same number of elements, as the elements of \mathbf{C} and \mathbf{D}.

As an example, let $\mathbf{C} = [1 \ 2 \ 3 \ 4 \ 5]$ and $\mathbf{D} = [-2 \ 6 \ -3 \ 8 \ 7]$. Dot multiplication of these two row vectors produce the following result.

$$\mathbf{C} \cdot \mathbf{D} = 1 \times (-2) \ 2 \times 6 \ 3 \times (-3) \ 4 \times 8 \ 5 \times 7 = -2 \ 12 \ -9 \ 32 \ 35$$

Check with MATLAB:

```matlab
C=[1 2 3 4 5]; % Vectors C and D must have
D=[-2 6 -3 8 7]; % same number of elements
C.*D % We observe that this is a dot multiplication
ans =
-2 12 -9 32 35
```

Similarly, the division (/) and exponentiation (^) operators, are used for matrix division and exponentiation, whereas dot division (./) and dot exponentiation (.^) are used for element-by-element division and exponentiation.

We must remember that **no space is allowed between the dot (.) and the multiplication, division, and exponentiation operators.**

Note: A dot (.) is never required with the plus (+) and minus (−) operators.

Example 1.13

Write the MATLAB code that produces a simple plot for the waveform defined as

$$y = f(t) = 3e^{-4t} \cos 5t - 2e^{-3t} \sin 2t + \frac{t^2}{t+1}$$

(1.17)

in the $0 \leq t \leq 5$ seconds interval.
Solution:

The MATLAB code for this example is as follows:

\[
t = 0: 0.01: 5; \quad \% \text{Define t-axis in 0.01 increments}
\]
\[
y = 3 \cdot \exp(-4 \cdot t) \cdot \cos(5 \cdot t) - 2 \cdot \exp(-3 \cdot t) \cdot \sin(2 \cdot t) + t^2 ./ (t+1);
\]
\[
\text{plot}(t,y); \text{grid}; \text{xlabel('t'); ylabel('y=f(t)'); title('Plot for Example 1.13')}
\]

Figure 1.8 shows the plot for this example.

Had we, in this example, defined the time interval starting with a negative value equal to or less than \(-1\), say as \(-3 \leq t \leq 3\), MATLAB would have displayed the following message:

Warning: Divide by zero.

This warning is displayed because the last term (the rational fraction) of the given expression, is divided by zero when \(t = -1 \). To avoid division by zero, we use the special MATLAB function \texttt{eps}, which is a number approximately equal to \(2.2 \times 10^{-16} \). It will be used with the next example.

The command \texttt{axis([xmin xmax ymin ymax])} scales the current plot to the values specified by the arguments \texttt{xmin}, \texttt{xmax}, \texttt{ymin} and \texttt{ymax}. There are no commas between these four arguments. This command must be placed \textit{after} the plot command and must be repeated for each plot. The following example illustrates the use of the dot multiplication, division, and exponentiation, the \texttt{eps} number, the \texttt{axis([xmin xmax ymin ymax])} command, and also MATLAB’s capability of displaying up to four windows of different plots.

Example 1.14

Plot the functions

\[
y = \sin^2 x, \quad z = \cos^2 x, \quad w = \sin^2 x \cdot \cos^2 x, \quad v = \sin^2 x / \cos^2 x
\] (1.18)
in the interval $0 \leq x \leq 2\pi$ using 100 data points. Use the \texttt{subplot} command to display these functions on four windows on the same graph.

Solution:

The MATLAB code to produce the four subplots is as follows:

```matlab
x=linspace(0, 2*pi,100); % Interval with 100 data points
y=(sin(x) .^ 2);  z=(cos(x) .^ 2);
w=y .* z;
v=y ./ (z+eps); % add eps to avoid division by zero
subplot(221); % upper left of four subplots
plot(x,y);  axis([0 2*pi 0 1]); title('y=(sinx)^2');
subplot(222); % upper right of four subplots
plot(x,z);  axis([0 2*pi 0 1]); title('z=(cosx)^2');
subplot(223); % lower left of four subplots
plot(x,w);  axis([0 2*pi 0 0.3]); title('w=(sinx)^2*(cosx)^2');
subplot(224); % lower right of four subplots
plot(x,v);  axis([0 2*pi 0 400]); title('v=(sinx)^2/(cosx)^2');
```

These subplots are shown in Figure 1.9.

![Figure 1.9. Subplots for the functions of Example 1.14](image)

The next example illustrates MATLAB's capabilities with imaginary numbers. We will introduce the \texttt{real(z)} and \texttt{imag(z)} functions which display the real and imaginary parts of the complex quantity $z = x + iy$, the \texttt{abs(z)}), and the \texttt{angle(z)} functions that compute the absolute value (magni-
and phase angle of the complex quantity \(z = x + iy = r \angle \theta \). We will also use the \texttt{polar(theta,r)} function that produces a plot in polar coordinates, where \(r \) is the magnitude, \(\theta \) is the angle in radians, and the \texttt{round(n)} function that rounds a number to its nearest integer.

Example 1.15

Consider the electric circuit of Figure 1.10.

![Electric circuit for Example 1.15](image)

With the given values of resistance, inductance, and capacitance, the impedance \(Z_{ab} \) as a function of the radian frequency \(\omega \) can be computed from the following expression.

\[
Z_{ab} = Z = 10 + \frac{10^4 - j(10^6 / \omega)}{10 + j(0.1 \omega - 10^5 / \omega)}
\]

(1.19)

a. Plot \(\text{Re}\{Z\} \) (the real part of the impedance \(Z \)) versus frequency \(\omega \).

b. Plot \(\text{Im}\{Z\} \) (the imaginary part of the impedance \(Z \)) versus frequency \(\omega \).

c. Plot the impedance \(Z \) versus frequency \(\omega \) in polar coordinates.

Solution:

The MATLAB code below computes the real and imaginary parts of \(Z_{ab} \) that is, for simplicity, denoted as \(z \), and plots these as two separate graphs (parts a & b). It also produces a polar plot (part c).

```matlab
w=0:1:2000;  % Define interval with one radian interval
z=(10+(10.^4 - j.*10.^6 ./ (w+eps)) ./ (10 + j .* (0.1 .* w -10.^5 ./ (w+eps))));
%  The first five statements (next two lines) compute and plot Re{z}
real_part=real(z);  plot(w,real_part);  grid;
xlabel('radian frequency w');  ylabel('Real part of Z');
%  The next five statements (next two lines) compute and plot Im{z}
imag_part=imag(z);  plot(w,imag_part);  grid;
xlabel('radian frequency w');  ylabel('Imaginary part of Z');
%  The last six statements (next six lines) below produce the polar plot of z
```

Numerical Analysis Using MATLAB and Spreadsheets, Second Edition

Orchard Publications
mag=abs(z); % Computes |Z|
rndz=round(abs(z)); % Rounds |Z| to read polar plot easier
theta=angle(z); % Computes the phase angle of impedance Z
polar(theta,rndz); % Angle is the first argument
grid;
ylabel('Polar Plot of Z');

The real, imaginary, and polar plots are shown in Figures 1.11, 1.12, and 1.13 respectively.

Figure 1.11. Plot for the real part of Z in Example 1.15

Figure 1.12. Plot for the imaginary part of Z in Example 1.15
Example 1.15 clearly illustrates how powerful, fast, accurate, and flexible MATLAB is.

1.9 Script and Function Files

MATLAB recognizes two types of files: script files and function files. Both types are referred to as m-files since both require the .m extension.

A script file consists of two or more built-in functions such as those we have discussed thus far. Thus, the code for each of the examples we discussed earlier, make up a script file. Generally, a script file is one which was generated and saved as an m-file with an editor such as the MATLAB's Editor/Debugger.

A function file is a user-defined function using MATLAB. We use function files for repetitive tasks. The first line of a function file must contain the word function, followed by the output argument, the equal sign (=), and the input argument enclosed in parentheses. The function name and file name must be the same, but the file name must have the extension .m. For example, the function file consisting of the two lines below

```
function y = myfunction(x)
y=x .^ 3 + cos(3 .* x)
```

is a function file and must be saved. To save it, from the File menu of the command window, we choose New and click on M-File. This takes us to the Editor Window where we type these two lines and we save it as myfunction.m.

We will use the following MATLAB functions with the next example.

The function fzero(f,x) tries to find a zero of a function of one variable, where f is a string containing the name of a real-valued function of a single real variable. MATLAB searches for a value near a point where the function f changes sign, and returns that value, or returns NaN if the search fails.
Important: We must remember that we use \texttt{roots(p)} to find the roots of polynomials only, such as those in Examples 1.1 and 1.2.

\texttt{fmin(f,x1,x2)} minimizes a function of one variable. It attempts to return a value of \(x \) where \(f(x) \) is minimum in the interval \(x_1 < x < x_2 \). The string \(f \) contains the name of the function to be minimized.

Note: MATLAB does not have a function to maximize a function of one variable, that is, there is no such function as \texttt{fmax(f,x1,x2)} in MATLAB; but since a maximum of \(f(x) \) is equal to a minimum of \(-f(x)\), we can use \texttt{fmin(f,x1,x2)} to find both minimum and maximum values of a function.

\texttt{fplot(fcn,lims)} plots the function specified by the string \(fcn \) between the \(x\)-axis limits specified by \(\texttt{lims} = [\texttt{xmin} \ \texttt{xmax}] \). Using \(\texttt{lims} = [\texttt{xmin} \ \texttt{xmax} \ \texttt{ymin} \ \texttt{ymax}] \) also controls the \(y\)-axis limits. The string \(fcn \) must be the name of an \texttt{m-file} function or a string with variable \(x \).

Note: \texttt{NaN} (Not-a-Number) is not a function; it is MATLAB’s response to an undefined expression such as \(-/0\), \(--\infty/\infty\), or inability to produce a result as described on the next paragraph. We can avoid division by zero using the \texttt{eps} number, that we mentioned earlier.

Example 1.16

Find the zeros, maxima and minima of the function

\[f(x) = \frac{1}{(x - 0.1)^2 + 0.01} + \frac{1}{(x - 1.2)^2 + 0.04} - 10 \]

(1.20)

Solution:

We first plot this function to observe the approximate zeros, maxima, and minima using the following code.

\begin{verbatim}
x=-1.5:0.01:1.5;
y=1 ./ ((x-0.1) .^ 2 + 0.01) -1 ./ ((x-1.2) .^ 2 + 0.04) -10;
plot(x,y); grid
\end{verbatim}

The plot is shown in Figure 1.14.

The roots (zeros) of this function appear to be in the neighborhood of \(x = -0.2 \) and \(x = 0.3 \). The maximum occurs at approximately \(x = 0.1 \) where, approximately, \(y_{\text{max}} = 90 \), and the minimum occurs at approximately \(x = 1.2 \) where, approximately, \(y_{\text{min}} = -34 \).

Next, we define and save \(f(x) \) as the \texttt{funczero01.m} function \texttt{m-file} with the following code:

\begin{verbatim}
function y=funczero01
 % Finding the zeros of the function below
 y=1/((x-0.1)^2+0.01)-1/((x-1.2)^2+0.04)-10;
\end{verbatim}
Now, we can use the \texttt{fplot(fcn,lims)} command to plot $f(x)$ as follows.

\begin{verbatim}
fplot('funczero01', [−1.5 1.5]); grid
\end{verbatim}

This plot is shown in Figure 1.15. As expected, this plot is identical to the plot of Figure 1.14 that was obtained with the \texttt{plot(x,y)} command.

\begin{verbatim}
x1= fzero('funczero01', −0.2);
x2= fzero('funczero01', 0.3);
\end{verbatim}
Chapter 1 Introduction to MATLAB

fprintf('The roots (zeros) of this function are r1= %3.4f' ,x1); % This command is explained below
fprintf(' and r2= %3.4f
', x2)

MATLAB displays the following:

The roots (zeros) of this function are r1= -0.1919 and r2= 0.3788

The fprintf(format,array) command used above displays and prints both text and arrays. It uses specifiers to indicate where and in which format the values would be displayed and printed. Thus, if %f is used, the values will be displayed and printed in fixed decimal format, and if %e is used, the values will be displayed and printed in scientific notation format. With these commands only the real part of each parameter is processed.

Whenever we use the fmin(f,x1,x2) function, we must remember that this function searches for a minimum and it may display the values of local minima*, if any, before displaying the function minimum. It is, therefore, advisable to plot the function with either the plot(x,y) or the fplot(fcn,lims) command to find the smallest possible interval within which the function minimum lies. For this example, we specify the range $0 \leq x \leq 1.5$ rather than the interval $-1.5 \leq x \leq 1.5$.

The minimum of $f(x)$ is found with the fmin(f,x1,x2) function as follows:

min_val=fmin('funczero01', 0, 1.5)

min_val =

 1.2012

This is the value of x at which $y = f(x)$ is minimum. To find the value of y corresponding to this value of y, we substitute it into $f(x)$, that is,

\[
\begin{align*}
x &= 1.2012; \\
y &= \frac{1}{((x-0.1)^2 + 0.01)} - \frac{1}{((x-1.2)^2 + 0.04)} - 10
\end{align*}
\]

\[
y = -34.1812
\]

To find the maximum value, we must first define a new function m-file that will produce $-f(x)$. We define it as follows:

function y=minusfunczero01(x)
% It is used to find maximum value from -f(x)
y=-(1/((x-0.1)^2+0.01)-1/((x-1.2)^2+0.04)-10);

We have placed the minus (−) sign in front of the right side of the last expression above, so that

* Local maxima or local minima, are the maximum or minimum values of a function within a restricted range of values in the independent variable. When the entire range is considered, the maxima and minima are considered be to the maximum and minimum values in the entire range in which the function is defined.
the maximum value will be displayed. Of course, this is equivalent to the negative of the `funczero01` function.

Now, we execute the following code to get the value of x where the maximum $y = f(x)$ occurs.

```matlab
max_val = fmin('minusfunczero01', 0, 1)
max_val =
    0.0999
x = 0.0999;
y = 1 / ((x-0.1)^2 + 0.01) - 1 / ((x-1.2)^2 + 0.04) - 10
y = 89.2000
```

1.10 Display Formats

MATLAB displays the results on the screen in integer format without decimals if the result is an integer number, or in short floating point format with four decimals if it is a fractional number. The format displayed has nothing to do with the accuracy in the computations. MATLAB performs all computations with accuracy up to 16 decimal places.

The output format can changed with the `format` command. The available formats can be displayed with the `help format` command as follows:

```matlab
help format
FORMAT Set output format.
All computations in MATLAB are done in double precision.
FORMAT may be used to switch between different output display formats as follows:
FORMAT Default. Same as SHORT.
FORMAT SHORT Scaled fixed point format with 5 digits.
FORMAT LONG Scaled fixed point format with 15 digits.
FORMAT SHORT E Floating point format with 5 digits.
FORMAT LONG E Floating point format with 15 digits.
FORMAT SHORT G Best of fixed or floating point format with 5 digits.
FORMAT LONG G Best of fixed or floating point format with 15 digits.
FORMAT HEX Hexadecimal format.
FORMAT + The symbols +, - and blank are printed for positive, negative and zero elements. Imaginary parts are ignored.
FORMAT BANK Fixed format for dollars and cents.
FORMAT RAT Approximation by ratio of small integers.
```
Spacing:

FORMAT COMPACT Suppress extra line-feeds.
FORMAT LOOSE Puts the extra line-feeds back in.

Some examples with different format displays age given below.

format short 33.3335 Four decimal digits (default)
format long 33.3333333333334 16 digits
format short e 3.3333e+01 Four decimal digits plus exponent
format short g 33.333 Better of format short or format short e
format bank 33.33 two decimal digits
format + only + or − or zero are printed
format rat 100/3 rational approximation

1.11 Summary

• We can get help with MATLAB topics by typing help followed by any topic available. For example, the command help matlab\iofun will display input/output information, and help matlab graphics will display help on graphics.

• The MATLAB Demos menu displays MATLAB’s capabilities. To access it we type demo and we see the different topics. Whenever we want to return to the command window, we click on the Close button.

• We type quit or exit when we are done and want to leave MATLAB.

• We use the clear command if we want to clear all previous values, variables, and equations without exiting.

• The clc command clears the screen but MATLAB still remembers all values, variables and equations which we have already used.

• All text after the % (percent) symbol is interpreted by MATLAB as a comment line and thus it is ignored during the execution of a program. A comment can be typed on the same line as the function or command or as a separate line.

• For computations involving complex numbers we can use either i, or j to denote the imaginary part of the complex number.

• In MATLAB, a polynomial is expressed as a row vector of the form \([a_n, a_{n-1}, a_2, a_1, a_0]\). The elements \(a_i\) of this vector are the coefficients of the polynomial in descending order. We must include terms whose coefficients are zero.
Summary

- We can find the roots of any polynomial with the `roots(p)` function where `p` is a row vector containing the polynomial coefficients in descending order.

- We can compute the coefficients of a polynomial from a given set of roots with the `poly(r)` function where `r` is a row vector containing the roots.

- The `polyval(p,x)` function evaluates a polynomial $p(x)$ at some specified value of the independent variable x.

- The `conv(a,b)` function multiplies the polynomials a and b.

- The `[q,r]=deconv(c,d)` function divides polynomial `c` by polynomial `d` and displays the quotient `q` and remainder `r`.

- The `polyder(p)` function produces the coefficients of the derivative of a polynomial `p`.

- We can write MATLAB statements in one line if we separate them by commas or semicolons. Commas will display the results whereas semicolons will suppress the display.

- Rational Polynomials are those which can be expressed in ratio form, that is, as

$$R(x) = \frac{\text{Num}(x)}{\text{Den}(x)} = \frac{b_n x^n + b_{n-1} x^{n-1} + b_{n-2} x^{n-2} + \ldots + b_1 x + b_0}{a_m x^m + a_m x^{m-1} + a_{m-2} x^{m-2} + \ldots + a_1 x + a_0}$$

where some of the terms in the numerator and/or denominator may be zero. Normally, we express the numerator and denominator of a rational function as a combination of linear and quadratic factors.

- We use the MATLAB command `plot(x,y)` to make two-dimensional plots. This command plots y versus x where x is the horizontal axis (abscissa) and y is the vertical axis (ordinate).

- If a statement, or a row vector is too long to fit in one line, it can be continued to the next line by typing three or more periods, then pressing `<enter>` to start a new line, and continue to enter data.

- We can make a plot more presentable with the commands `grid`, `box`, `title('string')`, `xlabel('string')`, and `ylabel('string')`.

- The `semilogx(x,y)` command that is similar to the `plot(x,y)` command, except that the x-axis is represented as a log scale, and the y-axis as a linear scale. Likewise, the `semilogy(x,y)` command is similar to the `plot(x,y)` command, except that the y-axis is represented as a log scale, and the x-axis as a linear scale. The `loglog(x,y)` command uses logarithmic scales for both axes.

- The function `log(x)` in MATLAB is the natural logarithm, whereas the common logarithm is expressed as `log10(x)`. Likewise, the logarithm to the base 2 is expressed as `log2(x)`.
• The ratio of any two values of the same quantity, typically power, is normally expressed in decibels (dB) and by definition,

\[dB = 10 \log \left| \frac{P_{out}}{P_{in}} \right| \]

• The command `gtext('string')` switches to the current Figure Window, and displays a cross-hair which can be moved around with the mouse. The command `text(x,y,'string')` is similar to `gtext('string')`; it places a label on a plot in some specific location specified by x and y, and `string` is the label which we want to place at that location.

• The command `linspace(first_value, last_value, number_of_values)` specifies the number of data points but not the increments between data points. An alternate command uses the colon notation and has the format `x=first: increment: last`. This format specifies the increments between points but not the number of data points.

• MATLAB has no default color; it starts with blue and cycles through seven colors. Also, there is no default marker; no markers are drawn unless they are selected. The default line is the solid line.

• The `plot3(x,y,z)` command plots a line in 3-space through the points whose coordinates are the elements of x, y, and z, where x, y, and z are three vectors of the same length.

• In a three-dimensional plot, we can use the `zlabel('string')` command in addition to the `xlabel('string')` and `ylabel('string')`.

• In a two-dimensional plot, we can set the limits of the x- and y-axes with the `axis([xmin xmax ymin ymax])` command. Likewise, in a three-dimensional plot we can set the limits of all three axes with the `axis([xmin xmax ymin ymax zmin zmax])` command. It must be placed after the `plot(x,y)` or `plot3(x,y,z)` commands, or on the same line without first executing the `plot` command. This must be done for each plot. The three-dimensional `text(x,y,z,'string')` command will place `string` beginning at the co-ordinate (x, y, z) on the plot.

• The `mesh(x,y,z)` command displays a three-dimensional plot. Another command, `contour(Z,n)`, draws contour lines for n levels. We can also use the `mesh(x,y,z)` command with two vector arguments. These must be defined as `length(x) = n` and `length(y) = m` where `[m,n] = size(Z)`. In this case, the vertices of the mesh lines are the triples \{(x(j), y(i), Z(i,j))\}. We observe that x corresponds to the columns of Z, and y corresponds to the rows of Z. To produce a mesh plot of a function of two variables, say \(z = f(x, y)\), we must first generate the X and Y matrices which consist of repeated rows and columns over the range of the variables x and y. We can generate the matrices X and Y with the `[X,Y]=meshgrid(x,y)` function which creates the matrix X whose rows are copies of the vector x, and the matrix Y whose columns are copies of the vector y.
Summary

- MATLAB can display up to four windows of different plots on the Figure window using the command `subplot(m,n,p)`. This command divides the window into an $m \times n$ matrix of plotting areas and chooses the pth area to be active.

- With MATLAB, matrix multiplication (multiplication of row by column vectors) is performed with the matrix multiplication operator (\ast), whereas element-by-element multiplication is performed with the dot multiplication operator (\(\ast\)). Similarly, the division (/) and exponentiation (*) operators, are used for matrix division and exponentiation, whereas dot division (\(./\)) and dot exponentiation (\(.^\ast\)) are used for element-by-element division and exponentiation.

- To avoid division by zero, we use the special MATLAB function `eps`, which is a number approximately equal to 2.2×10^{-16}.

- The command `axis([xmin xmax ymin ymax])` scales the current plot to the values specified by the arguments `xmin`, `xmax`, `ymin` and `ymax`. There are no commas between these four arguments. This command must be placed after the plot command and must be repeated for each plot.

- The `real(z)` and `imag(z)` functions display the real and imaginary parts of the complex quantity $z = x + iy$, and the `abs(z)`, and the `angle(z)` functions compute the absolute value (magnitude) and phase angle of the complex quantity $z = x + iy = r\angle \theta$. The `polar(theta,r)` function produces a plot in polar coordinates, where r is the magnitude, and θ is the angle in radians.

- MATLAB recognizes two types of files: script files and function files. Both types are referred to as m-files. A script file consists of two or more built-in functions. Generally, a script file is one which was generated and saved as an m-file with an editor such as the MATLAB’s Editor/Debugger. A function file is a user-defined function using MATLAB. We use function files for repetitive tasks. The first line of a function file must contain the word function, followed by the output argument, the equal sign (=), and the input argument enclosed in parentheses. The function name and file name must be the same, but the file name must have the extension .m.

- The MATLAB `fmin(f,x1,x2)` function minimizes a function of one variable. It attempts to return a value of x where $f(x)$ is minimum in the interval $x_1 < x < x_2$. The string f contains the name of the function to be minimized.

- The MATLAB `fplot(fcn,lims)` command plots the function specified by the string `fcn` between the x-axis limits specified by `lims = [xmin xmax]`. Using `lims = [xmin xmax ymin ymax]` also controls the y-axis limits. The string `fcn` must be the name of an m-file function or a string with variable x.

- The MATLAB `fprintf(format,array)` command used above displays and prints both text and arrays. It uses specifiers to indicate where and in which format the values would be displayed and printed. Thus, if `%f` is used, the values will be displayed and printed in fixed decimal for-
mat, and if `%e` is used, the values will be displayed and printed in scientific notation format. With these commands only the real part of each parameter is processed.

- MATLAB displays the results on the screen in integer format without decimals if the result is an integer number, or in short floating point format with four decimals if it a fractional number. The format displayed has nothing to do with the accuracy in the computations. MATLAB performs all computations with accuracy up to 16 decimal places.
1.12 Exercises

1. Use MATLAB to compute the roots of the following polynomials:
 a. \(p(x) = x^3 + 8x^2 + 10x + 4 \)
 b. \(p(y) = y^5 + 7y^4 + 19y^3 + 25y^2 + 16y + 4 \)

2. Use MATLAB to derive the polynomials having the following roots:
 a. \(-6.5708\), \(-0.7146 + j0.3132\), \(-0.7146 - j0.3132\)
 b. Two roots at \(x = -2.000\) and three roots at \(x = -3.000\)

3. Use MATLAB to evaluate the polynomials below at the specified values.
 a. \(p(x) = x^3 + 8x^2 + 10x + 4 \) at \(x = 1.25\)
 b. \(p(y) = y^5 + 7y^4 + 19y^3 + 25y^2 + 16y + 4 \) at \(y = -3.75\)

4. In the circuit below, the applied voltage \(V_S\) was kept constant and the voltage \(V_C\) across the capacitor was measured and recorded at several frequencies as shown on the table below.

 ![Circuit Diagram](image)

<table>
<thead>
<tr>
<th>Capacitor voltage versus radian frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\omega)</td>
</tr>
<tr>
<td>(V_C)</td>
</tr>
<tr>
<td>(\omega)</td>
</tr>
<tr>
<td>(V_C)</td>
</tr>
</tbody>
</table>

 Plot \(V_C\) (in dB scale) versus \(\omega\) (in common log scale) and label the axes appropriately.
1.13 Solutions to Exercises

Dear Reader:

The remaining pages on this chapter contain the solutions to the exercises.

You must, for your benefit, make an honest effort to find the solutions to the exercises without first looking at the solutions that follow. It is recommended that first you go through and work out those you feel that you know. For the exercises that you are uncertain, review this chapter and try again. Refer to the solutions as a last resort and rework those exercises at a later date.

You should follow this practice with the rest of the exercises of this book.
1.
a.
\[P_x = [1 \ 8 \ 10 \ 4]; \ \text{roots}(P_x) \]
\[
\begin{array}{c}
\text{ans} = \\
-6.5708 \\
-0.7146 + 0.3132i \\
-0.7146 - 0.3132i \\
\end{array}
\]
b.
\[P_y = [1 \ 7 \ 19 \ 25 \ 16 \ 4]; \ \text{roots}(P_y) \]
\[
\begin{array}{c}
\text{ans} = \\
-2.0000 \\
-2.0000 \\
-1.0000 \\
-1.0000 + 0.0000i \\
-1.0000 - 0.0000i \\
\end{array}
\]
2.
a.
\[r_1 = [-6.5708 \ -0.7146 + 0.3132i \ -0.7146 - 0.3132i]; \ \text{poly}_r_1 = \text{poly}(r_1) \]
\[
\text{poly}_r_1 = 1.0000 \quad 8.0000 \quad 9.9997 \quad 4.0000
\]
\[p(x) = x^3 + 8x^2 + 10x + 4 \]
b.
\[r_2 = [-2 \ -2 \ -3 \ -3 \ -3]; \ \text{poly}_r_2 = \text{poly}(r_2) \]
\[
\text{poly}_r_2 = \\
1 \quad 13 \quad 67 \quad 171 \quad 216 \quad 108
\]
\[p(z) = z^5 + 13z^4 + 67z^3 + 171z^2 + 216z + 108 \]
3.
a.
\[P_v = [1 \ 8 \ 10 \ 4]; \ \text{value} = \text{polyval}(P_v, 1.25) \]
\[\text{value} = 30.9531 \]
b.
\[P_w = [1 \ 7 \ 19 \ 25 \ 16 \ 4]; \ \text{value} = \text{polyval}(P_w, -3.75) \]
\[\text{value} = -63.6904 \]
4.

\[
\begin{align*}
 w &= [5\ 6\ 7\ 8\ 9\ 10\ 11\ 12\ 13\ 14\ 15\ 16] * 100; \\
 V_c &= [88.9\ 98.5\ 103\ 104.9\ 105.3\ 104.8\ 102.4\ 100.7\ 98.9\ 96.5\ 94.9]; \\
 \text{dB} &= 20 \times \log_{10}(V_c); \text{semilogx}(w, \text{dB}); \text{grid}; \text{title('Magnitude of Vc vs. w');} \\
 &\quad \text{xlabel('w in rads/sec'); ylabel('|Vc| in volts')}
\end{align*}
\]
This chapter is an introduction to Newton’s and bisection methods for approximating roots of linear and non-linear equations. Several examples are presented to illustrate practical solutions using MATLAB and spreadsheets.

2.1 Newton’s Method for Root Approximation

Newton’s (or Newton-Raphson) method can be used to approximate the roots of any linear or non-linear equation of any degree. This is an iterative (repetitive procedure) method and it is derived with the aid of Figure 2.1.

We assume that the slope is neither zero nor infinite. Then, the slope (first derivative) at \(x = x_1 \) is

\[
f'(x_1) = \frac{y - f(x_1)}{x - x_1}
\]

\[
y - f(x_1) = f'(x_1)(x - x_1)
\] \hspace{1cm} (2.1)

The slope crosses the \(x - axis \) at \(x = x_2 \) and \(y = 0 \). Since this point \([x_2, f(x_2)] = (x_2, 0)\) lies on the slope line, it satisfies (2.1). By substitution,

\[
0 - f(x_1) = f'(x_1)(x_2 - x_1)
\]

\[
x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}
\] \hspace{1cm} (2.2)

and in general,

\[
x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}
\] \hspace{1cm} (2.3)
Example 2.1

Use Newton’s method to approximate the positive root of

\[f(x) = x^2 - 5 \]

(2.4)
to four decimal places.

Solution:

As a first step, we plot the curve of (2.4) to find out where it crosses the \(x - axis \). This can be done easily with a simple plot using MATLAB or a spreadsheet. We start with MATLAB and will discuss the steps for using a spreadsheet afterwards.

We will now introduce some new MATLAB functions and review some which we discussed in Chapter 1.

\textbf{input('string')}: It displays the text \texttt{string}, and waits for an input from the user. We must enclose the text in single quotation marks.

We recall that the \texttt{polyder(p)} function displays the row vector whose values are the coefficients of the first derivative of the polynomial \(p \). The \texttt{polyval(p,x)} function evaluates the polynomial \(p \) at some value \(x \). Therefore, we can compute the next iteration for approximating a root with Newton’s method using these functions. Knowing the polynomial \(p \) and the first approximation \(x_0 \), we can use the following code for the next approximation \(x_1 \).

\begin{verbatim}
q=polyder(p)
x1=x0-polyval(p,x0)/polyval(q,x0)
\end{verbatim}

We used the \texttt{fprintf} command in Chapter 1; we will use it many more times. Therefore, let us review it again.

The following description was extracted from the \texttt{help fprintf} function.

\begin{quote}
\textit{It formats the data in the real part of matrix A (and in any additional matrix arguments), under control of the specified format string, and writes it to the file associated with file identifier \texttt{fid} and contains C language conversion specifications. These specifications involve the character \%, optional flags, optional width and precision fields, optional subtype specifier, and conversion characters \texttt{d, i, o, u, x, X, f, e, E, g, G, c,} and \texttt{s}. See the Language Reference Guide or a C manual for complete details. The special formats \texttt{\n,\r,\t,\b,\f} can be used to produce linefeed, carriage return, tab, backspace, and formfeed characters respectively. Use \texttt{\\} to produce a backslash character and \texttt{\%\%} to produce the percent character.}
\end{quote}

To apply Newton’s method, we must start with a reasonable approximation of the root value. In all cases, this can best be done by plotting \(f(x) \) versus \(x \) with the familiar statements below. The following two lines of code will display the graph of the given equation in the interval \(-4 \leq x \leq 4\).

\begin{verbatim}
x=linspace(-4, 4, 100); % Specifies 100 values between -4 and 4
y=x .^ 2 - 5; plot(x,y); grid % The dot exponentiation is a must
\end{verbatim}
Newton's Method for Root Approximation

We chose this interval because the given equation asks for the square root of 5; we expect this value to be a value between 2 and 3. For other functions, where the interval may not be so obvious, we can choose a larger interval, observe the \(x\)-axis crossings, and then redefine the interval.

As expected, the curve shows one crossing between \(x = 2\) and \(x = 3\), so we take \(x_0 = 2\) as our first approximation, and we compute the next value \(x_1\) as

\[
 x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 2 - \frac{2^2 - 5}{2(2)} = 2 - \frac{1}{4} = 2.25
\]

(2.5)

The second approximation yields

\[
 x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 2.25 - \frac{(2.25)^2 - 5}{2(2.25)} = 2.25 - \frac{0.0625}{4.5} = 2.2361
\]

(2.6)

We will use the following MATLAB code to verify (2.5) and (2.6).

```matlab
% Approximation of a root of a polynomial function p(x)
% Do not forget to enclose the coefficients in brackets [ ]
p=input('Enter coefficients of p(x) in descending order: ');
x0=input('Enter starting value: ');
q=polyder(p);
x1=x0-polyval(p,x0)/polyval(q,x0);
fprintf('
'); % Inserts a blank line
% The next function displays the value of x1 in decimal format as indicated
```

Figure 2.2. Plot for the curve of Example 2.1
% by the specifier %9.6f, i.e., with 9 digits where 6 of these digits
% are to the right of the decimal point such as xxx.xxxxxx, and
% \n prints a blank line before printing x1
fprintf('The next approximation is: %9.6f \n', x1)
fprintf('Rerun the program using this value as your next approximation \n');

The following lines show MATLAB’s inquiries and our responses (inputs) for the first two approximations.

Enter coefficients of P(x) in descending order:
[1 0 -5]
Enter starting value: 2
The next approximation is: 2.250000
Rerun the program using this value as your next approximation
Enter polynomial coefficients in descending order: [1 0 -5]
Enter starting value: 2.25
The next approximation is: 2.236111

We observe that this approximation is in close agreement with (2.6).

In Chapter 1 we discussed script files and function files. We recall that a function file is a user-defined function using MATLAB. We use function files for repetitive tasks. The first line of a function file must contain the word function followed by the output argument, the equal sign (=), and the input argument enclosed in parentheses. The function name and file name must be the same but the file name must have the extension .m. For example, the function file consisting of the two lines below

function y = myfunction(x)
y=x .^ 3 + cos(3 .* x)

is a function file and must be saved as myfunction.m

We will use the while end loop, whose general form is

while expression
 commands ...
end

where the commands ... in the second line are executed as long as all elements in expression of the first line are true.

We will also be using the following commands:
disp(x): Displays the array \(x \) without printing the array name. If \(x \) is a string, the text is displayed. For example, if \(v = 12 \), \(\text{disp}(v) \) displays 12, and \(\text{disp('volts')} \) displays \text{volts}.

sprintf(format, A): Formats the data in the real part of matrix \(A \) under control of the specified \textit{format} string. For example,

\[
\text{sprintf}('%d', \text{round}(\pi))
\]

\[
\text{ans} = 3
\]

where the format code \texttt{\%d} specifies an integer. Likewise,

\[
\text{sprintf}('%4.3f', \pi)
\]

\[
\text{ans} = 3.142
\]

where the format code \texttt{\%4.3f} specifies a fixed format of 4 digits where 3 of these digits are allocated to the fractional part.

Example 2.2

Approximate one real root of the non-linear equation

\[
f(x) = x^2 + 4x + 3 + \sin x - x \cos x
\]

(2.7)

to four decimal places using Newton’s method.

Solution:

As a first step, we sketch the curve to find out where the curve crosses the \(x \)-axis. We generate the plot with the code below.

\[
x=\text{linspace}(-\pi, \pi, 100); y=x \cdot 2 + 4 \cdot x + 3 + \sin(x) - x \cdot \cos(x); \text{plot}(x,y); \text{grid}
\]

The plot is shown in Figure 2.3.

The plot shows that one real root is approximately at \(x = -1 \), so we will use this value as our first approximation.

Next, we generate the function \texttt{funcnewt01} and we save it as an \textit{m-file}. To save it, from the \textit{File} menu of the command window, we choose \textit{New} and click on \textit{M-File}. This takes us to the \textit{Editor Window} where we type the following three lines and we save it as \texttt{funcnewt01.m}.

\[
\text{function } y=\text{funcnewt01}(x) \\
\text{\hspace{1cm} \% Approximating roots with Newton’s method} \\
\text{\hspace{1cm} y=x \cdot 2 + 4 \cdot x + 3 + \sin(x) - x \cdot \cos(x);}
\]

We also need the first derivative of \(y \); This is \(y' = 2x + 4 + x \sin x \)
The computation of the derivative for this example was a simple task; however, we can let MATLAB do the differentiation, just as a check, and to introduce the `diff(s)` function. This function performs differentiation of symbolic expressions. The `syms` function is used to define one or more symbolic expressions.

\[
\text{syms } x \\
y = x^2 + 4x + 3 + \sin(x) - x\cos(x);
\]

% Dot operations are not necessary with symbolic expressions, but correct answer will be displayed if they are used.

\[y1=\text{diff}(y)\]

% Find the derivative of y
\[y1 = 2x + 4 + x\sin(x)\]

Now, we generate the function `funcnewt02`, and we save it as m-file. To save it, from the File menu of the command window, we choose New and click on M-File. This takes us to the Editor Window where we type these two lines and we save it as `funcnewt02.m`.

\[
\text{function } y=\text{funcnewt02}(x) \\
\text{Finding roots by Newton's method} \\
\text{The following is the first derivative of the function defined as funcnewt02} \\
y=2 \cdot x + 4 + x \cdot \sin(x);
\]

Our code for finding the next approximation with Newton’s method follows.

\[
x = \text{input}('Enter starting value: '); \\
x = \text{funcnewt01}(x); \\
x = \text{funcnewt02}(x);
\]
xnext = x-fx/fprimex;
x = xnext;
fx = funcnewt01(x);
fprimex = funcnewt02(x);
disp(sprintf('First approximation is x = %9.6f \n', x))
while input('Next approximation? (<enter>=no, 1=yes)');
xnext=x-fx/fprimex;
x=xnext;
fx=funcnewt01(x);
fprimex=funcnewt02(x);
disp(sprintf('Next approximation is x = %9.6f \n', x))
end;
disp(sprintf('%9.6f \n', x))

MATLAB produces the following result with \(-1\) as a starting value.

Enter starting value: \(-1\)
First approximation is: \(-0.894010\)
Next approximation? (<enter>=no, 1=yes) 1
\(-0.895225\)
Next approximation? (<enter>=no, 1=yes) <enter>

We can also use the \texttt{fzero(f,x)} function. It was introduced in Chapter 1. This function tries to find a zero of a function of one variable. The string \(f\) contains the name of a real-valued function of a single real variable. As we recall, MATLAB searches for a value near a point where the function \(f\) changes sign and returns that value, or returns \texttt{NaN} if the search fails.

2.2 Approximations with Spreadsheets

In this section, we will go through several examples to illustrate the procedure of using a spreadsheet such as Excel* to approximate the real roots of linear and non-linear equations.

We recall that there is a standard procedure for finding the roots of a cubic equation; it is included here for convenience.

A cubic equation of the form

\[
y^3 + py^2 + qy + r = 0
\]

(2.8)

can be reduced to the simpler form

\[
x^3 + ax + b = 0
\]

(2.9)

* We will illustrate our examples with Excel, although others such as Lotus 1-2-3, and Quattro can also be used. Henceforth, all spreadsheet commands and formulas that we will be using, will be those of Excel.
For the solution it is convenient to let

\[
A = \frac{3}{4} \sqrt[3]{-b + \sqrt{b^2 - \frac{a^3}{27}}} \quad B = -\frac{3}{4} \sqrt[3]{-b - \sqrt{b^2 - \frac{a^3}{27}}}
\]

Then, the values of \(x \) for which the cubic equation of (2.11) is equal to zero are

\[
x_1 = A + B \quad x_2 = -\frac{A + B}{2} + \frac{A - B}{2} \sqrt{-3} \quad x_3 = -\frac{A + B}{2} - \frac{A - B}{2} \sqrt{-3}
\]

If the coefficients \(p, q, \) and \(r \) are real, then

\[
\text{If } \frac{b^2}{4} + \frac{a^3}{27} > 0 \quad \text{one root will be real and the other two complex conjugates}
\]

\[
\text{If } \frac{b^2}{4} + \frac{a^3}{27} < 0 \quad \text{the roots will be real and unequal}
\]

\[
\text{If } \frac{b^2}{4} + \frac{a^3}{27} = 0 \quad \text{there will be three real roots with at least two equal}
\]

While MATLAB handles complex numbers very well, spreadsheets do not. Therefore, unless we know that the roots are all real, we should not use a spreadsheet to find the roots of a cubic equation by substitution in the above formulas. However, we can use a spreadsheet to find the real root since in any cubic equation there is at least one real root. For real roots, we can use a spreadsheet to define a range of \(x \) values with small increments and compute the corresponding values of \(y = f(x) \). Then, we can plot \(y \) versus \(x \) to observe the values of \(x \) that make \(f(x) = 0 \). This procedure is illustrated with the examples that follow.

Note: In our subsequent discussion we will omit the word *cell* and the key *<enter>*. Thus B3, C11, and so on will be understood to be cell B3, cell C11, and so on. Also, after an entry has been made, it will be understood that the *<enter>* key was pressed.

Example 2.3

Compute the roots of the polynomial

\[
y = f(x) = x^3 - 7x^2 + 16x - 12
\]

using Excel.
Solution:

We start with a blank worksheet. In an Excel worksheet, a selected cell is surrounded by a heavy border. We select a cell by moving the thick hollow white cross pointer to the desired cell and we click. For this example, we first select A1 and we type \(x \). We observe that after pressing the <enter> key, the next cell moves downwards to A2; this becomes the next selected cell. We type 0.00 in A2. We observe that this value is displayed just as 0, that is, without decimals. Next, we type 0.05 in A3. We observe that this number is displayed exactly as it was typed.

We will enter more values in column A, and to make all values look uniform, we click on letter A on top of column A. We observe that the entire column is now highlighted, that is, the background on the monitor has changed from white to black. Next, from the Tools drop menu of the Menu bar, we choose Options and we click on the Edit tab. We click on the Fixed Decimal check box to place a check mark and we choose 2 as the number of decimal places. We repeat these steps for Column B and we choose 3 decimal places. Then, all numbers that we will type in Column A will be fixed numbers with two decimal places, and the numbers in Column B will be fixed with three decimal places.

To continue, we select A2, we click and holding the mouse left button down, we drag the mouse down to A3 so that both these two cells are highlighted; then we release the mouse button. When properly done, A2 will have a white background but A3 will have a black background. We will now use the AutoFill* feature to fill-in the other values of \(x \) in Column A. We will use values in 0.05 increments up to 5.00. Column A now contains 100 values of \(x \) from 0.00 to 5.00 in increments of 0.05.

Next, we select B1, and we type \(f(x) \). In B2, we type the equation formula with the = sign in front of it, that is, we type

\[
= A2^3 - 7*A2^2 + 16*A2 - 2
\]

where \(A2 \) represents the first value of \(x = 0.00 \). We observe that B2 displays the value \(-12.000\). This is the value of \(f(x) \) when \(x = 0.00 \). Next, we want to copy this formula to the range B3:B102 (the colon : means B3 through B102). With B2 still selected, we click on Edit on the main taskbar, and we click on Copy. We select the range B3:B102 with the mouse, we release the mouse button, and we observe that this range is now highlighted. We click on Edit, then on Paste and we observe that this range is now filled with the values of \(f(x) \). Alternately, we can use the Copy and Paste icons of the taskbar.

* To use this feature, we highlight cells A2 and A3. We observe that on the lower right corner of A3, there is a small black square; this is called the fill handle. If it does not appear on the spreadsheet, we can make it visible by performing the sequential steps Tools>Options, select the Edit tab, and place a check mark on the Drag and Drop setting. Next, we point the mouse to the fill handle and we observe that the mouse pointer appears as a small cross. We click, hold down the mouse button, we drag it down to A102, and we release the mouse button. We observe that, as we drag the fill handle, a pop-up note shows the cell entry for the last value in the range.
To plot \(f(x) \) versus \(x \), we click on the *Chart Wizard* icon of the Standard Toolbar, and on the *Chart type* column we click on *XY (Scatter)*. From the displayed charts, we choose the one on top of the right side (the smooth curves without connection points). Then, we *click* on Next, Next, Next, and *Finish*. A chart similar to the one on Figure 2.4 appears.

![Figure 2.4. Plot of the equation of Example 2.3.](image)

We will modify this plot to make it more presentable, and to see more precisely the \(x \)–*axis* crossing(s), that is, the roots of \(f(x) \). This is done with the following steps:

1. We *click* on the *Series 1* box to select it, and we delete it by pressing the *Delete* key.

2. We *click* anywhere inside the graph box. Then, we see it enclosed in six black square handles. From the View menu, we *click* on Toolbars, and we place a check mark on Chart. The Chart menu appears in two places, on the main taskbar and below it in a box where next to it is another small box with the hand icon. **Note:** The Chart menu appears on the main taskbar and on the box below it, only when the graph box is selected, that is, when it is enclosed in black square handles. From the Chart menu box (below the main taskbar), we select *Value (X)* axis, and we *click* on the small box next to it (the box with the hand icon). Then, on the Format axis menu, we *click* on the Scale tab and we make the following entries:

 Minimum: 0.0
 Maximum: 5.0
 Major unit: 1.0
 Minor unit: 0.5

 We *click* on the Number tab, we select Number from the Category column, and we type 0 in the Decimal places box. We *click* on the Font tab, we select any font, Regular style, Size 9. We *click* on the Patterns tab to select it, and we *click* on Low on the Tick mark labels (lower right box).
We click on OK to return to the graph.

3. From the Chart menu box we select Value (Y) axis and we click on the small box next to it (the box with the hand icon). On the Format axis menu, we click on the Scale tab, and we make the following entries:

Minimum: −1.0
Maximum: 1.0
Major unit: 0.25
Minor unit: 0.05

We click on the Number tab, we select Number from the Category column, and we select 2 in the Decimal places box. We click on the Font tab, select any font, Regular style, Size 9. We click on the Patterns tab, and we click on Outside on the Major tick mark type (upper right box). We click on OK to return to the graph.

4. We click on Chart on the main taskbar, and on the Chart Options. We click on Gridlines, we place check marks on Major gridlines of both Value (X) axis and Value (Y) axis. Then, we click on the Titles tab and we make the following entries:

Chart title: \(f(x) = \) the given equation (or whatever we wish)
Value (X) axis: \(x \) (or whatever we wish)
Value (Y) axis: \(y = f(x) \) (or whatever we wish)

5. Now, we will change the background of the plot area from gray to white. From the Chart menu box below the main task bar, we select Plot Area and we observe that the gray background of the plot area is surrounded by black square handles. We click on the box next to it (the box with the hand icon), and on the Area side of the Patterns tab, we click on the white square which is immediately below the gray box. The plot area on the chart now appears on white background.

6. To make the line of the curve \(f(x) \) thicker, we click at any point near it and we observe that several black square handles appear along the curve. Series 1 appears on the Chart menu box. We click on the small box next to it, and on the Patterns tab. From the Weight selections we select the first of the thick lines.

7. Finally, to change Chart Area square corners to round, we select Chart Area from the Chart menu, and on the Patterns tab we place a check mark on the Round corners box.

The plot now resembles the one shown in Figure 2.5 where we have shown partial lists of \(x \) and \(f(x) \). The given polynomial has two roots at \(x = 2 \), and the third root is \(x = 3 \).

We will follow the same procedure for generating the graphs of the other examples which follow; therefore, it is highly recommended that this file is saved with any name, say poly01.xls where.xls is the default extension for file names saved in Excel.
Example 2.4

Find a real root of the polynomial

\[y = f(x) = 3x^5 - 2x^3 + 6x - 8 \]

using Excel.

Solution:

To save lots of unnecessary work, we invoke (open) the spreadsheet of the previous example, that is, poly01.xls (or any other file name that was assigned to it), and save it with another name such as poly02.xls. This is done by first opening the file poly01.xls, and from the File drop down menu, we choose the Save as option; then, we save it as poly02.xls, or any other name. When this is done, the spreadsheet of the previous example still exists as poly01.xls. Next, we perform the following steps:

1. For this example, the highest power of the polynomial is 5 (odd number), and since we know that complex roots occur in conjugate pairs, we expect that this polynomial will have at least one real root. Since we do not know where a real root is in the x-axis interval, we arbitrarily choose the interval \(-10 \leq x \leq 10\). Then, we enter \(-10\) and \(-9\) in A2 and A3 respectively. Using
the *AutoFill* feature, we fill-in the range A4:A22, and we have the interval from -10 to 10 in increments of 1. We must now delete all rows starting with 23 and downward. We do this by highlighting the range A23:B102, and we press the *Delete* key. We observe that the chart has changed shape to conform to the new data.

Now we select B2 where we enter the formula for the given equation, i.e.,

$$=3\cdot A2^5-2\cdot A2^3+6\cdot A2-8$$

We copy this formula to B3:B22. Columns A and B now contain values of x and $f(x)$ respectively, and the plot shows that the curve crosses the x-axis somewhere between $x = 1$ and $x = 2$.

A part of the table is shown in Figure 2.6. Columns A (values of x), and B (values of $f(x)$), reveal some useful information.

<table>
<thead>
<tr>
<th>x</th>
<th>$f(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10.00</td>
<td>-298068.000</td>
</tr>
<tr>
<td>-9.00</td>
<td>-175751.000</td>
</tr>
<tr>
<td>0.00</td>
<td>-8.000</td>
</tr>
<tr>
<td>1.00</td>
<td>-1.000</td>
</tr>
<tr>
<td>2.00</td>
<td>84.000</td>
</tr>
<tr>
<td>9.00</td>
<td>175735.000</td>
</tr>
<tr>
<td>10.00</td>
<td>298052.000</td>
</tr>
</tbody>
</table>

Figure 2.6. Partial table for Example 2.4

This table shows that $f(x)$ changes sign somewhere in the interval from $x = 1$ and $x = 2$. Let us then redefine our interval of the x values as $1 \leq x \leq 2$ in increments of 0.05, to get better approximations. When this is done A1 contains 1.00, A2 contains 1.05, and so on. Our spreadsheet now shows that there is a sign change from B3 to B4, and thus we expect that a real root exists between $x = 1.05$ and $x = 1.10$. To obtain a good approximation of the real root in that interval, we perform Steps 2 through 4 below.

2. On the *View* menu, we *click* on *Toolbars* and place a check mark on *Chart*. We select the graph box by clicking inside it, and we observe the square handles surrounding it. The *Chart* menu on the main taskbar and the *Chart* menu box below it, are now displayed. From the *Chart* menu box (below the main taskbar) we select *Value (X)* axis, and we *click* on the small box next to it (the box with the hand). Next, on the *Format* axis menu, we *click* on the *Scale* tab and make the following entries:

- Minimum: 1.0
- Maximum: 1.1
- Major unit: 0.02
- Minor unit: 0.01
Chapter 2 Root Approximations

3. From the Chart menu we select Value (Y) axis, and we click on the small box next to it. Then, on the Format axis menu, we click on the Scale tab and make the following entries:

- Minimum: -1.0
- Maximum: 1.0
- Major unit: 0.5
- Minor unit: 0.1

4. We click on the Titles tab and make the following entries:

- Chart title: $f(x) = \text{the given equation}$ (or whatever we wish)
- Value (X) axis: x (or whatever we wish)
- Value (Y) axis: $y = f(x)$ (or whatever we wish)

Our spreadsheet now should look like the one in Figure 2.7 and we see that one real root is approximately 1.06.

Since no other roots are indicated on the plot, we suspect that the others are complex conjugates. We confirm this with MATLAB as follows:

```matlab
p = [3 0 -2 6 -8]; roots_p = roots(p)
```

```
roots_p =
-1.1415 + 0.8212i
-1.1415 - 0.8212i
0.6113 + 0.9476i
0.6113 - 0.9476i
1.0604
```

Example 2.5

Compute the real roots of the trigonometric function

$$ y = f(x) = \cos 2x + \sin 2x + x - 1 $$

(2.16)

using a spreadsheet.

Solution:

We invoke (open) the spreadsheet of one of the last two examples, that is, poly01.xls or poly02.xls, and save it with another name, such as poly03.xls.

Since we do not know where real roots (if any) are in the x-axis interval, we arbitrarily choose the interval $-1 \leq x \leq 6$. Then, we enter -1.00 and -0.90 in A2 and A3 respectively, Using the Auto-Fill feature, we fill-in the range A4:A72 and thus we have the interval from -1 to 6 in increments of 0.10. Next, we select B2 and we enter the formula for the given equation, i.e.,

```excel
= COS(2*A2)+SIN(2*A2)+A2-1
```
Approximations with Spreadsheets

There is a root at $x = 0$; this is found by substitution of zero into the given equation. We observe that Columns A and B contain the following sign changes (only a part of the table is shown):

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>x</td>
<td>$f(x)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.00</td>
<td>-1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.05</td>
<td>-0.186</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.10</td>
<td>0.770</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1.15</td>
<td>1.892</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1.20</td>
<td>3.209</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1.25</td>
<td>4.749</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1.30</td>
<td>6.545</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1.35</td>
<td>8.631</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1.40</td>
<td>11.047</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1.45</td>
<td>13.832</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1.50</td>
<td>17.031</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1.55</td>
<td>20.692</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1.60</td>
<td>24.865</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1.65</td>
<td>29.605</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1.70</td>
<td>34.970</td>
<td>x</td>
<td>$f(x)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1.75</td>
<td>41.021</td>
<td>1.00</td>
<td>-1.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1.80</td>
<td>47.823</td>
<td>1.05</td>
<td>-0.186</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1.85</td>
<td>55.447</td>
<td>1.10</td>
<td>0.770</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1.90</td>
<td>63.965</td>
<td>1.15</td>
<td>1.892</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>1.95</td>
<td>73.455</td>
<td>1.20</td>
<td>3.209</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>2.00</td>
<td>84.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We observe two sign changes. Therefore, we expect two more real roots, one in the $1.20 \leq x \leq 1.30$ interval and the other in the $2.20 \leq x \leq 2.30$ interval. If we redefine the $x-axis$ range as 1 to 2.5, we will find that the other two roots are approximately $x = 1.30$ and $x = 2.24$.

Approximate values of these roots can also be observed on the plot of Figure 2.8 where the curve crosses the $x-axis$.

Figure 2.7. Graph for Example 2.4
We can obtain more accurate approximations using Excel’s **Goal Seek** feature. We use **Goal Seek** when we know the desired result of a single formula, but we do not know the input value which satisfies that result. Thus, if we have the function \(y = f(x) \), we can use **Goal Seek** to set the dependent variable \(y \) to the desired value (goal) and from it, find the value of the independent variable \(x \) which satisfies that goal. In the last three examples our goal was to find the values of \(x \) for which \(y = f(x) = 0 \).

To illustrate the **Goal Seek** feature, we will use it to find better approximations for the non-zero roots of Example 2.5. We do this with the following steps:

1. We copy range A24:B24 (or A25:B25) to two blank cells, say J1 and K1, so that J1 contains 1.20 and K1 contains 0.138 (or 1.30 and −0.041 if range A25:B25 was copied). We increase the accuracy of Columns J and K to 5 decimal places by clicking on **Format, Cells, Numbers** tab.

2. From the **Tools** drop menu, we **click** on **Goal Seek**, and when the **Goal Seek** dialog box appears, we make the following entries:

 Set cell: K1
 To value: 0
By changing cell: J1

3. When this is done properly, we will observe the changes in J1 and K1. These indicate that for $x = 1.27647, y = f(x) = 0.00002$.

4. We repeat the above steps for the next root near $x = 2.20$, and we verify that for $x = 2.22515, y = f(x) = 0.00020$.

Another method of using the Goal Seek feature, is with a chart such as those we’ve created for the last three examples. We will illustrate the procedure with the chart of Example 2.5.

1. We point the mouse at the curve where it intersects the x-axis, near the $x = 1.30$ point. A square box appears and displays Series 1, (1.30, −0.041). We observe that other points are also displayed as the mouse is moved at different points near the curve.

2. We click anywhere near the curve, and we observe that five handles (black square boxes) are displayed along different points on the curve. Next, we click on the handle near the $x = 1.30$ point, and when the cross symbol appears, we drag it towards the x-axis to change its value. The Goal Seek dialog box then appears where the Set cell shows B24. Then, in the To value box we enter 0, in the By changing cell we enter A24 and we click on OK. We observe now that A24 displays 1.28 and B24 displays 0.000.

For repetitive tasks, such as finding the roots of polynomials, it is prudent to construct a template (model spreadsheet) with the appropriate formulas and then enter the coefficients of the polynomial to find its real roots*. This is illustrated with the next example.

Example 2.6

Construct a template (model spreadsheet), with Excel, which uses Newton’s method to approximate a real root of any polynomial with real coefficients up to the seventh power; then, use it to compute a root of the polynomial

$$y = f(x) = x^7 - 6x^6 + 5x^5 - 4x^4 + 3x^3 - 2x^2 + x - 15$$

(2.17)

given that one real root lies in the $4 \leq x \leq 6$ interval.

Solution:

1. We start with a blank spreadsheet and we make the entries shown in Figure 2.9.

* There exists a numerical procedure, known as Bairstow’s method, that we can use to find the complex roots of a polynomial with real coefficients. We will not discuss this method here; it can be found in advanced numerical analysis textbooks.
Chapter 2 Root Approximations

We save the spreadsheet of Figure 2.9 with a name, say template.xls. Then, we save it with a different name, say Example_2_6.xls, and in B16 we type the formula

\[
=\frac{A16-(A16^7+B16^6+C16^5+D16^4+E16^3+F16^2+G16)}{B16^6+C16^5+D16^4+E16^3+F16^2+G16}
\]

The use of the dollar sign ($) is explained in Paragraph 4 below.

The formula in B16 of Figure 2.10, is the familiar Newton’s formula which also appears in Row 14. We observe that B16 now displays #DIV/0! (this is a warning that some value is being divided by zero), but this will change once we enter the polynomial coefficients, and the coefficients of the first derivative.

2. Since we are told that one real root is between 4 and 6, we take the average 5 and we enter it in A16. This value is our first (initial) approximation. We also enter the polynomial coefficients, and the coefficients of the first derivative in Rows 7 and 12 respectively.

3. Next, we copy B16 to C16:F16 and the spreadsheet now appears as shown in the spreadsheet of Figure 2.10. We observe that there is no change in the values of E16 and F16; therefore, we terminate the approximation steps there.
4. All cells in the formula of B16, except A16, have dollar signs ($)$ in front of the column letter, and in front of the row number. These cells are said to be absolute. The value of an absolute cell does not change when it is copied from one position to another. A cell that is not absolute is said to be relative cell. Thus, B16 is a relative cell, and B16 is an absolute cell. The contents of a relative cell changes when it is copied from one location to another. We can easily convert a relative cell to absolute or vice versa, by first placing the cursor in front, at the end, or between the letters and numbers of the cell, then, we press the function key F4. In this example, we made all cells, except A16, absolute so that the formula of B16 can be copied to C16, D16 and so on, without changing its value. The relative cell A16, when copied to the next column, changes to B16, when copied to the next column to the right, changes to C16, and so on.

We can now use this template with any other polynomial by just entering the coefficients of the new polynomial in row 7 and the coefficients of its derivative in Row 12; then, we observe the successive approximations in Row 16.

2.3 The Bisection Method for Root Approximation

The Bisection (or interval halving) method is an algorithm* for locating the real roots of a function.

* This is a step-by-step problem-solving procedure, especially an established, recursive computational procedure for solving a problem in a finite number of steps.
The objective is to find two values of x, say x_1 and x_2, so that $f(x_1)$ and $f(x_2)$ have opposite signs, that is, either $f(x_1) > 0$ and $f(x_2) < 0$, or $f(x_1) < 0$ and $f(x_2) > 0$. If any of these two conditions is satisfied, we can compute the midpoint x_m of the interval $x_1 \leq x \leq x_2$ with

$$
 x_m = \frac{x_1 + x_2}{2}
$$

(2.18)

Knowing x_m, we can find $f(x_m)$. Then, the following decisions are made:

1. If $f(x_m)$ and $f(x_1)$ have the same sign, their product will be positive, that is, $f(x_m) \cdot f(x_1) > 0$. This indicates that x_m and x_1 are on the left side of the x-axis crossing as shown in Figure 2.11. In this case, we replace x_1 with x_m.

2. If $f(x_m)$ and $f(x_1)$ have opposite signs, their product will be negative, that is, $f(x_m) \cdot f(x_1) < 0$. This indicates that x_m and x_2 are on the right side of the x-axis crossing as in Figure 2.12. In this case, we replace x_2 with x_m.

After making the appropriate substitution, the above process is repeated until the root we are seeking has a specified tolerance. To terminate the iterations, we either:

a. specify a number of iterations

b. specify a tolerance on the error of $f(x)$
The Bisection Method for Root Approximation

We will illustrate the Bisection Method with examples using both MATLAB and Excel.

Example 2.7

Use the Bisection Method with MATLAB to approximate one of the roots of

\[y = f(x) = 3x^5 - 2x^3 + 6x - 8 \quad (2.19) \]

by

a. by specifying 16 iterations, and using a for end loop MATLAB program

b. by specifying 0.00001 tolerance for \(f(x) \), and using a while end loop MATLAB program

Solution:

This is the same polynomial as in Example 2.4.

a. The for end loop allows a group of functions to be repeated a fixed and predetermined number of times. The syntax is:

```matlab
for x = array
    commands...
end
```

Before we write the program code, we must define a function assigned to the given polynomial and save it as a function m-file. We will define this function as `funcbisect01` and will save it as `funcbisect01.m`.

```matlab
function y = funcbisect01(x);
    y = 3 .* x .^ 5 - 2 .* x .^ 3 + 6 .* x - 8;
    \% We must not forget to type the semicolon at the end of the line above;
    \% otherwise our code will fill the screen with values of y
```

On the code below, the statement `for k = 1:16` says for \(k = 1, k = 2, ..., k = 16 \), evaluate all commands down to the end command. After the \(k = 16 \) iteration, the loop ends and any commands after the end are computed and displayed as commanded.

Let us also review the meaning of the `fprintf('%9.6f %13.6f \n', xm, fm)` line. Here, `%9.6f` and `%13.6f` are referred to as format specifiers or format codes; the first specifies that the value of \(xm \) must be expressed in decimal format also called fixed point format, with a total of 9 digits, 6 of which will be to the right of the decimal point. Likewise, \(fm \) must be expressed in decimal format with a total of 13 digits, 6 of which will be to the right of the decimal point. Some other specifiers are `%e` for scientific format, `%s` for string format, and `%d` for integer format. For more information, we can type `help fprintf`. The special format `\n` specifies a linefeed, that is, it prints everything specified up to that point and starts a new line. We will discuss other special formats as they appear in subsequent examples.

The code for the first part of Example 2.7 is given below.
\begin{verbatim}
x1=1; x2=2; % We know this interval from Example 2.4, Figure 2.6
disp(' xm fm') % xm is the average of x1 and x2, fm is f(xm)
disp('-------------------------') % insert line under xm and fm
for k=1:16;
 f1=funcbisect01(x1); f2=funcbisect01(x2);
xm=(x1+x2) / 2; fm=funcbisect01(xm);
 fprintf('%9.6f %13.6f
', xm,fm) % Prints xm and fm on same line;
 if (f1*fm<0)
 x2=xm;
 else
 x1=xm;
 end
end

When this program is executed, MATLAB displays the following:

\begin{tabular}{|c|c|}
\hline
xm & fm \\
\hline
1.500000 & 17.031250 \\
1.250000 & 4.749023 \\
1.125000 & 1.308441 \\
1.062500 & 0.038318 \\
1.031250 & -0.506944 \\
1.046875 & -0.241184 \\
1.054688 & -0.103195 \\
1.058594 & -0.032885 \\
1.060547 & 0.002604 \\
1.059570 & -0.015168 \\
1.060059 & -0.006289 \\
1.060303 & -0.001844 \\
1.060425 & 0.000380 \\
1.060364 & -0.000732 \\
1.060394 & -0.000176 \\
1.060410 & 0.000102 \\
\hline
\end{tabular}

We observe that the values are displayed with 6 decimal places as we specified, but for the integer part unnecessary leading zeros are not displayed.

b. The \textbf{while end} loop evaluates a group of commands an indefinite number of times. The syntax is:

\begin{verbatim}
while expression
 commands...
end
\end{verbatim}
\end{verbatim}
The commands between \texttt{while} and \texttt{end} are executed as long as all elements in expression are \texttt{true}. The code should be written so that eventually a \texttt{false} condition is reached and the loop then terminates.

There is no need to create another function \textit{m-file}; we will use the same as in part a. Now we type and execute the following \texttt{while end} loop program.

\begin{verbatim}
x1=1; x2=2; tol=0.00001;
disp(' xm fm'); disp('-------------------------')
while (abs(x1-x2)>2*tol);
 f1=funcbisect01(x1); f2=funcbisect01(x2); xm=(x1+x2)/2;
 fm=funcbisect01(xm);
 fprintf('%9.6f %13.6f \
', xm,fm);
 if (f1*fm<0);
 x2=xm;
 else
 x1=xm;
 end
end
\end{verbatim}

When this program is executed, MATLAB displays the following:

\begin{verbatim}
xm fm

 1.500000 17.031250
 1.250000 4.749023
 1.125000 1.308441
 1.062500 0.038318
 1.031250 -0.506944
 1.046875 -0.241184
 1.054688 -0.103195
 1.058594 -0.032885
 1.060547 0.002604
 1.059570 -0.015168
 1.060059 -0.006289
 1.060303 -0.001844
 1.060425 0.000380
 1.060364 -0.000732
 1.060394 -0.000176
 1.060410 0.000102
 1.060402 -0.000037
 1.060406 0.000032
 1.060404 -0.000003
\end{verbatim}
Chapter 2 Root Approximations

Next, we will use an Excel spreadsheet to construct a template that approximates a real root of a function with the bisection method. This requires repeated use of the \texttt{IF} function which has the following syntax.

\[=\text{IF}(\text{logical_test}, \text{value_if_true}, \text{value_if_false}) \]

where

\texttt{logical_test}: any value or expression that can be evaluated to \texttt{true} or \texttt{false}.

\texttt{value_if_true}: the value that is returned if \texttt{logical_test} is \texttt{true}.

If \texttt{logical_test} is \texttt{true} and \texttt{value_if_true} is omitted, \texttt{true} is returned. \texttt{Value_if_true} can be another formula.

\texttt{value_if_false} is the value that is returned if \texttt{logical_test} is \texttt{false}. If \texttt{logical_test} is \texttt{false} and \texttt{value_if_false} is omitted, \texttt{false} is returned. \texttt{Value_if_false} can be another formula.

These statements may be clarified with the following examples.

\[=\text{IF}(C11\geq 1500, A15, B15) \]: If the value in \texttt{C11} is greater than or equal to 1500, use the value in \texttt{A15}; otherwise use the value in \texttt{B15}.

\[=\text{IF}(D22\lt E22, 800, 1200) \]: If the value in \texttt{D22} is less than the value of \texttt{E22}, assign the number 800; otherwise assign the number 1200.

\[=\text{IF}(M8\not= N17, K7\times 12, L8/24) \]: If the value in \texttt{M8} is not equal to the value in \texttt{N17}, use the value in \texttt{K7} multiplied by 12; otherwise use the value in \texttt{L8} divided by 24.

Example 2.8

Use the bisection method with an Excel spreadsheet to approximate the value of \(\sqrt{5} \) within 0.00001 accuracy.

Solution:

Finding the square root of 5 is equivalent to finding the roots of \(x^2 - 5 = 0 \). We expect the positive root to be in the \(2 < x < 3 \) interval so we assign \(x_1 = 2 \) and \(x_2 = 3 \). The average of these values is \(x_m = 2.5 \). We will create a template as we did in Example 2.6 so we can use it with any polynomial equation. We start with a blank spreadsheet and we make the entries in rows 1 through 12 as shown in Figure 2.13.

Now, we make the following entries in rows 13 and 14.

\begin{align*}
A13: & \quad 2 \\
B13: & \quad 3 \\
C13: & = (A13 + B13) / 2
\end{align*}
The Bisection Method for Root Approximation

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Spreadsheet for finding approximations of the real roots of polynomials using the Bisection method</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Equation: $y = f(x) = x^2 - 5 = 0$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Powers of x and corresponding coefficients of given polynomial $f(x)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Enter coefficients of $f(x)$ in Row 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>x^7</td>
<td>x^6</td>
<td>x^5</td>
<td>x^4</td>
<td>x^3</td>
<td>x^2</td>
<td>x</td>
<td>Constant</td>
</tr>
<tr>
<td>8</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>1.00000</td>
<td>0</td>
<td>-5</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>x_1</td>
<td>x_2</td>
<td>x_m</td>
<td>$f(x_1)$</td>
<td>$f(x_m)$</td>
<td>$f(x_1)f(x_m)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>$(x_1+x_2)/2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2.13. Partial spreadsheet for Example 2.8

\[
\begin{align*}
\text{D13: } & = \$A\$9*\text{A13}^7 + \$B\$9*\text{A13}^6 + \$C\$9*\text{A13}^5 + \$D\$9*\text{A13}^4 + \$E\$9*\text{A13}^3 + \$F\$9*\text{A13}^2 + \$G\$9*\text{A13}^1 + \$H\$9*\text{A13}^0 \\
\text{E13: } & = \$A\$9*\text{C13}^7 + \$B\$9*\text{C13}^6 + \$C\$9*\text{C13}^5 + \$D\$9*\text{C13}^4 + \$E\$9*\text{C13}^3 + \$F\$9*\text{C13}^2 + \$G\$9*\text{C13}^1 + \$H\$9*\text{C13}^0 \\
\text{F13: } & = \text{D13}^*\text{E13} \\
\text{A14: } & = \text{IF}(\text{A14}=\text{A13}, \text{C13}, \text{B13}) \\
\text{B14: } & = \text{IF}(\text{A14}=\text{A13}, \text{C13}, \text{B13})
\end{align*}
\]

We copy C13 into C14 and we verify that C14: $=(\text{A14}+\text{B14})/2$

Next, we highlight D13:F13 and on the Edit menu we click on Copy. We place the cursor on D14 and from the Edit menu we click on Paste. We verify that the numbers on D14:F14 are as shown on the spreadsheet of Figure 2.14. Finally, we highlight A14:F14, from the Edit menu we click on Copy, we place the cursor on A15, and holding the mouse left button, we highlight the range A15:A30. Then, from the Edit menu, we click on Paste and we observe the values in A15:F30.

The square root of 5 accurate to six decimal places is shown on C30 in the spreadsheet of Figure 2.14.
Figure 2.14. Entire spreadsheet for Example 2.8

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Spreadsheet for finding approximations of the real roots of polynomials using the Bisection method</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Equation: y = f(x) = x^2 − 5 = 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Powers of x and corresponding coefficients of given polynomial f(x)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Enter coefficients of f(x) in Row 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>x^7</td>
<td>x^6</td>
<td>x^5</td>
<td>x^4</td>
<td>x^3</td>
<td>x^2</td>
<td>x</td>
<td>Constant</td>
</tr>
<tr>
<td>9</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>1.00000</td>
<td>0</td>
<td>-5</td>
</tr>
<tr>
<td>11</td>
<td>x_1</td>
<td>x_2</td>
<td>x_m</td>
<td>f(x_1)</td>
<td>f(x_m)</td>
<td>f(x_1)f(x_m)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>(x_1+x_2)/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>2.00000</td>
<td>3.00000</td>
<td>2.50000</td>
<td>-1.00000</td>
<td>1.25000</td>
<td>-1.25000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>2.00000</td>
<td>2.50000</td>
<td>2.25000</td>
<td>-1.00000</td>
<td>0.06250</td>
<td>-0.06250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>2.00000</td>
<td>2.25000</td>
<td>2.12500</td>
<td>-1.00000</td>
<td>-0.48438</td>
<td>0.48438</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>2.12500</td>
<td>2.25000</td>
<td>2.18750</td>
<td>-0.48438</td>
<td>-0.21484</td>
<td>0.10406</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>2.18750</td>
<td>2.25000</td>
<td>2.21875</td>
<td>-0.21484</td>
<td>-0.07715</td>
<td>0.01657</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>2.21875</td>
<td>2.25000</td>
<td>2.23438</td>
<td>-0.07715</td>
<td>-0.00757</td>
<td>0.00058</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>2.23438</td>
<td>2.25000</td>
<td>2.24219</td>
<td>-0.00757</td>
<td>0.02740</td>
<td>-0.00021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>2.23438</td>
<td>2.24219</td>
<td>2.23828</td>
<td>-0.00757</td>
<td>0.00990</td>
<td>-0.00007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>2.23438</td>
<td>2.23828</td>
<td>2.23633</td>
<td>-0.00757</td>
<td>0.00116</td>
<td>-0.00001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>2.23438</td>
<td>2.23633</td>
<td>2.23535</td>
<td>-0.00757</td>
<td>-0.00320</td>
<td>0.00002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>2.23535</td>
<td>2.23633</td>
<td>2.23584</td>
<td>-0.00320</td>
<td>-0.00102</td>
<td>0.00000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>2.23584</td>
<td>2.23633</td>
<td>2.23608</td>
<td>-0.00102</td>
<td>0.00007</td>
<td>0.00000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>2.23584</td>
<td>2.23608</td>
<td>2.23596</td>
<td>-0.00102</td>
<td>-0.00047</td>
<td>0.00000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>2.23596</td>
<td>2.23608</td>
<td>2.23602</td>
<td>-0.00047</td>
<td>-0.00020</td>
<td>0.00000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>2.23602</td>
<td>2.23608</td>
<td>2.23605</td>
<td>-0.00020</td>
<td>-0.00006</td>
<td>0.00000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>2.23605</td>
<td>2.23608</td>
<td>2.23607</td>
<td>-0.00066</td>
<td>0.00000</td>
<td>0.00000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>2.23605</td>
<td>2.23607</td>
<td>2.23606</td>
<td>-0.00006</td>
<td>-0.00003</td>
<td>0.00000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>2.23606</td>
<td>2.23607</td>
<td>2.23606</td>
<td>-0.00003</td>
<td>-0.00001</td>
<td>0.00000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.4 Summary

- Newton’s (or Newton-Raphson) method can be used to approximate the roots of any linear or non-linear equation of any degree. It uses the formula

\[x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \]

To apply Newton’s method, we must start with a reasonable approximation of the root value. In all cases, this can best be done by plotting \(f(x) \) versus \(x \).

- We can use a spreadsheet to approximate the real roots of linear and non-linear equations but to approximate all roots (real and complex conjugates) it is advisable to use MATLAB.

- The MATLAB the \texttt{while end} loop evaluates a group of statements an indefinite number of times and thus can be effectively used for root approximation.

- For approximating real roots we can use Excel’s Goal Seek feature. We use Goal Seek when we know the desired result of a single formula, but we do not know the input value which satisfies that result. Thus, if we have the function \(y = f(x) \), we can use Goal Seek to set the dependent variable \(y \) to the desired value (goal) and from it, find the value of the independent variable \(x \) which satisfies that goal.

- For repetitive tasks, such as finding the roots of polynomials, it is prudent to construct a template (model spreadsheet) with the appropriate formulas and then enter the coefficients of the polynomial to find its real roots.

- The Bisection (or interval halving) method is an algorithm for locating the real roots of a function. The objective is to find two values of \(x \), say \(x_1 \) and \(x_2 \), so that \(f(x_1) \) and \(f(x_2) \) have opposite signs, that is, either \(f(x_1) > 0 \) and \(f(x_2) < 0 \), or \(f(x_1) < 0 \) and \(f(x_2) > 0 \). If any of these two conditions is satisfied, we can compute the midpoint \(x_m \) of the interval \(x_1 \leq x \leq x_2 \) with

\[x_m = \frac{x_1 + x_2}{2} \]

- We can use the Bisection Method with MATLAB to approximate one of the roots by specifying a number of iterations using a \texttt{for end} or by specifying a tolerance using a \texttt{while end} loop program.

- We can use an Excel spreadsheet to construct a template that approximates a real root of a function with the bisection method. This requires repeated use of the \texttt{IF} function which has the \texttt{=IF(logical_test, value_if_true, value_if_false)}
2.5 Exercises

1. Use MATLAB to sketch the graph $y = f(x)$ for each of the following functions, and verify from the graph that $f(a)$ and $f(b)$, where a and b defined below, have opposite signs. Then, use Newton’s method to estimate the root of $f(x) = 0$ that lies between a and b.

 a. $f_1(x) = x^4 + x - 3 \quad a = 1 \quad b = 2$

 b. $f_2(x) = \sqrt[3]{2x + 1} - \sqrt{x + 4} \quad a = 2 \quad b = 4$

 Hint: Start with $x_0 = (a + b)/2$

2. Repeat Exercise 1 above using the Bisection method.

3. Repeat Example 2.5 using MATLAB.

 Hint: Use the procedure of Example 2.2
2.6 Solutions to Exercises

1.

a.

\[x = \text{zeros}(100, 1); f1x = x.^4 + x - 3; \text{plot}(x, f1x); \text{grid} \]

From the plot above we see that the positive root lies between \(x = 1 \) and \(x = 1.25 \) so we choose \(a = 1 \) and \(b = 1.25 \) so we take \(x_0 = 1.1 \) as our first approximation. We compute the next value \(x_1 \) as

\[
x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 1.1 - \frac{(1.1)^4 + 1.1 - 3}{4(1.1)^3 + 1} = 1.1 - \frac{1.164}{6.324} = 1.169
\]

The second approximation yields

\[
x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 1.169 - \frac{(1.169)^4 + 1.169 - 3}{4(1.169)^3 + 1} = 1.169 - \frac{0.0365}{7.39} = 1.164
\]

Check with MATLAB:

\[
\text{pa} = [1 0 0 1 -3]; \text{roots(pa)}
\]

\[
\text{ans} =
\begin{align*}
-1.4526 \\
0.1443 + 1.3241i \\
0.1443 - 1.3241i \\
1.1640
\end{align*}
\]
b.

\[x = -5:0.05:5; \quad f2x = \sqrt{2.*x+1} - \sqrt{x+4}; \quad \text{plot}(x,f2x); \quad \text{grid} \]

Warning: Imaginary parts of complex X and/or Y arguments ignored.

From the plot above we see that the positive root is very close to \(x = 3 \) and so we take \(x_0 = 3 \) as our first approximation. To compute the next value \(x_1 \) we first need to find the first derivative of \(f_2(x) \). We rewrite it as

\[
f_2(x) = \sqrt{2x+1} - \sqrt{x+4} = (2x+1)^{1/2} - (x+4)^{1/2}
\]

Then,

\[
\frac{d}{dx} f_2(x) = \frac{1}{2} \cdot (2x+1)^{-1/2} \cdot 2 - \frac{1}{2} \cdot (x+4)^{-1/2} \cdot 1 = \frac{1}{\sqrt{2x+1}} - \frac{1}{2\sqrt{x+4}}
\]

and

\[
x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 3 - \frac{\sqrt{2 \times 3 + 1} - \sqrt{3 + 4}}{1/\sqrt{7} - 1/(2\sqrt{7})} = 3 - \frac{0}{1/(2\sqrt{7})} = 3
\]

Thus, the real root is exactly \(x = 3 \). We also observe that since \(f(x_0) = \sqrt{7} - \sqrt{7} = 0 \), there was no need to find the first derivative \(f'(x_0) \).

Check with MATLAB:

\[\text{syms x; f2x=\sqrt{2.*x+1}-\sqrt{x+4}; solve(f2x)} \]

\[\text{ans} = 3 \]
2.

a. We will use the **for end** loop MATLAB program and specify 12 iterations. Before we write the program code, we must define a function assigned to the given polynomial and save it as a function m-file. We will define this function as `exercise2` and will save it as `exercise2.m`

```matlab
function y = exercise2(x);
y = x.^4 + x - 3;
```

After saving this file as `exercise2.m`, we execute the following program:

```
x1=1; x2=2; % x1=a and x2=b
disp(' xm fm') % xm is the average of x1 and x2, fm is f(xm)
disp('-------------------------') % insert line under xm and fm
for k=1:12;
    f1=exercise2(x1); f2=exercise2(x2);
    xm=(x1+x2)/2; fm=exercise2(xm);
    fprintf('%9.6f %13.6f
', xm,fm) % Prints zm and fm on same line;
    if (f1*fm<0)
        x2=xm;
    else
        x1=xm;
    end
end
```

MATLAB displays the following:

<table>
<thead>
<tr>
<th>xm</th>
<th>fm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.500000</td>
<td>3.562500</td>
</tr>
<tr>
<td>1.250000</td>
<td>0.691406</td>
</tr>
<tr>
<td>1.125000</td>
<td>-0.273193</td>
</tr>
<tr>
<td>1.187500</td>
<td>0.176041</td>
</tr>
<tr>
<td>1.156250</td>
<td>-0.056411</td>
</tr>
<tr>
<td>1.171875</td>
<td>0.057803</td>
</tr>
<tr>
<td>1.164063</td>
<td>0.000200</td>
</tr>
<tr>
<td>1.160156</td>
<td>-0.028229</td>
</tr>
<tr>
<td>1.162109</td>
<td>-0.014045</td>
</tr>
<tr>
<td>1.163086</td>
<td>-0.006930</td>
</tr>
<tr>
<td>1.163574</td>
<td>-0.003367</td>
</tr>
<tr>
<td>1.163818</td>
<td>-0.001584</td>
</tr>
</tbody>
</table>

b. We will use the **while end** loop MATLAB program and specify a tolerance of 0.00001.

We need to redefine the function *m-file* because the function in part (b) is not the same as in part a.
function y = exercise2(x);
y = sqrt(2.*x+1) - sqrt(x+4);

After saving this file as exercise2.m, we execute the following program:

```matlab
x1=2.1; x2=4.3; tol=0.00001;      % If we specify x1=a=2 and x2=b=4, the program
% will not display any values because xm=(x1+x2)/2 = 3 = answer
disp('    xm            fm'); disp('-------------------------')
while (abs(x1-x2)>2*tol);
    f1=exercise2(x1); f2=exercise2(x2); xm=(x1+x2)/2;
    fm=exercise2(xm);
    fprintf('%9.6f %13.6f 
', xm,fm);
    if (f1*fm<0);
        x2=xm;
    else
        x1=xm;
    end
end
```

When this program is executed, MATLAB displays the following:

<table>
<thead>
<tr>
<th>xm</th>
<th>fm</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.200000</td>
<td>0.037013</td>
</tr>
<tr>
<td>2.650000</td>
<td>-0.068779</td>
</tr>
<tr>
<td>2.925000</td>
<td>-0.014289</td>
</tr>
<tr>
<td>3.062500</td>
<td>0.011733</td>
</tr>
<tr>
<td>2.993750</td>
<td>-0.001182</td>
</tr>
<tr>
<td>3.028125</td>
<td>0.005299</td>
</tr>
<tr>
<td>3.010938</td>
<td>0.002065</td>
</tr>
<tr>
<td>3.002344</td>
<td>0.000443</td>
</tr>
<tr>
<td>2.998047</td>
<td>-0.000369</td>
</tr>
<tr>
<td>3.000195</td>
<td>0.000037</td>
</tr>
<tr>
<td>2.999121</td>
<td>-0.000166</td>
</tr>
<tr>
<td>2.999658</td>
<td>-0.000065</td>
</tr>
<tr>
<td>2.999927</td>
<td>-0.000014</td>
</tr>
<tr>
<td>3.000061</td>
<td>0.000012</td>
</tr>
<tr>
<td>2.999994</td>
<td>-0.000001</td>
</tr>
<tr>
<td>3.000027</td>
<td>0.000005</td>
</tr>
<tr>
<td>3.000011</td>
<td>0.000002</td>
</tr>
</tbody>
</table>

3.

From Example 2.5,\[y = f(x) = \cos 2x + \sin 2x + x - 1 \]
We use the following code to plot this function.

\[x = -5:0.02:5; \ y = \cos(2\cdot x) + \sin(2\cdot x) + x - 1; \ \text{plot}(x,y); \ \text{grid} \]

Let us find out what a symbolic solution gives.

\[\text{syms x; \ y = \cos(2\cdot x) + \sin(2\cdot x) + x - 1; \ solve(y)} \]

\[\text{ans =} \]

\[\begin{bmatrix} 0 \\ 2 \end{bmatrix} \]

The first value (0) is correct as it can be seen from the plot above and also verified by substitution of \(x = 0 \) into the given function. The second value (2) is not exactly correct as we can see from the plot. This is because when solving equations of periodic functions, there are an infinite number of solutions and MATLAB restricts its search for solutions to a limited range near zero and returns a non-unique subset of solutions.

To find a good approximation of the second root that lies between \(x = 2 \) and \(x = 3 \), we write and save the function files \texttt{exercise3} and \texttt{exercise3der} as defined below.

\begin{verbatim}
function y=exercise3(x)
 % Finding roots by Newton's method using MATLAB
 y=cos(2.*x)+sin(2.*x)+x-1;

function y=exercise3der(x)
 % Finding roots by Newton's method
 % The following is the first derivative of
 % the function defined as exercise3
 y=-2.*sin(2.*x)+2.*cos(2.*x)+1;
\end{verbatim}
Now, we write and execute the following program and we find that the second root is $x = 2.2295$ and this is consistent with the value shown on the plot.

```matlab
x = input('Enter starting value: ');  
fx = exercise3(x);  
primex = exercise3der(x);  
xnext = x-fx/primex;  
x = xnext;  
fx = exercise3(x);  
primex = exercise3der(x);  
disp(sprintf('First approximation is x = %9.6f
', x))  
while input('Next approximation? (<enter>=no,1=yes)');  
xnext=x-fx/primex;  
x=xnext;  
fx=exercise3(x);  
primex=exercise3der(x);  
disp(sprintf('Next approximation is x = %9.6f
', x))  
end;  
disp(sprintf('%9.6f
', x))  
Enter starting value: 3  
First approximation is x = 2.229485
```
This chapter is an introduction to alternating current waveforms. The characteristics of sinusoids are discussed and the frequency, phase angle, and period are defined. Voltage and current relationships are expressed in sinusoidal terms. Phasors which are rotating vectors in terms of complex numbers are also introduced and their relationships to sinusoids are derived.

3.1 Alternating Voltages and Currents

The waveforms shown in Figure 3.1 may represent alternating currents or voltages.

![Figures showing various waveforms](image)

Figure 3.1. Examples of alternating voltages and currents
Thus an *alternating current* (AC) is defined as a periodic current whose average value over a period is zero. Stated differently, an alternating current alternates between positive and negative values at regularly recurring intervals of time. Also, the average of the positive and negative values over a period is zero.

As shown in Figure 3.1, the *period* T of an alternating current or voltage is the smallest value of time which separates recurring values of the alternating waveform.

Unless otherwise stated, our subsequent discussion will be restricted to sine or cosine waveforms and these are referred to as *sinusoids*. Two main reasons for studying sinusoids are: (1) many physical phenomena such as electric machinery produce (nearly) sinusoidal voltages and currents and (2) by Fourier analysis, any *periodic* waveform which is not a sinusoid, such as the square and sawtooth waveforms on the previous page, can be represented by a sum of sinusoids.

3.2 Characteristics of Sinusoids

Consider the sine waveform shown in Figure 3.2, where $f(t)$ may represent either a voltage or a current function, and let $f(t) = Asint$ where A is the amplitude of this function. A sinusoid (sine or cosine function) can be constructed graphically from the *unit circle*, which is a circle with radius of one unit, that is, $A = 1$ as shown, or any other unit. Thus, if we let the *phasor* (rotating vector) travel around the unit circle with an angular velocity ω, the $\cos\omega t$ and $\sin\omega t$ functions are generated from the projections of the phasor on the horizontal and vertical axis respectively. We observe that when the phasor has completed a *cycle* (one revolution), it has traveled 2π radians or 360° degrees, and then repeats itself to form another cycle.

![Figure 3.2. Generation of a sinusoid by rotation of a phasor](image)

At the completion of one cycle, $t = T$ (one period), and since ω is the angular velocity, commonly known as *angular* or *radian frequency*, then
The term frequency in Hertz, denoted as \(Hz \), is used to express the number of cycles per second. Thus, if it takes one second to complete one cycle (one revolution around the unit circle), we say that the frequency is \(1 \ Hz \) or one cycle per second.

The frequency is denoted by the letter \(f \) and in terms of the period \(T \) and (3.1) we have

\[
\omega = \frac{2\pi}{T} \
\]

(3.2)

The frequency \(f \) is often referred to as the cyclic frequency to distinguish it from the radian frequency \(\omega \).

Since the cosine and sine functions are usually known in terms of degrees or radians, it is convenient to plot sinusoids versus \(\omega t \) (radians) rather than time \(t \). For example, \(v(t) = V_{\text{max}} \cos \omega t \), and \(i(t) = I_{\text{max}} \sin \omega t \) are plotted as shown in Figure 3.3.

![Figure 3.3. Plot of the cosine and sine functions](image)

By comparing the sinusoidal waveforms of Figure 3.3, we see that the cosine function will be the same as the sine function if the latter is shifted to the left by \(\pi/2 \) radians, or \(90^\circ \). Thus, we say that the cosine function leads (is ahead of) the sine function by \(\pi/2 \) radians or \(90^\circ \). Likewise, if we shift the cosine function to the right by \(\pi/2 \) radians or \(90^\circ \), we obtain the sine waveform; in this case, we say that the sine function lags (is behind) the cosine function by \(\pi/2 \) radians or \(90^\circ \).

Another common expression is that the cosine and sine functions are out-of-phase by \(90^\circ \), or there is a phase angle of \(90^\circ \) between the cosine and sine functions. It is possible, of course, that two sinusoids are out-of-phase by a phase angle other than \(90^\circ \). Figure 3.4 shows three sinusoids which are out-of-phase. If the phase angle between them is \(0^\circ \) degrees, the two sinusoids are said to be in-phase.
We must remember that when we say that one sinusoid leads or lags another sinusoid, these are of the same frequency. Obviously, two sinusoids of different frequencies can never be in phase.

It is convenient to express the phase angle in degrees rather than in radians in a sinusoidal function. For example, it is acceptable to express

\[v(t) = 100 \sin(2000\pi t - \pi/6) \]

as

\[v(t) = 100 \sin(2000\pi t - 30^\circ) \]

since the subtraction inside the parentheses needs not to be performed.

When two sinusoids are to be compared in terms of their phase difference, these must first be written either both as cosine functions, or both as sine functions, and should also be written with positive amplitudes. We should remember also that a negative amplitude implies 180° phase shift.

Example 3.1

Find the phase difference between the sinusoids

\[i_1 = 120 \cos(100\pi t - 30^\circ) \]

and

\[i_2 = -6 \sin(100\pi t - 30^\circ) \]

Solution:

We recall that the minus (−) sign indicates a ±180° phase shift, and that the sine function lags the cosine by 90°. Then,

\[-\sin x = \sin(x \pm 180^\circ) \quad \text{and} \quad \sin x = \cos(x - 90^\circ) \]
and

\[i_2 = 6 \sin(100\pi t - 210^\circ) = 6 \sin(100\pi t + 150^\circ) \]
\[= 6 \cos(100\pi t + 150^\circ - 90^\circ) = 6 \cos(100\pi t + 60^\circ) \]

and comparing \(i_2 \) with \(i_1 \), we see that \(i_2 \) leads \(i_1 \) by \(90^\circ \), or \(i_1 \) lags \(i_2 \) by \(90^\circ \).

In our subsequent discussion, we will be using several trigonometric identities, derivatives and integrals involving trigonometric functions. We, therefore, provide the following relations and formulas for quick reference. Let us also review the definition of a radian and its relationship to degrees with the aid of Figure 3.5.

Figure 3.5. Definition of radian

As shown in Figure 3.5, the radian is a circular angle subtended by an arc equal in length to the radius of the circle, whose radius is \(r \) units in length. The circumference of a circle is \(2\pi r \) units; therefore, there are \(2\pi \) or \(6.283... \) radians in \(360^\circ \) degrees. Then,

\[1 \text{ radian} = \frac{360^\circ}{2\pi} \approx 57.3^\circ \quad (3.3) \]

The angular velocity is expressed in radians per second, and it is denoted by the symbol \(\omega \). Then, a rotating vector that completes \(n \) revolutions per second, has an angular velocity \(\omega = 2\pi n \) radians per second.

Some useful trigonometric relations are given below for quick reference.

\[\cos 0^\circ = \cos 360^\circ = \cos 2\pi = 1 \quad (3.4) \]
\[\cos 30^\circ = \cos \frac{\pi}{6} = \frac{\sqrt{3}}{2} = 0.866 \quad (3.5) \]
\[\cos 45^\circ = \cos \frac{\pi}{4} = \frac{\sqrt{2}}{2} = 0.707 \quad (3.6) \]
\[\cos 60^\circ = \cos \frac{\pi}{3} = \frac{1}{2} = 0.5 \quad (3.7) \]
\[
\begin{align*}
\cos 90^\circ &= \cos \frac{\pi}{2} = 0 \\
\cos 120^\circ &= \cos \frac{2\pi}{3} = -\frac{1}{2} = -0.5 \\
\cos 150^\circ &= \cos \frac{5\pi}{6} = -\frac{\sqrt{3}}{2} = -0.866 \\
\cos 180^\circ &= \cos \pi = -1 \\
\cos 210^\circ &= \cos \frac{7\pi}{6} = -\frac{\sqrt{3}}{2} = -0.866 \\
\cos 225^\circ &= \cos \frac{5\pi}{4} = -\frac{\sqrt{2}}{2} = -0.707 \\
\cos 240^\circ &= \cos \frac{4\pi}{3} = -\frac{1}{2} = -0.5 \\
\cos 270^\circ &= \cos \frac{3\pi}{2} = 0 \\
\cos 300^\circ &= \cos \frac{5\pi}{3} = 0.5 \\
\cos 330^\circ &= \cos \frac{11\pi}{6} = 0.866 \\
\sin 0^\circ &= \sin 360^\circ = \sin 2\pi = 0 \\
\sin 30^\circ &= \sin \frac{\pi}{6} = \frac{1}{2} = 0.5 \\
\sin 45^\circ &= \sin \frac{\pi}{4} = \frac{\sqrt{2}}{2} = 0.707 \\
\sin 60^\circ &= \sin \frac{\pi}{3} = \frac{1}{2} = 0.866 \\
\sin 90^\circ &= \sin \frac{\pi}{2} = 1 \\
\sin 120^\circ &= \sin \frac{2\pi}{3} = \frac{\sqrt{3}}{2} = 0.866
\end{align*}
\]
Characteristics of Sinusoids

\[
\begin{align*}
\sin 150^\circ & = \sin \frac{5\pi}{6} = \frac{1}{2} = 0.5 \\
\sin 180^\circ & = \sin \pi = 0 \\
\sin 210^\circ & = \sin \frac{7\pi}{6} = -\frac{1}{2} = -0.5 \\
\sin 225^\circ & = \sin \frac{5\pi}{4} = -\frac{\sqrt{2}}{2} = -0.707 \\
\sin 240^\circ & = \sin \frac{4\pi}{3} = -\frac{\sqrt{3}}{2} = -0.866 \\
\sin 270^\circ & = \sin \frac{3\pi}{2} = -1 \\
\sin 300^\circ & = \sin \frac{5\pi}{3} = -\frac{\sqrt{3}}{2} = -0.866 \\
\sin 330^\circ & = \sin \frac{11\pi}{6} = -\frac{1}{2} = -0.5 \\
\cos (-\theta) & = \cos \theta \\
\cos (90^\circ + \theta) & = -\sin \theta \\
\cos (180^\circ - \theta) & = -\cos \theta \\
\sin (-\theta) & = -\sin \theta \\
\sin (90^\circ + \theta) & = \cos \theta \\
\sin (180^\circ - \theta) & = \sin \theta \\
\tan \theta & = \frac{\sin \theta}{\cos \theta} \\
\cot \theta & = \frac{\cos \theta}{\sin \theta} = \frac{1}{\tan \theta} \\
\sec \theta & = \frac{1}{\cos \theta} \\
\csc \theta & = \frac{1}{\sin \theta} \\
\tan (90^\circ + \theta) & = -\cot \theta
\end{align*}
\]
\[
\tan(180^\circ - \theta) = -\tan \theta \\
\cos(\theta + \phi) = \cos \theta \cos \phi - \sin \theta \sin \phi \\
\cos(\theta - \phi) = \cos \theta \cos \phi + \sin \theta \sin \phi \\
\sin(\theta + \phi) = \sin \theta \cos \phi + \cos \theta \sin \phi \\
\sin(\theta - \phi) = \sin \theta \cos \phi - \cos \theta \sin \phi \\
\tan(\theta + \phi) = \frac{\tan \theta + \tan \phi}{1 - \tan \theta \tan \phi} \\
\tan(\theta - \phi) = \frac{\tan \theta - \tan \phi}{1 + \tan \theta \tan \phi} \\
\cos^2 \theta + \sin^2 \theta = 1 \\
\cos 2\theta = \cos^2 \theta - \sin^2 \theta \\
\sin 2\theta = 2 \sin \theta \cos \theta \\
\tan 2\theta = \frac{2 \tan \theta}{1 - \tan^2 \theta} \\
\cos^2 \theta = \frac{1}{2}(1 + \cos 2\theta) \\
\sin^2 \theta = \frac{1}{2}(1 - \cos 2\theta) \\
\cos \theta \cos \phi = \frac{1}{2} \cos(\theta + \phi) + \frac{1}{2} \cos(\theta - \phi) \\
\cos \theta \sin \phi = \frac{1}{2} \sin(\theta + \phi) - \frac{1}{2} \sin(\theta - \phi) \\
\sin \theta \cos \phi = \frac{1}{2} \sin(\theta + \phi) + \frac{1}{2} \sin(\theta - \phi) \\
\sin \theta \sin \phi = \frac{1}{2} \cos(\theta - \phi) - \frac{1}{2} \cos(\theta + \phi)
\]
Let Figure 3.6 be any triangle.

![Figure 3.6. General triangle](image)

Then,

by the law of sines,

\[
\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}
\] (3.60)

by the law of cosines,

\[
a^2 = b^2 + c^2 - 2bc \cos \alpha
\] (3.61)

\[
b^2 = a^2 + c^2 - 2ac \cos \beta
\] (3.62)

\[
c^2 = a^2 + b^2 - 2ab \cos \gamma
\] (3.63)

and by the law of tangents,

\[
\frac{a - b}{a + b} = \frac{\tan \frac{1}{2}(\alpha - \beta)}{\tan \frac{1}{2}(\alpha + \beta)}
\]

\[
\frac{b - c}{b + c} = \frac{\tan \frac{1}{2}(\beta - \gamma)}{\tan \frac{1}{2}(\beta + \gamma)}
\]

\[
\frac{c - a}{c + a} = \frac{\tan \frac{1}{2}(\gamma - \alpha)}{\tan \frac{1}{2}(\gamma + \alpha)}
\] (3.64)

The following differential and integral trigonometric and exponential functions, are used extensively in engineering.

\[
\frac{d}{dx}(\sin v) = \cos v \frac{dv}{dx}
\] (3.65)

\[
\frac{d}{dx}(\cos v) = -\sin v \frac{dv}{dx}
\] (3.66)

\[
\frac{d}{dx}(e^v) = e^v \frac{dv}{dx}
\] (3.67)

\[
\int \sin ax \, dx = \frac{-1}{a} \cos ax + c
\] (3.68)

\[
\int \cos ax \, dx = \frac{1}{a} \sin ax + c
\] (3.69)

\[
\int e^{ax} \, dx = \frac{1}{a} e^{ax} + c
\] (3.70)
3.3 Inverse Trigonometric Functions

The notation $\cos^{-1}y$ or $\arccos y$ is used to denote an angle whose cosine is y. Thus, if $y = \cos x$, then $x = \cos^{-1}y$. Similarly, if $w = \sin v$, then $v = \sin^{-1}w$, and if $z = \tan u$, then $u = \tan^{-1}z$. These are called Inverse Trigonometric Functions.

Example 3.2

Find the angle θ if $\cos^{-1}0.5 = \theta$

Solution:

Here, we want to find the angle θ given that its cosine is 0.5. From (3.7), $\cos 60^\circ = 0.5$. Therefore, $\theta = 60^\circ$

3.4 Phasors

In the language of mathematics, the square root of minus one is denoted as i, that is, $i = \sqrt{-1}$. In the electrical engineering field, we denote i as j to avoid confusion with current i. Essentially, j is an operator that produces a 90° counterclockwise rotation to any vector to which it is applied as a multiplying factor. Thus, if it is given that a vector \mathbf{A} has the direction along the right side of the x-axis as shown in Figure 3.7, multiplication of this vector by the operator j will result in a new vector $j\mathbf{A}$ whose magnitude remains the same, but it has been rotated counterclockwise by 90°. Also, another multiplication of the new vector $j\mathbf{A}$ by j will produce another 90° counterclockwise direction. In this case, the vector \mathbf{A} has rotated 180° and its new value now is $-\mathbf{A}$. When this vector is rotated by another 90° for a total of 270°, its value becomes $j(-\mathbf{A}) = -j\mathbf{A}$. A fourth 90° rotation returns the vector to its original position, and thus its value is again \mathbf{A}. Therefore, we conclude that $j^2 = -1$, $j^3 = -j$, $j^4 = 1$, and the rotating vector \mathbf{A} is referred to as a phasor.

Note: In our subsequent discussion, we will designate the x-axis (abscissa) as the real axis, and the y-axis (ordinate) as the imaginary axis with the understanding that the “imaginary” axis is just as “real” as the real axis. In other words, the imaginary axis is just as important as the real axis.*

An imaginary number is the product of a real number, say r, by the operator j. Thus, r is a real number and jr is an imaginary number.

* A more appropriate nomenclature for the real and imaginary axes would be the axis of the cosines and the axis of the sines respectively.
A complex number is the sum (or difference) of a real number and an imaginary number. For example, the number $A = a + jb$ where a and b are both real numbers, is a complex number.

Then, $a = \text{Re}\{A\}$ and $b = \text{Im}\{A\}$ where $\text{Re}\{A\}$ denotes real part of A, and $\text{Im}\{A\}$ the imaginary part of A. When written as $A = a + j b$, it is said to be expressed in rectangular form.

Since in engineering we use complex quantities as phasors, henceforth any complex number will be referred to as a phasor.

By definition, two phasors A and B where $A = a + j b$ and $B = c + j d$, are equal if and only if their real parts are equal and also their imaginary parts are equal. Thus, $A = B$ if and only if $a = c$ and $b = d$.

3.5 Addition and Subtraction of Phasors

The sum of two phasors has a real component equal to the sum of the real components, and an imaginary component equal to the sum of the imaginary components. For subtraction, we change the signs of the components of the subtrahend and we perform addition. Thus, if $A = a + j b$ and $B = c + j d$, then

$$A + B = (a + c) + j(b + d)$$

and

$$A - B = (a - c) + j(b - d)$$

Example 3.3

It is given that $A = 3 + j 4$, and $B = 4 - j 2$. Find $A + B$ and $A - B$

Solution:

$$A + B = (3 + j 4) + (4 - j 2) = (3 + 4) + j(4 - 2) = 7 + j 2$$

$$A - B = (3 + j 4) - (4 - j 2) = (3 - 4) + j(4 + 2) = -1 + j 6$$
3.6 Multiplication of Phasors

Phasors are multiplied using the rules of elementary algebra, and making use of the fact that $j^2 = -1$. Thus, if $A = a + jb$ and $B = c + jd$, then

$$A \cdot B = (a + jb) \cdot (c + jd) = ac + jad + jbc + j^2bd$$

and since $j^2 = -1$, it follows that

$$A \cdot B = ac + jad + jbc - bd = (ac - bd) + j(ad + bc) \quad (3.71)$$

Example 3.4

It is given that $A = 3 + j4$ and $B = 4 - j2$. Find $A \cdot B$

Solution:

$$A \cdot B = (3 + j4) \cdot (4 - j2) = 12 - j6 + j16 - j^28 = 20 + j10$$

The conjugate of a phasor, denoted as A^*, is another phasor with the same real component, and with an imaginary component of opposite sign. Thus, if $A = a + jb$, then $A^* = a - jb$.

Example 3.5

It is given that $A = 3 + j5$. Find A^*

Solution:

The conjugate of the phasor A has the same real component, but the imaginary component has opposite sign. Then, $A^* = 3 - j5$

If a phasor A is multiplied by its conjugate, the result is a real number. Thus, if $A = a + jb$, then

$$A \cdot A^* = (a + jb)(a - jb) = a^2 - jab + jab - j^2b^2 = a^2 + b^2$$

Example 3.6

It is given that $A = 3 + j5$. Find $A \cdot A^*$

Solution:

$$A \cdot A^* = (3 + j5)(3 - j5) = 3^2 + 5^2 = 9 + 25 = 34$$

3.7 Division of Phasors

When performing division of phasors, it is desirable to obtain the quotient separated into a real part and an imaginary part. This procedure is called rationalization of the quotient, and it is done by multiplying the denominator by its conjugate. Thus, if $A = a + jb$ and $B = c + jd$, then,
In (3.72), we multiplied both the numerator and denominator by the conjugate of the denominator to eliminate the \(j \) operator from the denominator of the quotient. Using this procedure, we see that the quotient is easily separated into a real and an imaginary part.

Example 3.7

It is given that \(A = 3 + j4 \), and \(B = 4 + j3 \). Find \(A/B \)

Solution:

Using the procedure of (3.72), we get

\[
\frac{A}{B} = \frac{3 + j4}{4 + j3} = \frac{(3 + j4)(4 - j3)}{(4 + j3)(4 - j3)} = \frac{12 - j9 + j16 + 12}{4^2 + 3^2} = \frac{24 + j7}{25} = \frac{24}{25} + j\frac{7}{25} = 0.96 + j0.28
\]

3.8 Exponential and Polar Forms of Phasors

The relations

\[
e^{j\theta} = \cos \theta + j\sin \theta \tag{3.73}
\]

and

\[
e^{-j\theta} = \cos \theta - j\sin \theta \tag{3.74}
\]

are known as the Euler's identities.

Multiplying (3.73) by the real positive constant \(C \) we get:

\[
Ce^{j\theta} = C\cos \theta + jC\sin \theta \tag{3.75}
\]

This expression represents a phasor, say \(a + jb \), and thus

\[
Ce^{j\theta} = a + jb \tag{3.76}
\]

Equating real and imaginary parts in (3.75) and (3.76), we get

\[
a = C\cos \theta \quad \text{and} \quad b = C\sin \theta \tag{3.77}
\]

Squaring and adding the expressions in (3.77), we get
Then,

\[C^2 = a^2 + b^2 \]

or

\[C = \sqrt{a^2 + b^2} \] (3.78)

Also, from (3.77)

\[\frac{b}{a} = \frac{C \sin \theta}{C \cos \theta} = \tan \theta \]

or

\[\theta = \tan^{-1} \left(\frac{b}{a} \right) \] (3.79)

Therefore, to convert a phasor from rectangular to exponential form, we use the expression

\[a + jb = \sqrt{a^2 + b^2} e^{j \tan^{-1} \left(\frac{b}{a} \right)} \] (3.80)

To convert a phasor from exponential to rectangular form, we use the expressions

\[Ce^{j \theta} = C \cos \theta + jC \sin \theta \]

\[Ce^{-j \theta} = C \cos \theta - jC \sin \theta \] (3.81)

The polar form is essentially the same as the exponential form but the notation is different, that is,

\[Ce^{j \theta} = C \angle \theta \] (3.82)

where the left side of (3.82) is the exponential form, and the right side is the polar form.

We must remember that the phase angle \(\theta \) is always measured with respect to the positive real axis, and rotates in the counterclockwise direction.

Example 3.8

Convert the following phasors to exponential and polar forms:

a. \(3 + j4 \) b. \(-1 + j2 \) c. \(-2 - j \) d. \(4 - j3 \)

Solution:

a. The real and imaginary components of this phasor are shown in Figure 3.8.
Exponential and Polar Forms of Phasors

Figure 3.8. The components of $3 + j4$

Then,

$$3 + j4 = \sqrt{3^2 + 4^2} \cdot e^{j\tan^{-1}(4/3)} = 5e^{j53.1^\circ} = 5 \angle 53.1^\circ$$

Check with MATLAB:

```matlab
x=3+j*4; magx=abs(x); thetax=angle(x)*180/pi; disp(magx); disp(thetax)
5
53.1301
```

b. The real and imaginary components of this phasor are shown in Figure 3.9.

Then,

$$-1 + j2 = \sqrt{1^2 + 2^2} \cdot e^{j\tan^{-1}(2/-1)} = \sqrt{5}e^{j116.6^\circ} = \sqrt{5} \angle 116.6^\circ$$

Check with MATLAB:

```matlab
y=-1+j*2; magy=abs(y); thetay=angle(y)*180/pi; disp(magy); disp(thetay)
2.2361
116.5651
```

c. The real and imaginary components of this phasor are shown in Figure 3.10.

Then,

$$-2 - j1 = \sqrt{2^2 + 1^2} \cdot e^{j\tan^{-1}(-1/-2)} = \sqrt{5}e^{j206.6^\circ} = \sqrt{5} \angle 206.6^\circ = \sqrt{5}e^{j(-153.4)^\circ} = \sqrt{5} \angle -153.4^\circ$$
Chapter 3 Sinusoids and Phasors

Check with MATLAB:

\[v = -2 - j^1; \text{magv} = \text{abs}(v); \text{thetav} = \text{angle}(v) * 180 / \pi; \text{disp(magv); disp(thetav)} \]

\[2.2361 \]
\[-153.4349 \]

Then,

\[4 - j3 = \sqrt{4^2 + 3^2} \cdot e^{j \tan (-3/4)} = 5e^{j323.1^\circ} = 5\angle323.1^\circ = 5e^{-j36.9^\circ} = 5\angle-36.9^\circ \]

Check with MATLAB:

\[w = 4 - j^3; \text{magw} = \text{abs}(w); \text{thetaw} = \text{angle}(w) * 180 / \pi; \text{disp(magw); disp(thetaw)} \]

\[5 \]
\[-36.8699 \]

Example 3.9

Express the phasor \(-2\angle30^\circ\) in exponential and in rectangular forms.

Solution:

We recall that \(-1 = j^2\). Since each \(j\) rotates a vector by \(90^\circ\) counterclockwise, then \(-2\angle30^\circ\) is the same as \(2\angle30^\circ\) rotated counterclockwise by \(180^\circ\). Therefore,

\[-2\angle30^\circ = 2\angle(30^\circ + 180^\circ) = 2\angle210^\circ = 2\angle-150^\circ \]
Exponential and Polar Forms of Phasors

The components of this phasor are shown in Figure 3.12.

![Figure 3.12. The components of 2∠−150°](image)

Then,

\[2∠−150° = 2e^{−j150°} = 2(cos 150° − j sin 150°) = 2(−0.866 − j0.5) = −1.73 − j \]

Note: The rectangular form is most useful when we add or subtract phasors; however, the exponential and polar forms are most convenient when we multiply or divide phasors.

To multiply two phasors in exponential (or polar) form, we multiply the magnitudes and we add the phase angles, that is, if

\[A = M∠θ \text{ and } B = N∠ϕ \]

then,

\[AB = MN∠(θ + ϕ) = Me^{jθ}Ne^{jϕ} = MNe^{j(θ + ϕ)} \] (3.83)

Example 3.10

Multiply \(A = 10∠53.1° \) by \(B = 5∠−36.9° \)

Solution:

Multiplication in polar form yields

\[AB = (10 \times 5)∠[53.1° + (−36.9°)] = 50∠16.2° \]

and multiplication in exponential form yields

\[AB = (10e^{j53.1°})(5e^{−j36.9°}) = 50e^{j(53.1° − 36.9°)} = 50e^{j16.2°} \]

To divide one phasor by another when both are expressed in exponential or polar form, we divide the magnitude of the dividend by the magnitude of the divisor, and we subtract the phase angle of the divisor from the phase angle of the dividend, that is, if

\[A = M∠θ \text{ and } B = N∠ϕ \]

then,

\[\frac{A}{B} = \frac{M}{N}∠(θ − ϕ) = \frac{Me^{jθ}}{Ne^{jϕ}} = \frac{M}{N}e^{j(θ − ϕ)} \] (3.84)
Example 3.11

Divide $A = 10 \angle 53.1^\circ$ by $B = 5 \angle -36.9^\circ$

Solution:

Division in polar form yields

$$\frac{A}{B} = \frac{10 \angle 53.1^\circ}{5 \angle -36.9^\circ} = 2 \angle [53.1^\circ - (-36.9^\circ)] = 2 \angle 90^\circ$$

Division in exponential form yields

$$\frac{A}{B} = \frac{10e^{j53.1^\circ}}{5e^{-j36.9^\circ}} = 2e^{j53.1^\circ}e^{j36.9^\circ} = 2e^{j90^\circ}$$

3.9 Summary

• An alternating current (or voltage) alternates between positive and negative values at regularly recurring intervals of time.

• The period T of an alternating current or voltage is the smallest value of time which separates recurring values of the alternating waveform.

• Sine and cosine waveforms and these are referred to as sinusoids.

• The angular velocity ω is commonly known as angular or radian frequency and $\omega T = 2\pi$

• The term frequency in Hertz, denoted as Hz, is used to express the number of cycles per second. The frequency is denoted by the letter f and in terms of the period T, $f = 1/T$. The frequency f is often referred to as the cyclic frequency to distinguish it from the radian frequency ω.

• The cosine function leads (is ahead of) the sine function by $\pi/2$ radians or 90°, and the sine function lags (is behind) the cosine function by $\pi/2$ radians or 90°. Alternately, we say that the cosine and sine functions are out-of-phase by 90°, or there is a phase angle of 90° between the cosine and sine functions.

• Two (or more) sinusoids can be out-of-phase by a phase angle other than 90°.

• It is important to remember that when we say that one sinusoid leads or lags another sinusoid, these are of the same frequency since two sinusoids of different frequencies can never be in phase.

• It is customary to express the phase angle in degrees rather than in radians in a sinusoidal function. For example, we write $v(t) = 100\sin(2000\pi t - \pi/6)$ as $v(t) = 100\sin(2000\pi t - 30^\circ)$.
• When two sinusoids are to be compared in terms of their phase difference, these must first be written either both as cosine functions, or both as sine functions, and should also be written with positive amplitudes.

• A negative amplitude implies 180° phase shift.

• The radian is a circular angle subtended by an arc equal in length to the radius of the circle, whose radius is r units in length. The circumference of a circle is $2\pi r$.

• The notation $\cos^{-1} y$ or $\arccos y$ is used to denote an angle whose cosine is y. Thus, if $y = \cos x$, then $x = \cos^{-1} y$. These are called Inverse Trigonometric Functions.

• A phasor is a rotating vector expressed as a complex number where j is an operator that rotates a vector by 90° in a counterclockwise direction.

• Two phasors A and B where $A = a + jb$ and $B = c + jd$, are equal if and only if their real parts are equal and also their imaginary parts are equal. Thus, $A = B$ if and only if $a = c$ and $b = d$.

• The sum of two phasors has a real component equal to the sum of the real components, and an imaginary component equal to the sum of the imaginary components. For subtraction, we change the signs of the components of the subtrahend and we perform addition. Thus, if $A = a + jb$ and $B = c + jd$, then $A + B = (a + c) + j(b + d)$ and $A - B = (a - c) + j(b - d)$.

• Phasors are multiplied using the rules of elementary algebra. If $A = a + jb$ and $B = c + jd$, then $A \cdot B = ac + jad + jbc - bd = (ac - bd) + j(ad + bc)$.

• The conjugate of a phasor, denoted as A^*, is another phasor with the same real component, and with an imaginary component of opposite sign. Thus, if $A = a + jb$, then $A^* = a - jb$.

• When performing division of phasors, it is desirable to obtain the quotient separated into a real part and an imaginary part. This is achieved by multiplying the denominator by its conjugate. Thus, if $A = a + jb$ and $B = c + jd$, then,

$$\frac{A}{B} = \frac{a + jb}{c + jd} = \frac{(a + jb)(c - jd)}{(c + jd)(c - jd)} = \frac{(ac + bd) + j(bc - ad)}{c^2 + d^2} = \frac{(ac + bd)}{c^2 + d^2} + j\frac{(bc - ad)}{c^2 + d^2}$$

• The relations $e^{j\theta} = \cos\theta + j\sin\theta$ and $e^{-j\theta} = \cos\theta - j\sin\theta$ are known as the Euler’s identities.

• To convert a phasor from rectangular to exponential form, we use the expression

$$a + jb = \sqrt{a^2 + b^2} e^{j\left(\frac{\tan^{-1} \frac{b}{a}}{a}\right)}$$
• To convert a phasor from exponential to rectangular form, we use the expressions

$$Ce^{j\theta} = C\cos\theta + jC\sin\theta$$

$$Ce^{-j\theta} = C\cos\theta - jC\sin\theta$$

• The polar form is essentially the same as the exponential form but the notation is different, that is,

$$Ce^{j\theta} = C\angle\theta$$

and it is important to remember that the phase angle \(\theta \) is always measured with respect to the positive real axis, and rotates in the counterclockwise direction.

• The rectangular form is most useful when we add or subtract phasors; however, the exponential and polar forms are most convenient when we multiply or divide phasors.

• To multiply two phasors in exponential (or polar) form, we multiply the magnitudes and we add the phase angles, that is, if

$$A = M\angle\theta \quad \text{and} \quad B = N\angle\phi$$

then,

$$AB = MN\angle(\theta + \phi) = Me^{j\theta}Ne^{j\phi} = MNMe^{j(\theta + \phi)}$$

• To divide one phasor by another when both are expressed in exponential or polar form, we divide the magnitude of the dividend by the magnitude of the divisor, and we subtract the phase angle of the divisor from the phase angle of the dividend, that is, if

$$A = M\angle\theta \quad \text{and} \quad B = N\angle\phi$$

then,

$$\frac{A}{B} = \frac{M}{N}\angle(\theta - \phi) = \frac{Me^{j\theta}}{Ne^{j\phi}} = \frac{M}{N}Me^{j(\theta - \phi)}$$
3.10 Exercises

1. Perform the following operations, and check your answers with MATLAB.
 a. \((2-j4) + (3+j4)\) b. \((-3+j5) - (1+j6)\) c. \((2-j3) - (2-j3)^*\) d. \((3-j2) \cdot (3-j2)^*\)
 e. \((2-j4) \cdot (3+j5)\) f. \((3-j2) \cdot (-2-j3)\) g. \((2-j4) \cdot (3+j5) \cdot (3-j2) \cdot (-2-j3)\)

2. Perform the following operations, and check your answers with MATLAB.
 a. \(\frac{22+j6}{3+j2}\) b. \(\frac{8+j6}{-3-j}\) c. \(\frac{120}{4-j10}\) d. \(\frac{(3-j2)}{(3-j2)^*}\)

3. Any phasor \(A\) can be expressed as

\[A = a + jb = r(\cos \theta + j \sin \theta) = re^{j\theta} \]

Using the identities \((re^{j\theta}) = r^n e^{jn\theta}\) or \(n^{\sqrt[n]{re^{j\theta}}} = \sqrt[n]{re^{j\theta}}\), compute:
 a. \(\sqrt[5]{12+j5}\) b. \(\sqrt[4]{100\sqrt{2}(1-j)}\)

Check your answers with MATLAB.

4. Compute the exponential and polar forms of
 a. \(\frac{9+j5}{-4-j2}\) b. \(\frac{-8+j3}{-2+j4}\)

Check your answers with MATLAB.

5. Compute the rectangular form of
 a. \(\frac{4\angle30^\circ}{5\angle-150^\circ}\) b. \(\frac{e^{j60^\circ}}{-2e^{-j30^\circ}}\)

Check your answers with MATLAB.

6. Find the real and imaginary components of \(\frac{9-j4}{-5+jx}\)
3.11 Solutions to Exercises

1.
 a. \((2 - j4) + (3 + j4) = 5 + 0 = 5\)
 b. \((-3 + j5) - (1 + j6) = -4 - j\)
 c. \((2 - j3) - (2 - j3)^* = (2 - j3) - (2 + j3) = 0 - j6\)
 d. \((3 - j2) \cdot (3 - j2)^* = (3 - j2) \cdot (3 + j2) = 9 + j6 - j6 + 4 = 13\)
 e. \((2 - j4) \cdot (3 + j5) = 6 + j10 - j12 + 20 = 26 - j2\)
 f. \((3 - j2) \cdot (-2 - j3) = -6 - j9 + j4 - 6 = -12 - j5\)
 \((2 - j4) \cdot (3 + j5) \cdot (3 - j2) \cdot (-2 - j3) = (6 + j10 - j12 + 20) \cdot (-6 - j9 + j4 - 6)\)
 g. \((2 - j4) \cdot (3 + j5) \cdot (3 - j2) \cdot (-2 - j3) = (26 - j2) \cdot (-12 - j5)\)
 \(= 312 - j130 + j24 - 10 = -322 - j106\)

Check with MATLAB:

\((2-4j)+(3+4j), (-3+5j)-(1+6j), (2-3j)-(2+3j), (3-2j)^*(3+2j),\ldots\)
\((2-4j)^*(3+5j), (3-2j)^*(-2-3j), (2-4j)^*(3+5j)^*(3-2j)^*(-2-3j)\)

\(\text{ans} =\)

\(5\)
\(\text{ans} =\)

\(-4.0000\ -
1.0000i\)
\(\text{ans} =\)

\(0\ -
6.0000i\)
\(\text{ans} =\)

\(13\)
\(\text{ans} =\)

\(26.0000\ -
2.0000i\)
\(\text{ans} =\)

\(-12.0000\ -
5.0000i\)
\(\text{ans} =\)

\(-3.2200e+002\ -
1.0600e+002i\)
2.

a. \[\frac{22 + j6}{3 + j2} = \frac{22 + j6}{3 + j2} \cdot \frac{3 - j2}{3 - j2} = \frac{66 - j44 + j18 + 12}{3^2 + 2^2} = \frac{78 - j26}{13} = 6 - j2 \]

b. \[\frac{8 + j6}{-3 - j} = \frac{8 + j6}{-3 - j} \cdot \frac{-3 + j}{-3 - j} = \frac{-24 + j8 - j18 - 6}{3^2 + 1^2} = \frac{-30 - j10}{10} = -3 - j \]

c. \[\frac{120}{4 - j10} = \frac{120}{4 - j10} \cdot \frac{4 + j10}{4 + j10} = \frac{480 + j1200}{4^2 + 10^2} = \frac{480}{116} + j \cdot \frac{1200}{116} = \frac{120}{29} + j \cdot \frac{300}{29} \]

d. \[\frac{(3 - j2)}{(3 - j2)^*} = \frac{(3 - j2)}{(3 + j2)} \cdot \frac{(3 - j2)}{(3 + j2)} = \frac{9 - j6 - j6 - 4}{3^2 + 2^2} = \frac{5 - j12}{13} = \frac{5}{13} - \frac{12}{13} j

Check with MATLAB:

\(\frac{22+6j}{3+2j}, \frac{(8+6j)}{(-3-j)}, \frac{120}{4-10j}, \frac{(3-2j)}{(3+2j)} \)

ans =

6 - 2i

ans =

-3 - 1i

ans =

120/29 + 300/29i

ans =

5/13 - 12/13i

3.

a. \[\sqrt[6]{12 + j5} = \sqrt[6]{13} e^{j0.395} = \sqrt[6]{13} e^{j0.3948/6} = 13^{1/6} e^{j0.0658} = 1.5334 \cdot (\cos 0.0658 + j \sin 0.0658) = 1.53 + j 0.10 \]

b. \[\sqrt[4]{100 \sqrt{2}} (1 - j) = \sqrt[4]{100} \cdot \sqrt{2} e^{-j\pi/4} = (100 \sqrt{2} \cdot \sqrt{2} e^{-j\pi/4})^{1/4} = (100 \sqrt{2})^{1/4} \cdot \sqrt{2}^{1/4} e^{-j\pi/16} = (3.4485 \times 1.0905) (\cos (\pi/16) - j \sin (\pi/16)) = 3.6883 - j 0.7337 \]

Check with MATLAB:

\((12+5j)^{1/6}, (100*sqrt(2))*(1-j)^{1/4})\)
ans =
1.5301 + 0.1008i
ans =
3.6883 - 0.7337i

4.
 a.
 \[
 \frac{9 + j5}{-4 - j2} = \sqrt{9^2 + 5^2} \cdot e^{j\tan^{-1}(5/9)} = \sqrt{106} \cdot e^{j0.5071} = 2.3022 e^{-j3.0981}
 \]

 \[
 = 2.3022 e^{-j177.5081°} = 2.3022 \angle -177.5081°
 \]

 b. \[
 \frac{-8 + j3}{-2 + j4} = \sqrt{8^2 + 3^2} \cdot e^{j\tan^{-1}(3/-8)} = \frac{\sqrt{73}}{\sqrt{20}} \cdot e^{-j1.1071} = 1.9105 e^{j0.7483}
 \]

 \[
 = 1.9105 e^{j42.744°} = 1.9105 \angle -42.744°
 \]

Check with MATLAB:

x=(9+5j)/(-4-2j); abs(x), angle(x)*180/pi,...
y=(-8+3j)/(-2+4j); abs(y), angle(y)*180/pi

ans =
2.3022

ans =
-177.5104

ans =
1.9105

ans =
42.8789

5.
 a. \[
 \frac{4\angle30°}{5\angle-150°} = (4/5)\angle180° = -0.8
 \]

 b. \[
 \frac{e^{j60°}}{-2e^{-j30°}} = -0.5 e^{j90°} = -0.5(cos 90° + jsin 90°) = -0.5(0 + j) = -j0.5
 \]
Check with MATLAB:

\[4 \cdot (\cos(\pi/6) + \sin(\pi/6) \cdot j)/(5 \cdot (\cos(-5\pi/6) + \sin(-5\pi/6) \cdot j)) \]
\[\exp(\pi \cdot j/3)/(-2 \cdot \exp(-\pi \cdot j/6)) \]

\[\text{ans} = \]
\[-0.8000 \ - \ 0.0000i \]
\[\text{ans} = \]
\[-0.0000 \ - \ 0.5000i \]

6.

\[\frac{9 \ - \ j4}{-5 \ + \ jx} \cdot \frac{-5 \ - \ jx}{-5 \ + \ jx} = \frac{-45 \ - \ j9x + j20 - 4x}{5^2 + x^2} = \frac{-4x - 45 + j \cdot 9x + 20}{x^2 + 25} \]
Chapter 4
Matrices and Determinants

This chapter is an introduction to matrices and matrix operations. Determinants, Cramer’s rule, and Gauss’s elimination method are introduced. Some definitions and examples are not applicable to subsequent material presented in this text, but are included for subject continuity, and reference to more advance topics in matrix theory. These are denoted with a dagger (†) and may be skipped.

4.1 Matrix Definition

A matrix is a rectangular array of numbers such as those shown below.

\[
\begin{bmatrix}
2 & 3 & 7 \\
1 & -1 & 5
\end{bmatrix}
\quad \text{or} \quad
\begin{bmatrix}
1 & 3 & 1 \\
-2 & 1 & -5 \\
4 & -7 & 6
\end{bmatrix}
\]

In general form, a matrix \(A \) is denoted as

\[
A = \begin{bmatrix}
a_{11} & a_{12} & a_{13} & \ldots & a_{1n} \\
a_{21} & a_{22} & a_{23} & \ldots & a_{2n} \\
a_{31} & a_{32} & a_{33} & \ldots & a_{3n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & a_{m3} & \ldots & a_{mn}
\end{bmatrix}
\]

(4.1)

The numbers \(a_{ij} \) are the elements of the matrix where the index \(i \) indicates the row, and \(j \) indicates the column in which each element is positioned. Thus, \(a_{43} \) indicates the element positioned in the fourth row and third column.

A matrix of \(m \) rows and \(n \) columns is said to be of \(m \times n \) order matrix.

If \(m = n \), the matrix is said to be a square matrix of order \(m \) (or \(n \)). Thus, if a matrix has five rows and five columns, it is said to be a square matrix of order 5.

In a square matrix, the elements \(a_{11}, a_{22}, a_{33}, \ldots, a_{nn} \) are called the main diagonal elements. Alternately, we say that the matrix elements \(a_{11}, a_{22}, a_{33}, \ldots, a_{nn} \), are located on the main diagonal.
The sum of the diagonal elements of a square matrix A is called the *trace* of A.

A matrix in which every element is zero, is called a zero matrix.

4.2 Matrix Operations

Two matrices $A = \begin{bmatrix} a_{ij} \end{bmatrix}$ and $B = \begin{bmatrix} b_{ij} \end{bmatrix}$ are equal, that is, $A = B$, if and only if

$$a_{ij} = b_{ij} \quad i = 1, 2, 3, \ldots, m \quad j = 1, 2, 3, \ldots, n \quad (4.2)$$

Two matrices are said to be *conformable for addition* (subtraction), if they are of the same order $m \times n$.

If $A = \begin{bmatrix} a_{ij} \end{bmatrix}$ and $B = \begin{bmatrix} b_{ij} \end{bmatrix}$ are conformable for addition (subtraction), their sum (difference) will be another matrix C with the same order as A and B, where each element of C is the sum (difference) of the corresponding elements of A and B, that is,

$$C = A \pm B = \begin{bmatrix} a_{ij} \pm b_{ij} \end{bmatrix} \quad (4.3)$$

Example 4.1

Compute $A + B$ and $A - B$ given that

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 2 & 3 & 0 \\ -1 & 2 & 5 \end{bmatrix}$$

Solution:

$$A + B = \begin{bmatrix} 1+2 & 2+3 & 3+0 \\ 0-1 & 1+2 & 4+5 \end{bmatrix} = \begin{bmatrix} 3 & 5 & 3 \\ -1 & 3 & 9 \end{bmatrix}$$

and

$$A - B = \begin{bmatrix} 1-2 & 2-3 & 3-0 \\ 0+1 & 1-2 & 4-5 \end{bmatrix} = \begin{bmatrix} -1 & -1 & 3 \\ 1 & -1 & -1 \end{bmatrix}$$

Check with MATLAB:

```matlab
A=[1 2 3; 0 1 4]; B=[2 3 0; -1 2 5]; % Define matrices A and B
A+B % Add A and B
```

* Henceforth, all paragraphs and topics preceded by a dagger (†) may be skipped. These are discussed in matrix theory textbooks.
Matrix Operations

\[
\begin{bmatrix}
3 & 5 & 3 \\
-1 & 3 & 9
\end{bmatrix}
\]

\[A - B\] % Subtract B from A

\[
\begin{bmatrix}
-1 & -1 & 3 \\
1 & -1 & -1
\end{bmatrix}
\]

If \(k\) is any scalar (a positive or negative number), and not \([k]\) which is a \(1 \times 1\) matrix, then multiplication of a matrix \(A\) by the scalar \(k\), is the multiplication of every element of \(A\) by \(k\).

Example 4.2

Multiply the matrix

\[
A = \begin{bmatrix}
1 & -2 \\
2 & 3
\end{bmatrix}
\]

by (a) \(k_1 = 5\) and (b) \(k_2 = -3 + j2\)

Solution:

a.

\[
k_1 \cdot A = 5 \times \begin{bmatrix}
1 & -2 \\
2 & 3
\end{bmatrix} = \begin{bmatrix}
5 \times 1 & 5 \times (-2) \\
5 \times 2 & 5 \times 3
\end{bmatrix} = \begin{bmatrix}
5 & -10 \\
10 & 15
\end{bmatrix}
\]

b.

\[
k_2 \cdot A = (-3 + j2) \times \begin{bmatrix}
1 & -2 \\
2 & 3
\end{bmatrix} = \begin{bmatrix}
(-3 + j2) \times 1 & (-3 + j2) \times (-2) \\
(-3 + j2) \times 2 & (-3 + j2) \times 3
\end{bmatrix} = \begin{bmatrix}
-3 + j2 & 6 - j4 \\
-6 + j4 & -9 + j6
\end{bmatrix}
\]

Check with MATLAB:

```matlab
k1=5; k2=(-3 + 2*j); % Define scalars k1 and k2
A=[1 -2; 2 3]; % Define matrix A
k1*A % Multiply matrix A by constant k1
ans =
5 -10
10 15

k2*A %Multiply matrix A by constant k2
ans =
-3.0000+ 2.0000i 6.0000- 4.0000i
```
-6.0000 + 4.0000i -9.0000 + 6.0000i

Two matrices A and B are said to be conformable for multiplication $A \cdot B$ in that order, only when the number of columns of matrix A is equal to the number of rows of matrix B. That is, the product $A \cdot B$ (but not $B \cdot A$) is conformable for multiplication only if A is an $m \times p$ and matrix B is an $p \times n$ matrix. The product $A \cdot B$ will then be an $m \times n$ matrix. A convenient way to determine if two matrices are conformable for multiplication is to write the dimensions of the two matrices side-by-side as shown below.

\[
\begin{array}{c}
A \\
\text{m} \times \text{p} \\
\text{B} \\
\text{p} \times \text{n}
\end{array}
\]

Shows that A and B are conformable for multiplication

\[
\begin{array}{c}
A \\
\text{m} \times \text{p} \\
\text{B} \\
\text{p} \times \text{n}
\end{array}
\]

Indicates the dimension of the product $A \cdot B$

For the product $B \cdot A$ we have:

\[
\begin{array}{c}
B \\
\text{p} \times \text{n} \\
\text{A} \\
\text{m} \times \text{p}
\end{array}
\]

Here, B and A are not conformable for multiplication

For matrix multiplication, the operation is row by column. Thus, to obtain the product $A \cdot B$, we multiply each element of a row of A by the corresponding element of a column of B; then, we add these products.

Example 4.3

Given that

\[
C = \begin{bmatrix} 2 & 3 & 4 \end{bmatrix} \quad \text{and} \quad D = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}
\]

compute the products $C \cdot D$ and $D \cdot C$.

Solution:

The dimensions of matrices C and D are respectively 1×3 3×1; therefore the product $C \cdot D$ is feasible, and will result in a 1×1, that is,
Special Forms of Matrices

$$C \cdot D = \begin{bmatrix} 2 & 3 & 4 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} I \\ -I \end{bmatrix} = \begin{bmatrix} (2) \cdot (1) + (3) \cdot (-1) + (4) \cdot (2) \\ \end{bmatrix} = \begin{bmatrix} 7 \end{bmatrix}$$

The dimensions for D and C are respectively 3×1 and 1×3 and therefore, the product $D \cdot C$ is also feasible. Multiplication of these will produce a 3×3 matrix as follows.

$$D \cdot C = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix} \begin{bmatrix} 2 & 3 & 4 \end{bmatrix} = \begin{bmatrix} (1) \cdot (2) & (1) \cdot (3) & (1) \cdot (4) \\ (-1) \cdot (2) & (-1) \cdot (3) & (-1) \cdot (4) \\ (2) \cdot (2) & (2) \cdot (3) & (2) \cdot (4) \end{bmatrix} = \begin{bmatrix} 2 & 3 & 4 \\ -2 & -3 & -4 \\ 4 & 6 & 8 \end{bmatrix}$$

Check with MATLAB:

```matlab
C=[2 3; 4]; D=[1; -1; 2]; % Define matrices C and D
C*D % Multiply C by D
ans =
    7

D*C % Multiply D by C
ans =
    2     3     4
   -2    -3    -4
     4     6     8
```

Division of one matrix by another, is not defined. However, an equivalent operation exists, and it will become apparent later in this chapter, when we discuss the inverse of a matrix.

4.3 Special Forms of Matrices

† A square matrix is said to be upper triangular when all the elements below the diagonal are zero. The matrix A below is an upper triangular matrix.

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a_{22} & a_{23} & \cdots & a_{2n} \\ 0 & 0 & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{nn} \end{bmatrix} \quad (4.4)$$

In an upper triangular matrix, not all elements above the diagonal need to be non-zero. For applications, refer to Chapter 14.
A square matrix is said to be *lower triangular*, when all the elements above the diagonal are zero. The matrix B below is a lower triangular matrix. For applications, refer to Chapter 14.

$$B = \begin{bmatrix}
a_{11} & 0 & 0 & \cdots & 0 \\
a_{21} & a_{22} & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn}
\end{bmatrix} \quad (4.5)$$

In a lower triangular matrix, not all elements below the diagonal need to be non-zero.

A square matrix is said to be *diagonal*, if all elements are zero, except those in the diagonal. The matrix C below is a diagonal matrix.

$$C = \begin{bmatrix}
\hat{a}_{11} & 0 & 0 & \cdots & 0 \\
0 & \hat{a}_{22} & 0 & \cdots & 0 \\
0 & 0 & \ddots & \ddots & 0 \\
0 & 0 & 0 & \ddots & 0 \\
0 & 0 & 0 & \cdots & \hat{a}_{nn}
\end{bmatrix} \quad (4.6)$$

A diagonal matrix is called a *scalar matrix*, if $a_{11} = a_{22} = a_{33} = \ldots = a_{nn} = k$ where k is a scalar. The matrix D below is a scalar matrix with $k = 4$.

$$D = \begin{bmatrix}
4 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 \\
0 & 0 & 4 & 0 \\
0 & 0 & 0 & 4
\end{bmatrix} \quad (4.7)$$

A scalar matrix with $k = 1$, is called an *identity matrix* I. Shown below are 2×2, 3×3, and 4×4 identity matrices.

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad (4.8)$$

The MATLAB `eye(n)` function displays an $n \times n$ identity matrix. For example,

`eye(4)`% Display a 4 by 4 identity matrix
ans =

 1 0 0 0
 0 1 0 0
 0 0 1 0
 0 0 0 1

Likewise, the `eye(size(A))` function, produces an identity matrix whose size is the same as matrix A. For example, let A be defined as

$A=[1 \ 3 \ 1; \ -2 \ 1 \ -5; \ 4 \ -7 \ 6]$ % Define matrix A

then,

`eye(size(A))`

displays

ans =

 1 0 0
 0 1 0
 0 0 1

† The transpose of a matrix A, denoted as A^T, is the matrix that is obtained when the rows and columns of matrix A are interchanged. For example, if

$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$ then $A^T = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$ \hspace{1cm} (4.9)

In MATLAB we use the apostrophe (') symbol to denote and obtain the transpose of a matrix. Thus, for the above example,

$A=[1 \ 2 \ 3; \ 4 \ 5 \ 6]$ % Define matrix A

A =

 1 2 3
 4 5 6
A\% Display the transpose of A

\[
\begin{bmatrix}
1 & 4 \\
2 & 5 \\
3 & 6
\end{bmatrix}
\]

\[
A^T = A
\]

† A symmetric matrix \(A\), is one such that \(A^T = A\), that is, the transpose of a matrix \(A\) is the same as \(A\). An example of a symmetric matrix is shown below.

\[
A = \begin{bmatrix}
1 & 2 & 3 \\
2 & 4 & -5 \\
3 & -5 & 6
\end{bmatrix} \quad A^T = \begin{bmatrix}
1 & 2 & 3 \\
2 & 4 & -5 \\
3 & -5 & 6
\end{bmatrix} = A
\]

† If a matrix \(A\) has complex numbers as elements, the matrix obtained from \(A\) by replacing each element by its conjugate, is called the conjugate of \(A\), and it is denoted as \(A^*\). An example is shown below.

\[
A = \begin{bmatrix}
1 + j^2 & j \\
3 & 2 - j^3
\end{bmatrix} \quad A^* = \begin{bmatrix}
1 - j^2 & -j \\
3 & 2 + j^3
\end{bmatrix}
\]

† MATLAB has two built-in functions which compute the complex conjugate of a number. The first, \(\text{conj}(x)\), computes the complex conjugate of any complex number, and the second, \(\text{conj}(A)\), computes the conjugate of a matrix \(A\). Using MATLAB with the matrix \(A\) defined as above, we get

\[
A = \begin{bmatrix}
1+2j & j \\
3 & 2-3j
\end{bmatrix} \quad \text{Define and display matrix A}
\]

\[
A = \begin{bmatrix}
1.0000 + 2.0000i & 0 + 1.0000i \\
3.0000 & 2.0000 - 3.0000i
\end{bmatrix}
\]

\[
\text{conj}_A = \text{conj}(A) \quad \text{% Compute and display the conjugate of A}
\]

\[
\text{conj}_A = \begin{bmatrix}
1.0000 - 2.0000i & 0 - 1.0000i \\
3.0000 & 2.0000 + 3.0000i
\end{bmatrix}
\]

† A square matrix \(A\) such that \(A^T = -A\), is called skew-symmetric. For example,

\[
A = \begin{bmatrix}
0 & 2 & -3 \\
-2 & 0 & -4 \\
3 & 4 & 0
\end{bmatrix} \quad A^T = \begin{bmatrix}
0 & -2 & 3 \\
2 & 0 & 4 \\
-3 & -4 & 0
\end{bmatrix} = -A
\]
Therefore, matrix A above is skew symmetric.

† A square matrix A such that $A^* = A$, is called Hermitian. For example,

$$
A = \begin{bmatrix}
1 & 1-j & 2 \\
1+j & 3 & j \\
2 & -j & 0
\end{bmatrix}
\quad A^T = \begin{bmatrix}
1 & 1+j & 2 \\
1-j & 3 & -j \\
2 & j & 0
\end{bmatrix}
\quad A^* = \begin{bmatrix}
1 & 1+j & 2 \\
1-j & 3 & -j \\
2 & j & 0
\end{bmatrix} = A
$$

Therefore, matrix A above is Hermitian.

† A square matrix A such that $A^* = -A$, is called skew-Hermitian. For example,

$$
A = \begin{bmatrix}
 j & 1-j & 2 \\
-1-j & 3j & j \\
-2 & j & 0
\end{bmatrix}
\quad A^T = \begin{bmatrix}
 j & -1-j & -2 \\
1-j & 3j & j \\
2 & j & 0
\end{bmatrix}
\quad A^* = \begin{bmatrix}
-j & -1+j & -2 \\
1+j & -3j & -j \\
2 & -j & 0
\end{bmatrix} = -A
$$

Therefore, matrix A above is skew-Hermitian.

4.4 Determinants

Let matrix A be defined as the square matrix

$$
A = \begin{bmatrix}
a_{11} & a_{12} & a_{13} & \ldots & a_{1n} \\
a_{21} & a_{22} & a_{23} & \ldots & a_{2n} \\
a_{31} & a_{32} & a_{33} & \ldots & a_{3n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & a_{n3} & \ldots & a_{nn}
\end{bmatrix}
$$

(4.11)

then, the determinant of A, denoted as $\det A$, is defined as

$$
\det A = a_{11}a_{22}a_{33}\ldots a_{nn} + a_{12}a_{23}a_{34}\ldots a_{nn} + a_{13}a_{24}a_{35}\ldots a_{nn} + \ldots \\
-\ldots -a_{n1}\ldots a_{22}a_{13}\ldots a_{nn} - a_{n2}\ldots a_{23}a_{14}\ldots a_{nn} - a_{n3}\ldots a_{24}a_{15}\ldots - \ldots
$$

(4.12)

The determinant of a square matrix of order n is referred to as determinant of order n.

Let A be a determinant of order 2, that is,

$$
A = \begin{bmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{bmatrix}
$$

(4.13)
Chapter 4 Matrices and Determinants

Then,

\[\text{det}A = a_{11}a_{22} - a_{21}a_{12} \] \hspace{1cm} (4.14)

Example 4.4

Given that

\[A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 2 & -1 \\ 2 & 0 \end{bmatrix} \]

compute \(\text{det}A \) and \(\text{det}B \).

Solution:

\[\text{det}A = 1 \cdot 4 - 3 \cdot 2 = 4 - 6 = -2 \]

\[\text{det}A = 2 \cdot 0 - 2 \cdot (-1) = 0 - (-2) = 2 \]

Check with MATLAB:

\[
\begin{align*}
A &= \begin{bmatrix} 1 & 2; 3 & 4 \end{bmatrix} \quad \text{B} = \begin{bmatrix} 2 & -1; 2 & 0 \end{bmatrix}; \\
\text{det}(A) &= \text{Define matrices A and B} \\
\text{det}(A) &= \text{Compute the determinant of A} \\
\text{ans} &= -2 \\
\text{det}(B) &= \text{Compute the determinant of B} \\
\text{ans} &= 2
\end{align*}
\]

Let \(A \) be a matrix of order 3, that is,

\[A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \] \hspace{1cm} (4.15)

then, \(\text{det}A \) is found from

\[\text{det}A = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{11}a_{22}a_{33} - a_{11}a_{22}a_{33} - a_{11}a_{22}a_{33} \] \hspace{1cm} (4.16)

A convenient method to evaluate the determinant of order 3, is to write the first two columns to the right of the \(3 \times 3 \) matrix, and add the products formed by the diagonals from upper left to lower right; then subtract the products formed by the diagonals from lower left to upper right as shown on the diagram of the next page. When this is done properly, we obtain (4.16) above.
Determinants

This method works only with second and third order determinants. To evaluate higher order determinants, we must first compute the *cofactors*; these will be defined shortly.

Example 4.5

Compute \(\text{det}A \) and \(\text{det}B \) given that

\[
A = \begin{bmatrix}
2 & 3 & 5 \\
1 & 0 & 1 \\
2 & 1 & 0
\end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix}
2 & -3 & -4 \\
1 & 0 & -2 \\
0 & -5 & -6
\end{bmatrix}
\]

Solution:

\[
\text{det}A = 2 \begin{vmatrix} 0 & 1 \end{vmatrix} - \begin{vmatrix} 1 & 0 \end{vmatrix} + 2 \begin{vmatrix} 1 & 0 \end{vmatrix} = 2 \cdot 1 - 1 + 2 \cdot 1 = 3
\]

or

\[
\text{det}A = (2 \times 0 \times 0) + (3 \times 1 \times 1) + (5 \times 1 \times 1) - (2 \times 0 \times 5) - (1 \times 1 \times 2) - (0 \times 1 \times 3) = 11 - 2 = 9
\]

Likewise,

\[
\text{det}B = 2 \begin{vmatrix} -2 & -3 \end{vmatrix} - \begin{vmatrix} -3 & -2 \end{vmatrix} + 2 \begin{vmatrix} -2 & -3 \end{vmatrix} = 2 \cdot (-6) - (-1 \times (-6)) + 2 \cdot (-6) = -18
\]

or

\[
\text{det}B = [2 \times 0 \times (-6)] + [(-3) \times (-2) \times 0] + [(-4) \times 1 \times (-5)] - [0 \times 0 \times (-4)] - [(-5) \times (-2) \times 2] - [(-6) \times 1 \times (-3)] = 20 - 38 = -18
\]

Check with MATLAB:

\[
A=[2 \ 3 \ 5; \ 1 \ 0 \ 1; \ 2 \ 1 \ 0]; \text{det}(A) \quad \% \text{Define matrix A and compute det}A
\]

\[
\text{ans} = 9
\]

\[
B=[2 \ -3 \ -4; \ 1 \ 0 \ -2; \ 0 \ -5 \ -6]; \text{det}(B) \quad \% \text{Define matrix B and compute det}B
\]

\[
\text{ans} = -18
\]
4.5 Minors and Cofactors

Let matrix A be defined as the square matrix of order n as shown below.

$$
A = \begin{bmatrix}
 a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\
 a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\
 a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn}
\end{bmatrix}
$$

If we remove the elements of its ith row, and jth column, the determinant of the remaining $n-1$ square matrix is called the minor of determinant A, and it is denoted as $[M_{ij}]$.

The signed minor $(-1)^{i+j}[M_{ij}]$ is called the cofactor of a_{ij} and it is denoted as α_{ij}.

Example 4.6

Given that

$$
A = \begin{bmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & a_{33}
\end{bmatrix}
$$

compute the minors $[M_{11}]$, $[M_{12}]$, $[M_{13}]$ and the cofactors α_{11}, α_{12} and α_{13}.

Solution:

$$
[M_{11}] = \begin{bmatrix}
 a_{22} & a_{23} \\
 a_{32} & a_{33}
\end{bmatrix}, \quad [M_{12}] = \begin{bmatrix}
 a_{21} & a_{23} \\
 a_{31} & a_{33}
\end{bmatrix}, \quad [M_{13}] = \begin{bmatrix}
 a_{21} & a_{22} \\
 a_{31} & a_{32}
\end{bmatrix}
$$

and

$$
\alpha_{11} = (-1)^{1+1}[M_{11}] = [M_{11}], \quad \alpha_{12} = (-1)^{1+2}[M_{12}] = -[M_{12}], \quad \alpha_{13} = [M_{13}] = (-1)^{1+3}[M_{13}]
$$

The remaining minors

$$
[M_{21}], \quad [M_{22}], \quad [M_{23}], \quad [M_{31}], \quad [M_{32}], \quad [M_{33}]
$$

and cofactors
are defined similarly.

Example 4.7

Given that

\[
A = \begin{bmatrix}
1 & 2 & -3 \\
2 & -4 & 2 \\
-1 & 2 & -6
\end{bmatrix}
\]

compute its cofactors.

Solution:

\[
\alpha_{11} = (-1)^{1+1} \begin{bmatrix}
-4 & 2 \\
2 & -6
\end{bmatrix} = 20, \quad \alpha_{12} = (-1)^{1+2} \begin{bmatrix}
2 & 2 \\
-1 & -6
\end{bmatrix} = 10
\]

\[
\alpha_{13} = (-1)^{1+3} \begin{bmatrix}
2 & -4 \\
-1 & 2
\end{bmatrix} = 0, \quad \alpha_{21} = (-1)^{2+1} \begin{bmatrix}
2 & -3 \\
2 & -6
\end{bmatrix} = 6
\]

\[
\alpha_{22} = (-1)^{2+2} \begin{bmatrix}
1 & -3 \\
-1 & 2
\end{bmatrix} = -9, \quad \alpha_{23} = (-1)^{2+3} \begin{bmatrix}
1 & 2 \\
-1 & 2
\end{bmatrix} = -4
\]

\[
\alpha_{31} = (-1)^{3+1} \begin{bmatrix}
2 & -3 \\
-4 & 2
\end{bmatrix} = -8, \quad \alpha_{32} = (-1)^{3+2} \begin{bmatrix}
1 & -3 \\
2 & 2
\end{bmatrix} = -8
\]

\[
\alpha_{33} = (-1)^{3+3} \begin{bmatrix}
1 & 2 \\
2 & -4
\end{bmatrix} = -8
\]

It is useful to remember that the signs of the cofactors follow the pattern

\[
+ - + - \\
- + - + \\
+ - + - \\
- + - + \\
+ - + -
\]

that is, the cofactors on the diagonals have the same sign as their minors.

Let \(A \) be a square matrix of any size; the value of the determinant of \(A \) is the sum of the products obtained by multiplying each element of *any* row or *any* column by its cofactor.
Example 4.8

Compute the determinant of \(A \) using the elements of the first row.

\[
A = \begin{bmatrix}
1 & 2 & -3 \\
2 & -4 & 2 \\
-1 & 2 & -6
\end{bmatrix}
\] (4.25)

Solution:

\[
det A = 1 \begin{bmatrix}
-4 & 2 \\
2 & -6
\end{bmatrix} - 2 \begin{bmatrix}
2 & 2 \\
-1 & -6
\end{bmatrix} - 3 \begin{bmatrix}
2 & -4 \\
-1 & 2
\end{bmatrix} = 1 \times 20 - 2 \times (-10) - 3 \times 0 = 40
\]

Check with MATLAB:

\[
A=[1 \ 2 \ -3; \ 2 \ -4 \ 2; \ -1 \ 2 \ -6]; \ \text{det}(A) \quad \% \ \text{Define matrix } A \text{ and compute } \text{det}(A)
\]

\[
\text{ans} = 40
\]

We must use the above procedure to find the determinant of a matrix \(A \) of order 4 or higher. Thus, a fourth-order determinant can first be expressed as the sum of the products of the elements of its first row by its cofactor as shown below.

\[
A = a_{11} \begin{bmatrix}
a_{22} & a_{23} & a_{24} \\
a_{32} & a_{33} & a_{34} \\
a_{42} & a_{43} & a_{44}
\end{bmatrix} - a_{21} \begin{bmatrix}
a_{12} & a_{13} & a_{14} \\
a_{32} & a_{33} & a_{34} \\
a_{42} & a_{43} & a_{44}
\end{bmatrix} + a_{31} \begin{bmatrix}
a_{12} & a_{13} & a_{14} \\
a_{22} & a_{23} & a_{24} \\
a_{42} & a_{43} & a_{44}
\end{bmatrix} - a_{41} \begin{bmatrix}
a_{12} & a_{13} & a_{14} \\
a_{22} & a_{23} & a_{24} \\
a_{32} & a_{33} & a_{34}
\end{bmatrix}
\] (4.26)

Determinants of order five or higher can be evaluated similarly.

Example 4.9

Compute the value of the determinant

\[
A = \begin{bmatrix}
2 & -1 & 0 & -3 \\
-1 & 1 & 0 & -1 \\
4 & 0 & 3 & -2 \\
-3 & 0 & 0 & 1
\end{bmatrix}
\] (4.27)
Solution:

Using the above procedure, we will multiply each element of the first column by its cofactor. Then,

\[
A = \begin{bmatrix}
1 & 0 & -1 \\
0 & 3 & -2 \\
0 & 0 & 1 \\
\end{bmatrix}
- (-1) \begin{bmatrix}
-1 & 0 & -3 \\
0 & 3 & -2 \\
0 & 0 & 1 \\
\end{bmatrix}
+ 4 \begin{bmatrix}
-1 & 0 & -3 \\
1 & 0 & -1 \\
0 & 0 & 1 \\
\end{bmatrix}
- (-3) \begin{bmatrix}
-1 & 0 & -3 \\
1 & 0 & -1 \\
0 & 3 & -2 \\
\end{bmatrix}
\]

\[
[a] \quad [b] \quad [c] \quad [d]
\]

Next, using the procedure of Example 4.5 or Example 4.8, we find

\[[a] = 6 \, , \, [b] = -3 \, , \, [c] = 0 \, , \, [d] = -36 \]

and thus

\[detA = [a] + [b] + [c] + [d] = 6 - 3 + 0 - 36 = -33 \]

We can verify our answer with MATLAB as follows:

A=[2 -1 0 -3; -1 1 0 -1; 4 0 3 -2; -3 0 0 1]; delta = det(A)

delta =

-33

Some useful properties of determinants are given below.

Property 1:

If all elements of one row or one column are zero, the determinant is zero. An example of this is the determinant of the cofactor \([c]\) above.

Property 2:

If all the elements of one row or column are \(m\) times the corresponding elements of another row or column, the determinant is zero. For example, if

\[
A = \begin{bmatrix}
2 & 4 & 1 \\
3 & 6 & 1 \\
1 & 2 & 1 \\
\end{bmatrix}
\]

then,

\[detA = \begin{vmatrix}
2 & 4 & 1 \\
3 & 6 & 1 \\
1 & 2 & 1 \\
\end{vmatrix} = 2 \cdot 6 \cdot 1 + 4 \cdot 1 \cdot 1 + 1 \cdot 3 \cdot 1 - 1 \cdot 6 \cdot 1 - 4 \cdot 1 \cdot 1 - 2 \cdot 3 \cdot 1 = 12 + 4 + 6 - 6 - 4 - 12 = 0 \]

Here, \(detA\) is zero because the second column in \(A\) is 2 times the first column.
Check with MATLAB:
A=[2 4 1; 3 6 1; 1 2 1]; det(A)

ans =
0

Property 3:
If two rows or two columns of a matrix are identical, the determinant is zero. This follows from Property 2 with \(m = 1 \).

4.6 Cramer’s Rule

Let us consider the systems of the three equations below

\[
\begin{align*}
 a_{11}x + a_{12}y + a_{13}z &= A \\
 a_{21}x + a_{22}y + a_{23}z &= B \\
 a_{31}x + a_{32}y + a_{33}z &= C
\end{align*}
\]

(4.30)

and let

\[
\Delta = \begin{vmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & a_{33}
\end{vmatrix}
\quad \quad
D_1 = \begin{vmatrix}
 A & a_{12} & a_{13} \\
 B & a_{22} & a_{23} \\
 C & a_{32} & a_{33}
\end{vmatrix}
\quad \quad
D_2 = \begin{vmatrix}
 a_{11} & A & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & a_{33}
\end{vmatrix}
\quad \quad
D_3 = \begin{vmatrix}
 a_{11} & a_{12} & A \\
 a_{21} & a_{22} & B \\
 a_{31} & a_{32} & C
\end{vmatrix}
\]

Cramer’s rule states that the unknowns \(x, y, \) and \(z \) can be found from the relations

\[
x = \frac{D_1}{\Delta} \quad y = \frac{D_2}{\Delta} \quad z = \frac{D_3}{\Delta}
\]

(4.31)

provided that the determinant \(\Delta \) (delta) is not zero.

We observe that the numerators of (4.31) are determinants that are formed from \(\Delta \) by the substitution of the known values \(A, B, \) and \(C, \) for the coefficients of the desired unknown.

Cramer’s rule applies to systems of two or more equations.

If (4.30) is a homogeneous set of equations, that is, if \(A = B = C = 0, \) then, \(D_1, D_2, \) and \(D_3 \) are all zero as we found in Property 1 above. Then, \(x = y = z = 0 \) also.

Example 4.10

Use Cramer’s rule to find \(v_1, v_2, \) and \(v_3 \) if
\[2v_1 - 5 - v_2 + 3v_3 = 0 \]
\[-2v_3 - 3v_2 - 4v_1 = 8 \]
\[v_2 + 3v_1 - 4 - v_3 = 0 \] (4.32)

and verify your answers with MATLAB.

Solution:

Rearranging the unknowns \(v \), and transferring known values to the right side, we get

\[2v_1 - v_2 + 3v_3 = 5 \]
\[-4v_1 - 3v_2 - 2v_3 = 8 \] (4.33)
\[3v_1 + v_2 - v_3 = 4 \]

Now, by Cramer’s rule,

\[
\Delta = \begin{vmatrix}
2 & -1 & 3 \\
-4 & -3 & -2 \\
3 & 1 & -1
\end{vmatrix} = 6 + 6 - 12 + 27 + 4 + 4 = 35
\]

\[
D_1 = \begin{vmatrix}
5 & -1 & 3 \\
8 & -3 & -2 \\
4 & 1 & -1
\end{vmatrix} = 15 + 8 + 24 + 36 + 10 - 8 = 85
\]

\[
D_2 = \begin{vmatrix}
2 & 5 & 3 \\
-4 & 8 & -2 \\
3 & 4 & -1
\end{vmatrix} = -16 - 30 - 48 - 72 + 16 - 20 = -170
\]

\[
D_3 = \begin{vmatrix}
2 & -1 & 5 \\
-4 & -3 & 8 \\
3 & 1 & 4
\end{vmatrix} = -24 - 24 - 20 + 45 - 16 - 16 = -55
\]

Therefore, using (4.31) we get

\[x_1 = \frac{D_1}{\Delta} = \frac{85}{35} = \frac{17}{7} \]
\[x_2 = \frac{D_2}{\Delta} = \frac{-170}{35} = \frac{-34}{7} \]
\[x_3 = \frac{D_3}{\Delta} = \frac{-55}{35} = \frac{-11}{7} \] (4.34)

We will verify with MATLAB as follows.

% The following code will compute and display the values of \(v_1 \), \(v_2 \) and \(v_3 \).
format rat
% Express answers in ratio form
B=[2 -1 3; -4 -3 -2; 3 1 -1];
% The elements of the determinant D
delta=det(B);
% Compute the determinant D of B
Chapter 4 Matrices and Determinants

\[d_1 = \begin{bmatrix} 5 & -1 & 3; & 8 & -3 & -2; & 4 & 1 & -1 \end{bmatrix}; \quad \% \text{ The elements of } D_1 \\
\text{det}(d_1) = \text{det}(d_1); \quad \% \text{ Compute the determinant of } D_1 \\
d_2 = \begin{bmatrix} 2 & 5 & 3; & -4 & 8 & -2; & 3 & 4 & -1 \end{bmatrix}; \quad \% \text{ The elements of } D_2 \\
\text{det}(d_2) = \text{det}(d_2); \quad \% \text{ Compute the determinant of } D_2 \\
d_3 = \begin{bmatrix} 2 & -1 & 5; & -4 & -3 & 8; & 3 & 1 & 4 \end{bmatrix}; \quad \% \text{ The elements of } D_3 \\
\text{det}(d_3) = \text{det}(d_3); \quad \% \text{ Compute the determinant of } D_3 \\
v_1 = \frac{\text{det}(d_1)}{\text{delta}}; \quad \% \text{ Compute the value of } v_1 \\
v_2 = \frac{\text{det}(d_2)}{\text{delta}}; \quad \% \text{ Compute the value of } v_2 \\
v_3 = \frac{\text{det}(d_3)}{\text{delta}}; \quad \% \text{ Compute the value of } v_3 \\
\% \\
\text{disp}('v_1='); \text{disp}(v_1); \quad \% \text{ Display the value of } v_1 \\
\text{disp}('v_2='); \text{disp}(v_2); \quad \% \text{ Display the value of } v_2 \\
\text{disp}('v_3='); \text{disp}(v_3); \quad \% \text{ Display the value of } v_3 \\
\]

\[v_1 = \frac{17}{7} \]
\[v_2 = \frac{-34}{7} \]
\[v_3 = \frac{-11}{7} \]

These are the same values as in (4.34)

4.7 Gaussian Elimination Method

We can find the unknowns in a system of two or more equations also by the Gaussian elimination method. With this method, the objective is to eliminate one unknown at a time. This can be done by multiplying the terms of any of the equations of the system by a number such that we can add (or subtract) this equation to another equation in the system so that one of the unknowns will be eliminated. Then, by substitution to another equation with two unknowns, we can find the second unknown. Subsequently, substitution of the two values found can be made into an equation with three unknowns from which we can find the value of the third unknown. This procedure is repeated until all unknowns are found. This method is best illustrated with the following example which consists of the same equations as the previous example.

Example 4.11

Use the Gaussian elimination method to find \(v_1, v_2, \) and \(v_3 \) of

\[
2v_1 - v_2 + 3v_3 = 5 \\
-4v_1 - 3v_2 - 2v_3 = 8 \quad \text{(4.35)} \\
3v_1 + v_2 - v_3 = 4
\]
Solution:

As a first step, we add the first equation of (4.35) with the third to eliminate the unknown \(v_2 \) and we obtain the following equation.

\[
5v_1 + 2v_3 = 9 \quad (4.36)
\]

Next, we multiply the third equation of (4.35) by 3, and we add it with the second to eliminate \(v_2 \). Then, we obtain the following equation.

\[
5v_1 - 5v_3 = 20 \quad (4.37)
\]

Subtraction of (4.37) from (4.36) yields

\[
7v_3 = -11 \quad \text{or} \quad v_3 = \frac{-11}{7} \quad (4.38)
\]

Now, we can find the unknown \(v_1 \) from either (4.36) or (4.37). By substitution of (4.38) into (4.36) we get

\[
5v_1 + 2 \cdot \left(\frac{-11}{7} \right) = 9 \quad \text{or} \quad v_1 = \frac{17}{7} \quad (4.39)
\]

Finally, we can find the last unknown \(v_2 \) from any of the three equations of (4.35). By substitution into the first equation we get

\[
v_2 = 2v_1 + 3v_3 - 5 = \frac{34}{7} - \frac{33}{7} - \frac{35}{7} = \frac{-34}{7} \quad (4.40)
\]

These are the same values as those we found in Example 4.10.

The Gaussian elimination method works well if the coefficients of the unknowns are small integers, as in Example 4.11. However, it becomes impractical if the coefficients are large or fractional numbers.

The Gaussian elimination is further discussed in Chapter 14 in conjunction with the LU factorization method.

4.8 The Adjoint of a Matrix

Let us assume that \(A \) is an \(n \) square matrix and \(\alpha_{ij} \) is the cofactor of \(a_{ij} \). Then the adjoint of \(A \), denoted as \(\text{adj}A \), is defined as the \(n \) square matrix shown on the next page.
Chapter 4 Matrices and Determinants

\[adjA = \begin{bmatrix}
\alpha_{11} & \alpha_{21} & \alpha_{31} & \cdots & \alpha_{n1} \\
\alpha_{12} & \alpha_{22} & \alpha_{32} & \cdots & \alpha_{n2} \\
\alpha_{13} & \alpha_{23} & \alpha_{33} & \cdots & \alpha_{n3} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
\alpha_{1n} & \alpha_{2n} & \alpha_{3n} & \cdots & \alpha_{nn}
\end{bmatrix} \quad (4.41) \]

We observe that the cofactors of the elements of the \(i \)th row (column) of \(A \), are the elements of the \(i \)th column (row) of \(adjA \).

Example 4.12

Compute \(adjA \) given that

\[A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 4 \\ 1 & 4 & 3 \end{bmatrix} \quad (4.42) \]

Solution:

\[adjA = \begin{bmatrix}
3 & 4 \\ 4 & 3 \\ 1 & 3 \\
4 & 3 \\ 3 & 4 \\ 1 & 4 \\
1 & 3 \\ 4 & 3 \\ 1 & 4 \\
\end{bmatrix} - \begin{bmatrix}
2 & 3 \\ 4 & 3 \\ 1 & 3 \\
2 & 3 \\ 3 & 4 \\ 1 & 4 \\
2 & 3 \\ 3 & 4 \\ 1 & 4 \\
\end{bmatrix} = \begin{bmatrix} -7 & 6 & -1 \\ 1 & 0 & -1 \\ 1 & -2 & 1 \end{bmatrix} \]

4.9 Singular and Non-Singular Matrices

An \(n \) square matrix \(A \) is called singular if \(detA = 0 \); if \(detA \neq 0 \), \(A \) is called non-singular.

Example 4.13

Given that

\[A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 5 & 7 \end{bmatrix} \quad (4.43) \]

determine whether this matrix is singular or non-singular.
Solution:

\[
\begin{vmatrix}
1 & 2 & 3 \\
2 & 3 & 4 \\
3 & 5 & 7
\end{vmatrix} = 1 \cdot 2 \cdot 3 = 21 + 24 + 30 - 27 - 20 - 28 = 0
\]

Therefore, matrix \(A \) is singular.

4.10 The Inverse of a Matrix

If \(A \) and \(B \) are \(n \) square matrices such that \(AB = BA = I \), where \(I \) is the identity matrix, \(B \) is called the inverse of \(A \), denoted as \(B = A^{-1} \), and likewise, \(A \) is called the inverse of \(B \), that is, \(A = B^{-1} \).

If a matrix \(A \) is non-singular, we can compute its inverse from the relation

\[
A^{-1} = \frac{I}{\det A} \adj A \tag{4.44}
\]

Example 4.14

Given that

\[
A = \begin{bmatrix}
1 & 2 & 3 \\
1 & 3 & 4 \\
1 & 4 & 3
\end{bmatrix} \tag{4.45}
\]

compute its inverse, that is, find \(A^{-1} \).

Solution:

Here, \(\det A = 9 + 8 + 12 - 9 - 16 - 6 = -2 \), and since this is a non-zero value, it is possible to compute the inverse of \(A \) using (4.44).

From Example 4.12,

\[
\adj A = \begin{bmatrix}
-7 & 6 & -1 \\
1 & 0 & -1 \\
1 & -2 & 1
\end{bmatrix}
\]

Then,

\[
A^{-1} = \frac{1}{\det A} \adj A = \frac{1}{-2} \begin{bmatrix}
-7 & 6 & -1 \\
1 & 0 & -1 \\
1 & -2 & 1
\end{bmatrix} = \begin{bmatrix}
3.5 & -3 & 0.5 \\
-0.5 & 0 & 0.5 \\
-0.5 & 1 & -0.5
\end{bmatrix} \tag{4.46}
\]
Chapter 4 Matrices and Determinants

Check with MATLAB:

\[
\begin{bmatrix}
1 & 2 & 3 \\
1 & 3 & 4 \\
1 & 4 & 3
\end{bmatrix}, \quad \text{inv}A=\text{inv}(A)
\]

% Define matrix A and compute its inverse

\[
A =
\begin{bmatrix}
1 & 2 & 3 \\
1 & 3 & 4 \\
1 & 4 & 3
\end{bmatrix}
\]

\[
\text{inv}A =
\begin{bmatrix}
3.5000 & -3.0000 & 0.5000 \\
-0.5000 & 0 & 0.5000 \\
-0.5000 & 1.0000 & -0.5000
\end{bmatrix}
\]

Multiplication of a matrix \(A \) by its inverse \(A^{-1} \) produces the identity matrix \(I \), that is,

\[
A A^{-1} = I \quad \text{or} \quad A^{-1} A = I \quad (4.47)
\]

Example 4.15

Prove the validity of (4.47) for

\[
A = \begin{bmatrix} 4 & 3 \\ 2 & 2 \end{bmatrix}
\]

Proof:

\[
detA = 8 - 6 = 2 \quad \text{and} \quad \text{adj}A = \begin{bmatrix} 2 & -3 \\ -2 & 4 \end{bmatrix}
\]

Then,

\[
A^{-1} = \frac{1}{\text{det}A} \text{adj}A = \frac{1}{2} \begin{bmatrix} 2 & -3 \\ -2 & 4 \end{bmatrix} = \begin{bmatrix} 1 & -3/2 \\ -1 & 2 \end{bmatrix}
\]

and

\[
A A^{-1} = \begin{bmatrix} 4 & 3 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 1 & -3/2 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 4 - 3/2 & -6 + 6 \\ 2 - 2 & -3 + 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I
\]

4.11 Solution of Simultaneous Equations with Matrices

Consider the relation

\[
AX = B \quad (4.48)
\]

where \(A \) and \(B \) are matrices whose elements are known, and \(X \) is a matrix (a column vector) whose elements are the unknowns. We assume that \(A \) and \(X \) are conformable for multiplication.
Solution of Simultaneous Equations with Matrices

Multiplication of both sides of (4.48) by A^{-1} yields:

$$A^{-1}AX = A^{-1}B = IX = A^{-1}B \quad (4.49)$$

or

$$X = A^{-1}B \quad (4.50)$$

Therefore, we can use (4.50) to solve any set of simultaneous equations that have solutions. We will refer to this method as the inverse matrix method of solution of simultaneous equations.

Example 4.16

Given the system of equations

$$\begin{align*}
2x_1 + 3x_2 + x_3 &= 9 \\
x_1 + 2x_2 + 3x_3 &= 6 \\
3x_1 + x_2 + 2x_3 &= 8
\end{align*} \quad (4.51)$$

compute the unknowns x_1, x_2, and x_3 using the inverse matrix method.

Solution:

In matrix form, the given set of equations is $AX = B$ where

$$A = \begin{bmatrix}
2 & 3 & 1 \\
1 & 2 & 3 \\
3 & 1 & 2
\end{bmatrix}, \quad X = \begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}, \quad B = \begin{bmatrix}
9 \\
6 \\
8
\end{bmatrix} \quad (4.52)$$

Then,

$$X = A^{-1}B \quad (4.53)$$

or

$$\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} = \begin{bmatrix}
2 & 3 & 1 \\
1 & 2 & 3 \\
3 & 1 & 2
\end{bmatrix}^{-1} \begin{bmatrix}
9 \\
6 \\
8
\end{bmatrix} \quad (4.54)$$

Next, we find the determinant $detA$, and the adjoint $adjA$.

$$detA = 18 \quad and \quad adjA = \begin{bmatrix}
1 & -5 & 7 \\
7 & 1 & -5 \\
-5 & 7 & 1
\end{bmatrix}$$
Therefore,

\[A^{-1} = \frac{1}{\text{det}A} \text{adj}A = \frac{1}{18} \begin{bmatrix} 1 & -5 & 7 \\ 7 & 1 & -5 \\ -5 & 7 & 1 \end{bmatrix} \]

and by (4.53) we obtain the solution as follows.

\[
X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \frac{1}{18} \begin{bmatrix} 1 & -5 & 7 \\ 7 & 1 & -5 \\ -5 & 7 & 1 \end{bmatrix} \begin{bmatrix} 9 \\ 6 \\ 8 \end{bmatrix} = \frac{1}{18} \begin{bmatrix} 35 \\ 29 \\ 5 \end{bmatrix} = \begin{bmatrix} 1.94 \\ 1.61 \\ 0.28 \end{bmatrix}
\]

(4.55)

To verify our results, we could use the MATLAB `inv(A)` function, and multiply \(A^{-1} \) by \(B \). However, it is easier to use the matrix left division operation \(X = A \backslash B \); this is MATLAB’s solution of \(A^{-1}B \) for the matrix equation \(A \cdot X = B \), where matrix \(X \) is the same size as matrix \(B \). For this example,

\[
A = \begin{bmatrix} 2 & 3 & 1 \\ 1 & 2 & 3 \\ 3 & 1 & 2 \end{bmatrix}; \quad B = \begin{bmatrix} 9 \\ 6 \\ 8 \end{bmatrix}; \quad X = A \backslash B \quad \% \text{Observe that } B \text{ is a column vector}
\]

\[
X = \\
1.9444 \\
1.6111 \\
0.2778
\]

Example 4.17

For the electric circuit of Figure 4.1, the loop equations are

\[
V = 100 \text{ v}
\]

\[
\begin{align*}
1I_1 - 9I_2 &= 100 \\
-9I_1 + 20I_2 - 9I_3 &= 0 \\
-9I_2 + 15I_3 &= 0
\end{align*}
\]

(4.56)

Use the inverse matrix method to compute the values of the currents \(I_1, I_2, \) and \(I_3 \).
Solution of Simultaneous Equations with Matrices

Solution:

For this example, the matrix equation is $RI = V$ or $I = R^{-1}V$, where

$$R = \begin{bmatrix} 10 & -9 & 0 \\ -9 & 20 & -9 \\ 0 & -9 & 15 \end{bmatrix}, \quad V = \begin{bmatrix} 100 \\ 0 \\ 0 \end{bmatrix} \quad \text{and} \quad I = \begin{bmatrix} I_1 \\ I_2 \\ I_3 \end{bmatrix}$$

The next step is to find R^{-1}. This is found from the relation

$$R^{-1} = \frac{1}{\det R} \text{adj}R$$ \hspace{1cm} (4.57)

Therefore, we find the determinant and the adjoint of R. For this example, we find that

$$\det R = 975, \quad \text{adj} R = \begin{bmatrix} 219 & 135 & 81 \\ 135 & 150 & 90 \\ 81 & 90 & 119 \end{bmatrix} \hspace{1cm} (4.58)$$

Then,

$$R^{-1} = \frac{1}{\det R} \text{adj}R = \frac{1}{975} \begin{bmatrix} 219 & 135 & 81 \\ 135 & 150 & 90 \\ 81 & 90 & 119 \end{bmatrix}$$

and

$$I = \begin{bmatrix} I_1 \\ I_2 \\ I_3 \end{bmatrix} = \frac{1}{975} \begin{bmatrix} 219 & 135 & 81 \\ 135 & 150 & 90 \\ 81 & 90 & 119 \end{bmatrix} \begin{bmatrix} 100 \\ 0 \\ 0 \end{bmatrix} = \frac{100}{975} \begin{bmatrix} 219 \\ 135 \\ 81 \end{bmatrix} = \begin{bmatrix} 22.46 \\ 13.85 \\ 8.31 \end{bmatrix}$$

Check with MATLAB:

$R=[10 \ -9 \ 0; \ -9 \ 20 \ -9; \ 0 \ -9 \ 15]; \ V=[100 \ 0 \ 0]; \ I=R\backslash V$

$I =
\begin{bmatrix}
22.4615 \\
13.8462 \\
8.3077
\end{bmatrix}$

We can also use subscripts to address the individual elements of the matrix. Accordingly, the above code could also have been written as:

$R(1,1)=10; \ R(1,2)=-9; \quad \% \text{No need to make entry for A(1,3) since it is zero.}$
Chapter 4 Matrices and Determinants

\[R(2,1) = -9; \ R(2,2) = 20; \ R(2,3) = -9; \ R(3,2) = -9; \ R(3,3) = 15; \ V = [100 \ 0 \ 0]'; \ \textbf{I} = R \backslash V \]

\[\textbf{I} = \\
\[\begin{array}{c}
22.4615 \\
13.8462 \\
8.3077
\end{array} \]

Spreadsheets also have the capability of solving simultaneous equations using the inverse matrix method. For instance, we can use Microsoft Excel’s MINVERSE (Matrix Inversion) and MMULT (Matrix Multiplication) functions, to obtain the values of the three currents in Example 4.17.

The procedure is as follows:

1. We start with a blank spreadsheet and in a block of cells, say B3:D5, we enter the elements of matrix \(R \) as shown in Figure 4.2. Then, we enter the elements of matrix \(V \) in G3:G5.

\[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
1 & \text{Spreadsheet for Matrix Inversion and Matrix Multiplication} & \\
2 & & & \\
3 & 10 & -9 & 0 & 100 \\
4 & \text{R=} & -9 & 20 & -9 & \text{V=} & 0 \\
5 & 0 & -9 & 15 & 0 \\
6 & & & & \\
7 & 0.225 & 0.138 & 0.083 & 22.462 \\
8 & \text{R}^{-1}= & 0.138 & 0.154 & 0.092 & \text{I=} & 13.846 \\
9 & 0.083 & 0.092 & 0.122 & 8.3077 \\
10 & & & & \\
\end{array} \]

\[\begin{array}{c}
\text{Figure 4.2. Solution of Example 4.17 with a spreadsheet}
\end{array} \]

2. Next, we compute and display the inverse of \(R \), that is, \(R^{-1} \). We choose B7:D9 for the elements of this inverted matrix. We format this block for number display with three decimal places. With this range highlighted and making sure that the cell marker is in B7, we type the formula

\[=\text{MINVERSE}(B3:D5) \]

and we press the Ctrl-Shift-Enter keys simultaneously. We observe that \(R^{-1} \) appears in these cells.

3. Now, we choose the block of cells G7:G9 for the values of the current \(I \). As before, we highlight them, and with the cell marker positioned in G7, we type the formula

\[=\text{MMULT}(B7:D9,G3:G5) \]

and we press the Ctrl-Shift-Enter keys simultaneously. The values of \(I \) then appear in G7:G9.
Example 4.18

For the phasor circuit of Figure 4.3, the current I_X can be found from the relation

$$I_X = \frac{V_1 - V_2}{R_3}$$ \hspace{1cm} (4.59)

and the voltages V_1 and V_2 can be computed from the nodal equations

$$\frac{V_1 - 170 \angle 0^\circ}{85} + \frac{V_1 - V_2}{100} + \frac{V_1 - 0}{j200} = 0$$ \hspace{1cm} (4.60)

$$\frac{V_2 - 170 \angle 0^\circ}{-j100} + \frac{V_2 - V_1}{100} + \frac{V_2 - 0}{50} = 0$$ \hspace{1cm} (4.61)

Compute, and express the current I_x in both rectangular and polar forms by first simplifying like terms, collecting, and then writing the above relations in matrix form as $YV = I$, where $Y = admittance$, $V = voltage$, and $I = current$.

Solution:

The elements of the Y matrix are the coefficients of V_1 and V_2. Simplifying and rearranging the nodal equations of (4.60) and (4.61), we get

$$(0.0218 - j0.005)V_1 - 0.01V_2 = 2$$

$$-0.01V_1 + (0.03 + j0.01)V_2 = j1.7$$ \hspace{1cm} (4.62)

Next, we write (4.62) in matrix form as

$$\begin{bmatrix} 0.0218 - j0.005 & -0.01 \\ -0.01 & 0.03 + j0.01 \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} 2 \\ j1.7 \end{bmatrix}$$ \hspace{1cm} (4.63)
where the matrices Y, V, and I are as indicated in (4.63).

We will use MATLAB to compute the voltages V_1 and V_2, and to do all other computations. The code is shown below.

\[
Y = \begin{bmatrix}
0.0218 & -0.005j \\
-0.01 & 0.03+0.01j
\end{bmatrix};
I = \begin{bmatrix} 2 \\ 1.7j \end{bmatrix};
\]

\[V = Y \backslash I;\]

\[V_1 \quad V_2\]

\[
\begin{array}{c}
104.905 \\
53.416
\end{array}
\]

Next, we find I_X from

\[R_3 = 100;
I_X = (V(1) - V(2))/R_3\]

\[I_X = 0.5149 - 0.0590i\]

and this is the rectangular form of I_X. For the polar form we use

\[\text{mag}I_X = \text{abs}(I_X)\]

\[\text{mag}I_X = 0.5183\]

\[\text{theta}I_X = \text{angle}(I_X) \times \frac{180}{\pi}\]

\[\text{theta}I_X = -6.5326\]

Therefore, in polar form $I_X = 0.518 \angle -6.5^\circ$

Spreadsheets have limited capabilities with complex numbers, and thus we cannot use them to compute matrices that include complex numbers in their elements.
4.12 Summary

- A matrix is a rectangular array of numbers whose general form is

\[
A = \begin{bmatrix}
 a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\
 a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\
 a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn}
\end{bmatrix}
\]

The numbers \(a_{ij} \) are the elements of the matrix where the index \(i \) indicates the row, and \(j \) indicates the column in which each element is positioned. A matrix of \(m \) rows and \(n \) columns is said to be of \(m \times n \) order matrix. If \(m = n \), the matrix is said to be a square matrix of order \(m \).

- Two matrices \(A = [a_{ij}] \) and \(B = [b_{ij}] \) are equal, that is, \(A = B \), if and only if

\[
a_{ij} = b_{ij} \quad i = 1, 2, 3, \ldots, m \quad j = 1, 2, 3, \ldots, n
\]

- Two matrices are said to be conformable for addition (subtraction), if they are of the same order \(m \times n \). If \(A = [a_{ij}] \) and \(B = [b_{ij}] \) are conformable for addition (subtraction), their sum (difference) will be another matrix \(C \) with the same order as \(A \) and \(B \), where each element of \(C \) is the sum (difference) of the corresponding elements of \(A \) and \(B \), i.e.,

\[
C = A \pm B = [a_{ij} \pm b_{ij}]
\]

- If \(k \) is any scalar (a positive or negative number), and not \([k]\) which is a \(1 \times 1 \) matrix, then multiplication of a matrix \(A \) by the scalar \(k \), is the multiplication of every element of \(A \) by \(k \).

- Two matrices \(A \) and \(B \) are said to be conformable for multiplication \(A \cdot B \) in that order, only when the number of columns of matrix \(A \) is equal to the number of rows of matrix \(B \). That is, the product \(A \cdot B \) (but not \(B \cdot A \)) is conformable for multiplication only if \(A \) is an \(m \times p \) and matrix \(B \) is an \(p \times n \) matrix. The product \(A \cdot B \) will then be an \(m \times n \) matrix.

- For matrix multiplication, the operation is row by column. Thus, to obtain the product \(A \cdot B \), we multiply each element of a row of \(A \) by the corresponding element of a column of \(B \); then, we add these products.

- Division of one matrix by another, is not defined.

- A scalar matrix is a square matrix where \(a_{11} = a_{22} = a_{33} = \ldots = a_{nn} = k \) and \(k \) is a scalar. A scalar matrix with \(k = 1 \), is called an identity matrix \(I \).
The MATLAB \texttt{eye(n)} function displays an $n \times n$ identity matrix and the \texttt{eye(size(A))} function displays an identity matrix whose size is the same as matrix A.

The transpose of a matrix A, denoted as A^T, is the matrix that is obtained when the rows and columns of matrix A are interchanged.

The determinant of a square matrix A where

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \ldots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \ldots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \ldots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \ldots & a_{nn} \end{bmatrix}$$

is denoted as $\det A$ and it is defined as

$$\det A = a_{11}a_{22}a_{33} \ldots a_{nn} + a_{12}a_{23}a_{34} \ldots a_{1n} + a_{13}a_{24}a_{35} \ldots a_{n2} + \ldots - a_{n1}a_{22}a_{33} \ldots a_{n(n-1)} + a_{n2}a_{23}a_{34} \ldots - a_{nn}a_{12}a_{13} a_{14} \ldots a_{n(n-1)} - a_{n3}a_{23}a_{34} \ldots a_{n(n-1)} - \ldots$$

If from a matrix A be defined as

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \ldots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \ldots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \ldots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \ldots & a_{nn} \end{bmatrix}$$

we remove the elements of its ith row, and jth column, the determinant of the remaining $n-1$ square matrix is called the minor of determinant A, and it is denoted as $[M_{ij}]$.

The signed minor $(-1)^{i+j}[M_{ij}]$ is called the cofactor of a_{ij} and it is denoted as α_{ij}.

Let A be a square matrix of any size; the value of the determinant of A is the sum of the products obtained by multiplying each element of any row or any column by its cofactor. We must use this procedure to find the determinant of a matrix A of order 4 or higher.

Some useful properties of determinants are:

a. If all elements of one row or one column are zero, the determinant is zero.
b. If all the elements of one row or column are m times the corresponding elements of another row or column, the determinant is zero.

c. If two rows or two columns of a matrix are identical, the determinant is zero.

• Cramer’s rule states that if a system of equations is defined as

$$
\begin{align*}
 a_{11}x + a_{12}y + a_{13}z &= A \\
 a_{21}x + a_{22}y + a_{23}z &= B \\
 a_{31}x + a_{32}y + a_{33}z &= C
\end{align*}
$$

and we let

$$
\Delta = \begin{vmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & a_{33}
\end{vmatrix}
\quad D_1 = \begin{vmatrix}
 A & a_{11} & a_{13} \\
 B & a_{21} & a_{23} \\
 C & a_{31} & a_{33}
\end{vmatrix}
\quad D_2 = \begin{vmatrix}
 a_{11} & A & a_{13} \\
 a_{21} & B & a_{23} \\
 a_{31} & C & a_{33}
\end{vmatrix}
\quad D_3 = \begin{vmatrix}
 a_{11} & a_{12} & A \\
 a_{21} & a_{22} & B \\
 a_{31} & a_{32} & C
\end{vmatrix}
$$

the unknowns x, y, and z can be found from the relations

$$
\begin{align*}
 x &= \frac{D_1}{\Delta} \\
 y &= \frac{D_2}{\Delta} \\
 z &= \frac{D_3}{\Delta}
\end{align*}
$$

provided that the determinant Δ (delta) is not zero.

• We can find the unknowns in a system of two or more equations also by the Gaussian elimination method. With this method, the objective is to eliminate one unknown at a time. This can be done by multiplying the terms of any of the equations of the system by a number such that we can add (or subtract) this equation to another equation in the system so that one of the unknowns will be eliminated. Then, by substitution to another equation with two unknowns, we can find the second unknown. Subsequently, substitution of the two values found can be made into an equation with three unknowns from which we can find the value of the third unknown. This procedure is repeated until all unknowns are found.

• If A is an n square matrix and α_{ij} is the cofactor of a_{ij}, the adjoint of A, denoted as $adj A$, is defined as the n square matrix below.

$$
adj A =
\begin{bmatrix}
 \alpha_{11} & \alpha_{21} & \alpha_{31} & \ldots & \alpha_{n1} \\
 \alpha_{12} & \alpha_{22} & \alpha_{32} & \ldots & \alpha_{n2} \\
 \alpha_{13} & \alpha_{23} & \alpha_{33} & \ldots & \alpha_{n3} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 \alpha_{1n} & \alpha_{2n} & \alpha_{3n} & \ldots & \alpha_{nn}
\end{bmatrix}
$$
An n square matrix A is called singular if $\det A = 0$; if $\det A \neq 0$, A is called non-singular.

If A and B are n square matrices such that $AB = BA = I$, where I is the identity matrix, B is called the inverse of A, denoted as $B = A^{-1}$, and likewise, A is called the inverse of B, that is, $A = B^{-1}$.

If a matrix A is non-singular, we can compute its inverse from the relation

$$A^{-1} = \frac{1}{\det A} \text{adj} A$$

Multiplication of a matrix A by its inverse A^{-1} produces the identity matrix I, that is,

$$AA^{-1} = I \quad \text{or} \quad A^{-1}A = I$$

If A and B are matrices whose elements are known, X is a matrix (a column vector) whose elements are the unknowns and A and X are conformable for multiplication, we can use the relation $X = A^{-1}B$ to solve any set of simultaneous equations that have solutions. We refer to this method as the inverse matrix method of solution of simultaneous equations.

The matrix left division operation is defined as $X = A \backslash B$; this is MATLAB’s solution of $A^{-1}B$ for the matrix equation $A \cdot X = B$, where matrix X is the same size as matrix B.

We can use Microsoft Excel’s MINVERSE (Matrix Inversion) and MMULT (Matrix Multiplication) functions, to solve any set of simultaneous equations that have solutions. However, we cannot use them to compute matrices that include complex numbers in their elements.
4.13 Exercises

For Exercises 1 through 3 below, the matrices A, B, C and D are defined as:

$$
A = \begin{bmatrix} 1 & -1 & -4 \\ 5 & 7 & -2 \\ 3 & -5 & 6 \end{bmatrix} \quad B = \begin{bmatrix} 5 & 9 & -3 \\ -2 & 8 & 2 \\ 7 & -4 & 6 \end{bmatrix} \quad C = \begin{bmatrix} 4 & 6 \\ -3 & 8 \\ 5 & -2 \end{bmatrix} \quad D = \begin{bmatrix} 1 & -2 & 3 \\ -3 & 6 & -4 \end{bmatrix}
$$

1. Perform the following computations, if possible. Verify your answers with Excel or MATLAB.

2. Perform the following computations, if possible. Verify your answers with Excel or MATLAB.
 a. $A \cdot B$ b. $A \cdot C$ c. $B \cdot D$ d. $C \cdot D$ e. $B \cdot A$ f. $C \cdot A$ g. $D \cdot A$ h. $D \cdot C$

3. Perform the following computations, if possible. Verify your answers with Excel or MATLAB.
 a. $\det A$ b. $\det B$ c. $\det C$ d. $\det D$ e. $\det(A \cdot B)$ f. $\det(A \cdot C)$

4. Solve the following system of equations using Cramer's rule. Verify your answers with Excel or MATLAB.

\[
\begin{align*}
0x_1 - 2x_2 + x_3 &= -4 \\
-2x_1 + 3x_2 + x_3 &= 9 \\
3x_1 + 4x_2 - 5x_3 &= 0
\end{align*}
\]

5. Repeat Exercise 4 using the Gaussian elimination method.

6. Use the MATLAB function $\text{det}(A)$ to find the unknowns of the system of equations below.

\[
\begin{align*}
-x_1 + 2x_2 - 3x_3 + 5x_4 &= 14 \\
x_1 + 3x_2 + 2x_3 - x_4 &= 9 \\
3x_1 - 3x_2 + 2x_3 + 4x_4 &= 19 \\
4x_1 + 2x_2 + 5x_3 + x_4 &= 27
\end{align*}
\]

7. Solve the following system of equations using the inverse matrix method. Verify your answers with Excel or MATLAB.

\[
\begin{bmatrix} 1 & 3 & 4 \\ 3 & 1 & -2 \\ 2 & 3 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -3 \\ -2 \\ 0 \end{bmatrix}
\]
8. Use Excel to find the unknowns for the system

\[
\begin{bmatrix}
2 & 4 & 3 & -2 \\
2 & -4 & 1 & 3 \\
-1 & 3 & -4 & 2 \\
2 & -2 & 2 & 1 \\
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
\end{bmatrix}
=
\begin{bmatrix}
1 \\
10 \\
-14 \\
7 \\
\end{bmatrix}
\]

Verify your answers with the MATLAB left division operation.
4.14 Solutions to Exercises

1.

a. \[A + B = \begin{bmatrix} 1 + 5 & -1 + 9 & -4 - 3 \\ 5 - 2 & 7 + 8 & 2 + 2 \\ 3 + 7 & -5 - 4 & 6 + 6 \end{bmatrix} = \begin{bmatrix} 6 & 8 & -7 \\ 3 & 15 & 0 \\ 10 & -9 & 12 \end{bmatrix} \]

b. \(A + C \) not conformable for addition

c. \(B + D \) not conformable for addition

d. \(C + D \) not conformable for addition

e. \[A - B = \begin{bmatrix} 1 - 5 & -1 - 9 & -4 + 3 \\ 5 + 2 & 7 - 8 & 2 - 2 \\ 3 - 7 & 5 + 4 & 6 - 6 \end{bmatrix} = \begin{bmatrix} -4 & -10 & -1 \\ 7 & -1 & -4 \\ -4 & -1 & 0 \end{bmatrix} \]

f. \(A - C \) not conformable for subtraction

g. \(B - D \) not conformable for subtraction

h. \(C - D \) not conformable for subtraction

2.

\[A \cdot B = \begin{bmatrix} 1 \times 5 + (-1) \times (-2) + (-4) \times 7 \\ 5 \times 5 + 7 \times (-2) + (-2) \times 7 \\ 3 \times 5 + (-5) \times (-2) + 6 \times 7 \end{bmatrix} = \begin{bmatrix} 1 \times 9 + (-1) \times 8 + (-4) \times (-4) \\ 5 \times 9 + 7 \times 8 + (-2) \times (-4) \\ 3 \times 9 + (-5) \times 8 + 6 \times (-4) \end{bmatrix} = \begin{bmatrix} 1 \times (-3) + (-1) \times 2 + (-4) \times 6 \end{bmatrix} \]

\[A \cdot B = \begin{bmatrix} -21 & 17 & -29 \\ -3 & 109 & -13 \\ 67 & -37 & 17 \end{bmatrix} \]

Check with MATLAB:

A=[1 -1 -4; 5 7 -2; 3 -5 6]; B=[5 9 -3; -2 8 2; 7 -4 6]; A*B

ans =

\[-21 & 17 & -29 \\ -3 & 109 & -13 \\ 67 & -37 & 17 \]

d. \[A \cdot D = \begin{bmatrix} 4 \times 1 + 6 \times (-3) & 4 \times (-2) + 6 \times 6 & 4 \times 3 + 6 \times (-4) \\ (-3) \times 1 + 8 \times (-3) & (-3) \times (-2) + 8 \times 6 & (-3) \times 3 + 8 \times (-4) \\ 5 \times 1 + (-2) \times (-3) & 5 \times (-2) + (-2) \times 6 & 5 \times 3 + (-2) \times (-4) \end{bmatrix} = \begin{bmatrix} -14 & 28 & -1 \\ -27 & 54 & -4 \\ 11 & -22 & 23 \end{bmatrix} \]
Chapter 4 Matrices and Determinants

\[B \cdot A = \begin{bmatrix}
5 \times 1 + 9 \times 5 + (-3) \times 3 & (-2) \times 1 + 8 \times 5 + 2 \times 3 & 7 \times 1 + (-4) \times 5 + 6 \times 3 \\
5 \times (-1) + 9 \times 7 + (-3) \times (-5) & (-2) \times (-1) + 8 \times 7 + 2 \times (-5) & 7 \times (-1) + (-4) \times 7 + 6 \times (-5) \\
5 \times (-4) + 9 \times (-2) + (-3) \times 6 & (-2) \times (-4) + 8 \times (-2) + 2 \times 6 & 7 \times (-4) + (-4) \times (-2) + 6 \times 6
\end{bmatrix} = \begin{bmatrix} 41 & 73 & -56 \\
44 & 48 & 4 \\
5 & -65 & 16
\end{bmatrix} \]

f. \(C \cdot A \) not conformable for multiplication

\[D \cdot A = \begin{bmatrix}
1 \times 1 + (-2) \times 5 + 3 \times 3 & 1 \times (-1) + (-2) \times 7 + 3 \times (-5) & 1 \times (-4) + (-2) \times (-2) + 3 \times 6 \\
(-3) \times 1 + 6 \times 5 + (-4) \times 3 & (-3) \times (-1) + 6 \times 7 + (-4) \times (-5) & (-3) \times (-4) + 6 \times (-2) + (-4) \times 6
\end{bmatrix} = \begin{bmatrix} 0 & -30 & 18 \\
15 & 65 & -24
\end{bmatrix} \]

h. \(D \cdot C = \begin{bmatrix}
1 \times 4 + (-2) \times (-3) + 3 \times 5 & 1 \times 6 + (-2) \times 8 + 3 \times (-2) \\
(-3) \times 4 + 6 \times (-3) + (-4) \times 5 & (-3) \times 6 + 6 \times 8 + (-4) \times (-2)
\end{bmatrix} = \begin{bmatrix} 25 & -16 \\
-50 & 38
\end{bmatrix} \]

3.

\[\det A = \begin{vmatrix} 1 & -1 & -4 & 1 & -1 \\ 5 & 7 & -2 & 5 & 7 \\ 3 & -5 & 6 & 3 & -5 \end{vmatrix} \]

a. \[\begin{vmatrix} 5 & 9 & -3 & 5 & 9 \\ 7 & -4 & 6 & 7 & -4 \end{vmatrix} \]

\[\det A = 1 \times 7 \times 6 + (-1) \times (-2) \times 3 + (-4) \times 5 \times (-5) - [3 \times 7 \times (-4) + (-5) \times (-2) \times 1 + 6 \times 5 \times (-1)] \\
= 42 + 6 + 100 + 84 - 10 - 30 = 252 \]

\[\det B = -2 \times 8 \times 2 \times (-2) \times 8 \\
= 5 \times 8 \times 9 \times 2 \times 7 + (-3) \times (-2) \times (-4) - [7 \times 8 \times (-3) + (-4) \times 2 \times 5 + 6 \times (-2) \times 9] \\
= 240 + 126 - 168 + 40 - 108 = 658 \]

c. \(\det C \) does not exist; matrix must be square

d. \(\det D \) does not exist; matrix must be square

e. \(\det(A \cdot B) = \det A \cdot \det B \) and from parts (a) and (b), \(\det(A \cdot B) = 252 \times 658 = 165816 \)

f. \(\det(A \cdot C) \) does not exist because \(\det C \) does not exist
4.

\[
\begin{align*}
\Delta &= \begin{bmatrix}
1 & 2 & 1 & -2 \\
-2 & 3 & 1 & -2 \\
3 & 4 & -5 & 3 \\
4 & -5 & 3 & 4
\end{bmatrix} \\
&= 1 \times 3 \times (-5) + (-2) \times 1 \times 3 + 1 \times (-2) \times 4 - [3 \times 3 \times 1 + 4 \times 1 \times 1 + (-5) \times (-2) \times (-2)] \\
&= -15 - 6 - 8 - 9 - 4 + 20 = -22 \\
\end{align*}
\]

\[
D_1 = \begin{bmatrix}
9 & 3 & 1 & 9 \\
4 & -5 & 0 & 4
\end{bmatrix} \\
&= -4 \times 3 \times (-5) + (-2) \times 1 \times 0 + 1 \times 9 \times 4 - [0 \times 3 \times 1 + 4 \times 1 \times 4 + (-5) \times 9 \times (-2)] \\
&= 60 + 0 + 36 - 0 + 16 - 90 = 22
\]

\[
D_2 = \begin{bmatrix}
1 & -4 & 1 & 1 \\
-2 & 9 & 1 & -2 \\
3 & 0 & -5 & 3 \\
4 & -5 & 3 & 0
\end{bmatrix} \\
&= 1 \times 9 \times (-5) + (-4) \times 1 \times 3 + 1 \times (-2) \times 0 - [3 \times 9 \times 1 + 0 \times 1 \times 1 + (-5) \times (-2) \times (-4)] \\
&= -45 - 12 - 0 - 27 - 0 + 40 = -44
\]

\[
D_3 = \begin{bmatrix}
1 & -2 & -4 & 1 \\
-2 & 3 & 9 & -2 \\
3 & 4 & 0 & 3 \\
4 & 0 & 3 & 4
\end{bmatrix} \\
&= 1 \times 3 \times 0 + (-2) \times 9 \times 3 + (-4) \times (-2) \times 4 - [3 \times 3 \times (-4) + 4 \times 9 \times 1 + 0 \times (-2) \times (-2)] \\
&= 0 - 54 + 32 + 36 - 36 - 0 = -22
\]

\[
x_1 = \frac{D_1}{\Delta} = \frac{22}{-22} = -1 \\
x_2 = \frac{D_2}{\Delta} = \frac{-44}{-22} = 2 \\
x_3 = \frac{D_3}{\Delta} = \frac{-22}{-22} = 1
\]

5.

\[
x_1 - 2x_2 + x_3 = -4 \quad (1) \\
-2x_1 + 3x_2 + x_3 = 9 \quad (2)
\]

\[
3x_1 + 4x_2 - 5x_3 = 0 \quad (3)
\]

Multiplication of (1) by 2 yields

\[
2x_1 - 4x_2 + 2x_3 = -8 \quad (4)
\]

Addition of (2) and (4) yields

\[
-x_2 + 3x_3 = 1 \quad (5)
\]
Multiplication of (1) by -3 yields

$$-3x_1 + 6x_2 - 3x_3 = 12 \tag{6}$$

Addition of (3) and (6) yields

$$10x_2 - 8x_3 = 12 \tag{7}$$

Multiplication of (5) by 10 yields

$$-10x_2 + 30x_3 = 10 \tag{8}$$

Addition of (7) and (8) yields

$$22x_3 = 22 \tag{9}$$

or

$$x_3 = 1 \tag{10}$$

Substitution of (10) into (7) yields

$$10x_2 - 8 = 12 \tag{11}$$

or

$$x_2 = 2 \tag{12}$$

and substitution of (10) and (12) into (1) yields

$$x_1 - 4 + 1 = -4 \tag{13}$$

or

$$x_1 = -1 \tag{14}$$

6.

$$\Delta = \begin{vmatrix} -1 & 2 & -3 & 5; 1 & 3 & 2 & -1; 3 & -3 & 2 & 4; 4 & 2 & 5 & 1 \end{vmatrix};$$

$$D_1 = \begin{vmatrix} 14 & 2 & -3 & 5; 9 & 3 & 2 & -1; 19 & -3 & 2 & 4; 27 & 2 & 5 & 1 \end{vmatrix};$$

$$D_2 = \begin{vmatrix} -1 & 14 & -3 & 5; 1 & 9 & 2 & -1; 3 & 19 & 2 & 4; 4 & 27 & 5 & 1 \end{vmatrix};$$

$$D_3 = \begin{vmatrix} -1 & 2 & 14 & 5; 1 & 3 & 9 & -1; 3 & -3 & 19 & 4; 4 & 2 & 27 & 1 \end{vmatrix};$$

$$D_4 = \begin{vmatrix} -1 & 2 & -3 & 14; 1 & 3 & 2 & 9; 3 & -3 & 2 & 19; 4 & 2 & 5 & 27 \end{vmatrix};$$

$$x_1 = \text{det}(D_1)/\text{det}(\Delta), x_2 = \text{det}(D_2)/\text{det}(\Delta), \ldots$$

$$x_3 = \text{det}(D_3)/\text{det}(\Delta), x_4 = \text{det}(D_4)/\text{det}(\Delta)$$

$$x_1 = 1 \quad x_2 = 2 \quad x_3 = 3 \quad x_4 = 4$$
7.

\[
detA = \begin{vmatrix} 1 & 3 & 4 & 1 & 3 \\ 3 & 1 & -2 & 3 & 1 \\ 2 & 3 & 5 & 2 & 3 \end{vmatrix}
\]

\[
= 1 \times 1 \times 5 + 3 \times (-2) \times 2 + 4 \times 3 \times 3 - [2 \times 1 \times 4 + 3 \times (-2) \times 1 + 5 \times 3 \times 3]
\]

\[
= 5 - 12 + 36 - 8 + 6 - 45 = -18
\]

\[
adjA = \begin{bmatrix} 11 & -3 & -10 \\ -19 & -3 & 14 \\ 7 & 3 & -8 \end{bmatrix}
\]

\[
A^{-1} = \frac{1}{detA} \cdot adjA = \frac{1}{-18} \cdot \begin{bmatrix} 11 & -3 & -10 \\ -19 & -3 & 14 \\ 7 & 3 & -8 \end{bmatrix}
\]

\[
= \begin{bmatrix} -11/18 & 3/18 & 10/18 \\ 19/18 & 3/18 & -14/18 \\ -7/18 & -3/18 & 8/18 \end{bmatrix}
\]

\[
X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -11/18 & 3/18 & 10/18 \\ 19/18 & 3/18 & -14/18 \\ -7/18 & -3/18 & 8/18 \end{bmatrix}^{-1} \begin{bmatrix} -3 \\ -2 \\ 0 \end{bmatrix}
\]

\[
= \begin{bmatrix} 33/18 - 6/18 + 0 \\ -57/18 - 6/18 + 0 \\ 21/18 + 6/18 + 0 \end{bmatrix}
\]

\[
= \begin{bmatrix} 27/18 \\ -63/18 \\ 27/18 \end{bmatrix}
\]

\[
= \begin{bmatrix} 1.50 \\ -3.50 \\ 1.50 \end{bmatrix}
\]
8.

\[
\begin{array}{c|c|c|c|c|c|c|c}
\hline
 & A & B & C & D & E & F & G \\
\hline
1 & Spreadsheet for Matrix Inversion and \\
2 & Matrix Multiplication - Exercise 8 \\
\hline
4 & 2.00 & 4.00 & 3.00 & -2.00 & & & \\
5 & A= & 2.00 & -4.00 & 1.00 & 3.00 & B= & 10.00 \\
6 & & -1.00 & 3.00 & -4.00 & 2.00 & & -14.00 \\
7 & & 2.00 & -2.00 & 2.00 & 1.00 & & 7.00 \\
\hline
8 & & & & & & & \\
9 & & -1.58 & -4.08 & 1.17 & 6.75 & & -11.50 \\
10 & A^{-1} & 0.58 & 1.08 & -0.17 & -1.75 & X=& 1.50 \\
11 & & 1.50 & 3.50 & -1.00 & -5.50 & & 12.00 \\
12 & & 1.33 & 3.33 & -0.67 & -5.00 & & 9.00 \\
\hline
\end{array}
\]

\[A=[2 \ 4 \ 3 \ -2; \ 2 \ -4 \ 1 \ 3; \ -1 \ 3 \ -4 \ 2; \ 2 \ -2 \ 2 \ 1];\]
\[B=[1 \ 10 \ -14 \ 7];\ A\backslash B\]
\[\text{ans =} \]
\[-11.5000 \]
\[1.5000 \]
\[12.0000 \]
\[9.0000 \]
Chapter 5

Differential Equations, State Variables, and State Equations

This chapter is a review of ordinary differential equations and an introduction to state variables and state equations. Solutions of differential equations with numerical methods will be discussed in Chapter 9.

5.1 Simple Differential Equations

In this section we present two simple examples to show the importance of differential equations in engineering applications.

Example 5.1

The current and voltage in a capacitor are related by

\[i_C(t) = C \frac{dv_C}{dt} \] \hspace{1cm} (5.1)

where \(i_C(t) \) is the current through the capacitor, \(v_C(t) \) is the voltage across the capacitor, and the constant \(C \) is the capacitance in farads (F). For this example \(C = 1 \, \text{F} \) and the capacitor is being charged by a constant current \(I \). Find the voltage \(v_C \) across this capacitor as a function of time given that the voltage at some reference time \(t = 0 \) is \(V_0 \).

Solution:

It is given that the current, as a function of time, is constant, that is,

\[i_C(t) = I = \text{constant} \] \hspace{1cm} (5.2)

By substitution of (5.2) into (5.1) we get

\[\frac{dv_C}{dt} = I \]

and by separation of the variables,

\[dv_C = Idt \] \hspace{1cm} (5.3)

Integrating both sides of (5.3) we get

\[v_C(t) = It + k \] \hspace{1cm} (5.4)

where \(k \) represents the constants of integration of both sides.
We can find the value of the constant k by making use of the initial condition, i.e., at $t = 0$, $v_C = V_0$ and (5.4) then becomes

$$V_0 = 0 + k$$

(5.5)
or $k = V_0$, and by substitution into (5.4),

$$v_C(t) = It + V_0$$

(5.6)

This example shows that when a capacitor is charged with a constant current, a linear voltage is produced across the terminals of the capacitor.

Example 5.2

Find the current $i_L(t)$ through an inductor whose slope at the coordinate (t, i_L) is $cost$ and the current i_L passes through the point $(\pi/2, 1)$.

Solution:

We are given that

$$\frac{di_L}{dt} = cost$$

(5.7)

By separating the variables we get

$$di_L = costdt$$

(5.8)

and integrating both sides we get

$$i_L(t) = sint + k$$

(5.9)

where k represents the constants of integration of both sides.

We find the value of the constant k by making use of the initial condition. For this example, $\omega = 1$ and thus at $\omega t = t = \pi/2$, $i_L = 1$. With these values (5.9) becomes

$$1 = \sin\frac{\pi}{2} + k$$

(5.10)
or $k = 0$, and by substitution into (5.9),

$$i_L(t) = sint$$

(5.11)

5.2 Classification

Differential equations are classified by:

1. Type - Ordinary or Partial
2. Order - The highest order derivative which is included in the differential equation
Classification

3. **Degree** - The exponent of the highest power of the highest order derivative after the differential equation has been cleared of any fractions or radicals in the dependent variable and its derivatives.

For example, the differential equation

\[
\left(\frac{d^4y}{dx^4} \right)^2 + 5 \left(\frac{d^3y}{dx^3} \right)^4 + 6 \left(\frac{d^2y}{dx^2} \right)^6 + 3 \left(\frac{dy}{dx} \right)^8 + \frac{y^2}{x^3 + 1} = ye^{-2x}
\]

is an ordinary differential equation of order 4 and degree 2.

If the dependent variable \(y \) is a function of only a single variable \(x \), that is, if \(y = f(x) \), the differential equation which relates \(y \) and \(x \) is said to be an **ordinary differential equation** and it is abbreviated as ODE.

The differential equation

\[
\frac{d^2y}{dt^2} + 3\frac{dy}{dt} + 2 = 5\cos 4t
\]

is an ODE with constant coefficients.

The differential equation

\[
x^2 \frac{d^2y}{dt^2} + x \frac{dy}{dt} + (x^2 - n^2) = 0
\]

is an ODE with variable coefficients.

If the dependent variable \(y \) is a function of two or more variables such as \(y = f(x, t) \), where \(x \) and \(t \) are independent variables, the differential equation that relates \(y, x, \) and \(t \) is said to be a **partial differential equation** and it is abbreviated as PDE.

An example of a partial differential equation is the well-known **one-dimensional wave equation** shown below.

\[
\frac{\partial^2 y}{\partial t^2} = a^2 \frac{\partial^2 y}{\partial x^2}
\]

Most engineering problems are solved with ordinary differential equations with constant coefficients; however, partial differential equations provide often quick solutions to some practical applications as illustrated with the following three examples.

Example 5.3

The equivalent resistance \(R_T \) of three resistors \(R_1, R_2, \) and \(R_3 \) in parallel is obtained from...
Given that initially $R_1 = 5 \, \Omega$, $R_2 = 20 \, \Omega$, and $R_3 = 4 \, \Omega$, compute the change in R_T if R_2 is increased by 10% and R_3 is decreased by 5% while R_1 does not change.

Solution:

The initial value of the equivalent resistance R_T is 2 Ω.

Now, we treat R_2 and R_3 as constants and differentiating R_T with respect to R_1 we get

$$\frac{1}{R_T^2} = \frac{1}{R_1^2} + \frac{1}{R_2} + \frac{1}{R_3}$$

Similarly,

$$\frac{\partial R_T}{\partial R_2} = \left(\frac{R_T}{R_2} \right)^2 \quad \text{and} \quad \frac{\partial R_T}{\partial R_3} = \left(\frac{R_T}{R_3} \right)^2$$

and the total differential dR_T is

$$dR_T = \frac{\partial R_T}{\partial R_1} dR_1 + \frac{\partial R_T}{\partial R_2} dR_2 + \frac{\partial R_T}{\partial R_3} dR_3 = \left(\frac{R_T}{R_1} \right)^2 dR_1 + \left(\frac{R_T}{R_2} \right)^2 dR_2 + \left(\frac{R_T}{R_3} \right)^2 dR_3$$

By substitution of the given numerical values we get

$$dR_T = \left(\frac{2}{5} \right)^2 (0) + \left(\frac{2}{20} \right)^2 (2) + \left(\frac{2}{4} \right)^2 (-0.2) = 0.02 - 0.05 = -0.03$$

Therefore, the equivalent resistance decreases by 3%.

Example 5.4

In a series RC electric circuit that is excited by a sinusoidal voltage, the magnitude of the impedance Z is computed from $Z = \sqrt{R^2 + X_C^2}$. Initially, $R = 4 \, \Omega$ and $X_C = 3 \, \Omega$. Find the change in the impedance Z if the resistance R is increased by 0.25 Ω (6.25%) and the capacitive reactance X_C is decreased by 0.125 Ω (4.167%).

Solution:

We will first find the partial derivatives $\frac{\partial Z}{\partial R}$ and $\frac{\partial Z}{\partial X_C}$; then we compute the change in impedance from the total differential dZ. Thus,
Solutions of Ordinary Differential Equations (ODE)

\[
\frac{\partial Z}{\partial R} = \frac{R}{\sqrt{R^2 + X_C^2}} \quad \text{and} \quad \frac{\partial Z}{\partial X_C} = \frac{X_C}{\sqrt{R^2 + X_C^2}}
\]

and

\[
dZ = \frac{\partial Z}{\partial R} dR + \frac{\partial Z}{\partial X_C} dX_C = \frac{R \, dR + X_C \, dX_C}{\sqrt{R^2 + X_C^2}}
\]

and by substitution of the given values

\[
dZ = \frac{4 \, (0.25) + 3 \, (-0.125)}{\sqrt{4^2 + 3^2}} = \frac{1 - 0.375}{5} = 0.125
\]

Therefore, if \(R \) increases by 6.25\% and \(X_C \) decreases by 4.167\%, the impedance \(Z \) increases by 4.167\%.

Example 5.5

A light bulb is rated at 120 volts and 75 watts. If the voltage decreases by 5 volts and the resistance of the bulb is increased by 8 \(\Omega \), by how much will the power change?

Solution:

At \(V = 120 \) volts and \(P = 75 \) watts, the bulb resistance is

\[
R = \frac{V^2}{P} = \frac{120^2}{75} = 192 \ \Omega
\]

and since

\[
P = \frac{V^2}{R} \quad \text{then} \quad \frac{\partial P}{\partial V} = \frac{2V}{R} \quad \text{and} \quad \frac{\partial P}{\partial R} = -\frac{V^2}{R^2}
\]

and the total differential is

\[
dP = \frac{\partial P}{\partial V} dV + \frac{\partial P}{\partial R} dR = \frac{2V}{R} dV - \frac{V^2}{R^2} dR = \frac{2(120)}{192}(-5) - \frac{120^2}{192^2}(8) = -9.375
\]

That is, the power will decrease by 9.375 watts.

5.3 Solutions of Ordinary Differential Equations (ODE)

A function \(y = f(x) \) is a solution of a differential equation if the latter is satisfied when \(y \) and its derivatives are replaced throughout by \(f(x) \) and its corresponding derivatives. Also, the initial conditions must be satisfied.
For example a solution of the differential equation

\[\frac{d^2 y}{dx^2} + y = 0 \]

is

\[y = k_1 \sin x + k_2 \cos x \]

since \(y \) and its second derivative satisfy the given differential equation.

Any linear, time-invariant system can be described by an ODE which has the form

\[
\begin{align*}
& a_n \frac{d^n y}{dt^n} + a_{n-1} \frac{d^{n-1} y}{dt^{n-1}} + \ldots + a_1 \frac{dy}{dt} + a_0 y \\
& \quad = b_m \frac{d^m x}{dt^m} + b_{m-1} \frac{d^{m-1} x}{dt^{m-1}} + \ldots + b_1 \frac{dx}{dt} + b_0 x
\end{align*}
\]

(5.12)

Excitation (Forcing) Function \(x(t) \)

NON-HOMEMEOUS DIFFERENTIAL EQUATION

If the excitation in (B12) is not zero, that is, if \(x(t) \neq 0 \), the ODE is called a *non-homogeneous ODE*. If \(x(t) = 0 \), it reduces to:

\[
\begin{align*}
& a_n \frac{d^n y}{dt^n} + a_{n-1} \frac{d^{n-1} y}{dt^{n-1}} + \ldots + a_1 \frac{dy}{dt} + a_0 y = 0 \\
& = 0
\end{align*}
\]

(5.13)

HOMOGENEOUS DIFFERENTIAL EQUATION

The differential equation of (5.13) above is called a *homogeneous ODE* and has \(n \) different linearly independent solutions denoted as \(y_1(t), y_2(t), y_3(t), \ldots, y_n(t) \).

We will now prove that the *most general solution* of (5.13) is:

\[y_H(t) = k_1 y_1(t) + k_2 y_2(t) + k_3 y_3(t) + \ldots + k_n y_n(t) \]

(5.14)

where the subscript \(H \) on the left side is used to emphasize that this is the form of the solution of the homogeneous ODE and \(k_1, k_2, k_3, \ldots, k_n \) are arbitrary constants.

Proof:

Let us assume that \(y_1(t) \) is a solution of (5.13); then by substitution,

\[
\begin{align*}
& a_n \frac{d^n y_1}{dt^n} + a_{n-1} \frac{d^{n-1} y_1}{dt^{n-1}} + \ldots + a_1 \frac{dy_1}{dt} + a_0 y_1 = 0
\end{align*}
\]

(5.15)
A solution of the form \(k_1y_1(t) \) will also satisfy (5.13) since

\[
a_n \frac{d^n}{dt^n}(k_1y_1) + a_{n-1} \frac{d^{n-1}}{dt^{n-1}}(k_1y_1) + \ldots + a_1 \frac{d}{dt}(k_1y_1) + a_0(k_1y_1) = 0
\]

(5.16)

If \(y = y_1(t) \) and \(y = y_2(t) \) are any two solutions, then \(y = y_1(t) + y_2(t) \) will also be a solution since

\[
a_n \frac{d^n}{dt^n}y_1 + a_{n-1} \frac{d^{n-1}}{dt^{n-1}}y_1 + \ldots + a_1 \frac{d}{dt}y_1 + a_0y_1 = 0
\]

and

\[
a_n \frac{d^n}{dt^n}y_2 + a_{n-1} \frac{d^{n-1}}{dt^{n-1}}y_2 + \ldots + a_1 \frac{d}{dt}y_2 + a_0y_2 = 0
\]

Therefore,

\[
a_n \frac{d^n}{dt^n}(y_1 + y_2) + a_{n-1} \frac{d^{n-1}}{dt^{n-1}}(y_1 + y_2) + \ldots + a_1 \frac{d}{dt}(y_1 + y_2) + a_0(y_1 + y_2) = 0
\]

(5.17)

In general, if

\[y = k_1y_1(t), k_2y_1(t), k_3y_3(t), \ldots, k_ny_n(t) \]

are the \(n \) solutions of the homogeneous ODE of (5.13), the linear combination

\[y = k_1y_1(t) + k_2y_1(t) + k_3y_3(t) + \ldots + k_ny_n(t) \]

is also a solution.

In our subsequent discussion, the solution of the homogeneous ODE, i.e., the complementary solution, will be referred to as the natural response, and will be denoted as \(y_N(t) \) or simply \(y_N \). The particular solution of a non-homogeneous ODE will be referred to as the forced response, and will be denoted as \(y_F(t) \) or simply \(y_F \). Accordingly, we express the total solution of the non-homogeneous ODE of (5.12) as:

\[
y(t) = y_{\text{Natural}} + y_{\text{Forced}} = y_N + y_F
\]
The natural response y_N contains arbitrary constants and these can be evaluated from the given initial conditions. The forced response y_F, however, contains no arbitrary constants. It is imperative to remember that the arbitrary constants of the natural response must be evaluated from the total response.

5.4 Solution of the Homogeneous ODE

Let the solutions of the homogeneous ODE

$$a_n \frac{d^n y}{dt^n} + a_{n-1} \frac{d^{n-1} y}{dt^{n-1}} + \ldots + a_1 \frac{dy}{dt} + a_0 y = 0$$

be of the form

$$y = ke^{st}$$

Then, by substitution of (5.20) into (5.19) we get

$$a_n ks^n e^{st} + a_{n-1} ks^{n-1} e^{st} + \ldots + a_1 ke^{st} + a_0 e^{st} = 0$$

or

$$(a_n s^n + a_{n-1} s^{n-1} + \ldots + a_1 s + a_0) ke^{st} = 0$$

We observe that (5.21) can be satisfied when

$$(a_n s^n + a_{n-1} s^{n-1} + \ldots + a_1 s + a_0) = 0 \quad \text{or} \quad k = 0 \quad \text{or} \quad s = -\infty$$

but the only meaningful solution is the quantity enclosed in parentheses since the latter two yield trivial (meaningless) solutions. We, therefore, accept the expression inside the parentheses as the only meaningful solution and this is referred to as the characteristic (auxiliary) equation, that is,

$$a_n s^n + a_{n-1} s^{n-1} + \ldots + a_1 s + a_0 = 0$$

Since the characteristic equation is an algebraic equation of an nth-power polynomial, its solutions are $s_1, s_2, s_3, \ldots, s_n$, and thus the solutions of the homogeneous ODE are:

$$y_1 = k_1 e^{s_1 t}, \quad y_2 = k_2 e^{s_2 t}, \quad y_3 = k_3 e^{s_3 t}, \quad \ldots, \quad y_n = k_n e^{s_n t}$$

Case I – Distinct Roots

If the roots of the characteristic equation are distinct (different from each another), the n solutions of (5.23) are independent and the most general solution is:
Solution of the Homogeneous ODE

\[y_N = k_1 e^{s_1 t} + k_2 e^{s_2 t} + \ldots + k_n e^{s_n t} \] \hspace{1cm} (5.25)

Case II – Repeated Roots

If two or more roots of the characteristic equation are repeated (same roots), then some of the terms of (5.24) are not independent and therefore (5.25) does not represent the most general solution. If, for example, \(s_1 = s_2 \), then,

\[k_1 e^{s_1 t} + k_2 e^{s_2 t} = k_1 e^{s_1 t} + k_2 e^{s_1 t} = (k_1 + k_2) e^{s_1 t} = k_3 e^{s_1 t} \]

and we see that one term of (5.25) is lost. In this case, we express one of the terms of (5.25), say \(k_2 e^{s_2 t} \) as \(k_2 e^{s_1 t} \). These two represent two independent solutions and therefore the most general solution has the form:

\[y_N = (k_1 + k_2) e^{s_1 t} + k_3 e^{s_3 t} + \ldots + k_n e^{s_n t} \] \hspace{1cm} (5.26)

If there are \(m \) equal roots the most general solution has the form:

\[y_N = (k_1 + k_2 + \ldots + k_m t^{m-1}) e^{s_1 t} + k_{m+1} e^{s_2 t} + \ldots + k_n e^{s_n t} \] \hspace{1cm} (5.27)

Case III – Complex Roots

If the characteristic equation contains complex roots, these occur as complex conjugate pairs. Thus, if one root is \(s_j = -\alpha + j\beta \) where \(\alpha \) and \(\beta \) are real numbers, then another root is \(s_j = -\alpha - j\beta \). Then,

\[
\begin{align*}
 k_1 e^{s_1 t} + k_2 e^{s_2 t} &= k_1 e^{-\alpha t + j\beta t} + k_2 e^{-\alpha t - j\beta t} = e^{-\alpha t} (k_1 e^{j\beta t} + k_2 e^{-j\beta t}) \\
 &= e^{-\alpha t} [(k_1 \cos \beta t + jk_1 \sin \beta t) + k_2 \cos \beta t - jk_2 \sin \beta t] \\
 &= e^{-\alpha t} [(k_1 + k_2) \cos \beta t + j(k_1 - k_2) \sin \beta t] \\
 &= e^{-\alpha t} (k_3 \cos \beta t + k_4 \sin \beta t) = e^{-\alpha t} k_3 \cos (\beta t + \varphi)
\end{align*}
\]

\hspace{1cm} (5.28)

If (5.28) is to be a real function of time, the constants \(k_1 \) and \(k_2 \) must be complex conjugates. The other constants \(k_3, k_4, k_5 \), and the phase angle \(\varphi \) are real constants.

The forced response can be found by

a. The Method of Undetermined Coefficients or
b. The Method of Variation of Parameters
We will study the Method of Undetermined Coefficients first.

5.5 Using the Method of Undetermined Coefficients for the Forced Response
For simplicity, we will only consider ODEs of order 2. Higher order ODEs are discussed in differential equations textbooks.

Consider the non-homogeneous ODE

(5.29)

where \(a, b, \) and \(c \) are real constants.

We have learned that the total (complete) solution consists of the summation of the natural and forced responses.

For the natural response, if \(y_1 \) and \(y_2 \) are any two solutions of (5.29), the linear combination \(y_3 = k_1 y_1 + k_2 y_2 \), where \(k_1 \) and \(k_2 \) are arbitrary constants, is also a solution, that is, if we know the two solutions, we can obtain the most general solution by forming the linear combination of \(y_1 \) and \(y_2 \). To be certain that there exist no other solutions, we examine the Wronskian Determinant defined below.

\[
W(y_1, y_2) \equiv \begin{vmatrix} y_1 & y_2 \\ \frac{d}{dx} y_1 & \frac{d}{dx} y_2 \end{vmatrix} = y_1 \frac{d}{dx} y_2 - y_2 \frac{d}{dx} y_1 \neq 0
\]

(5.30)

WRONSKIAN DETERMINANT

If (5.30) is true, we can be assured that all solutions of (5.29) are indeed the linear combination of \(y_1 \) and \(y_2 \).

The forced response is obtained by observation of the right side of the given ODE as it is illustrated by the examples that follow.

Example 5.6
Find the total solution of the ODE

(5.31)
subject to the initial conditions \(y(0) = 3 \) and \(y'(0) = 4 \) where \(y' = dy/dt \)

Solution:

This is a homogeneous ODE and its total solution is just the natural response found from the characteristic equation \(s^2 + 4s + 3 = 0 \) whose roots are \(s_1 = -1 \) and \(s_2 = -3 \). The total response is:

\[
y(t) = y_N(t) = k_1 e^{-t} + k_2 e^{-3t}
\]
(5.32)

The constants \(k_1 \) and \(k_2 \) are evaluated from the given initial conditions. For this example,

\[
y(0) = 3 = k_1 e^0 + k_2 e^0
\]

or

\[
k_1 + k_2 = 3 \tag{5.33}
\]

Also,

\[
y'(0) = 4 = \left. \frac{dy}{dt} \right|_{t=0} = -k_1 e^{-t} - 3k_2 e^{-3t} \bigg|_{t=0}
\]

or

\[
-k_1 - 3k_2 = 4 \tag{5.34}
\]

Simultaneous solution of (5.33) and (5.34) yields \(k_1 = 6.5 \) and \(k_2 = -3.5 \). By substitution into (5.32), we get

\[
y(t) = y_N(t) = 6.5 e^{-t} - 3.5 e^{-3t}
\]
(5.35)

Check with MATLAB:

```matlab
y=dsolve('D2y+4*Dy+3*y=0', 'y(0)=3', 'Dy(0)=4')

y =
(-7/2*exp(-3*t)*exp(t)+13/2)/exp(t)

pretty(y)

- 7/2 exp(-3 t) exp(t) + 13/2
--------------------------------------
exp(t)
```

The function \(y = f(t) \), shown in Figure 5.1 was plotted with the use of the MATLAB command `ezplot(y,[0 10])`.

Numerical Analysis Using MATLAB and Spreadsheets, Second Edition
Orchard Publications
Example 5.7

Find the total solution of the ODE

\[\frac{d^2 y}{dt^2} + 4 \frac{dy}{dt} + 3y = 3e^{-2t} \] \hspace{1cm} (5.36)

subject to the initial conditions \(y(0) = 1 \) and \(y'(0) = -1 \)

Solution:

The left side of (5.36) is the same as that of Example 5.6. Therefore,

\[y_N(t) = k_1 e^{-t} + k_2 e^{-3t} \] \hspace{1cm} (5.37)

(We must remember that the constants \(k_1 \) and \(k_2 \) must be evaluated from the total response).

To find the forced response, we assume a solution of the form

\[y_F = Ae^{-2t} \] \hspace{1cm} (5.38)

We can find out whether our assumption is correct by substituting (5.38) into the given ODE of (5.36). Then,

\[4Ae^{-2t} - 8Ae^{-2t} + 3Ae^{-2t} = 3e^{-2t} \] \hspace{1cm} (5.39)

from which \(A = -3 \) and the total solution is
Using the Method of Undetermined Coefficients for the Forced Response

\[y(t) = y_N + y_F = k_1 e^{-t} + k_2 e^{-3t} - 3e^{-2t} \] (5.40)

The constants \(k_1 \) and \(k_2 \) are evaluated from the given initial conditions. For this example,

\[y(0) = \begin{cases} 1 & \text{or} \\ k_1 e^0 + k_2 e^0 - 3 e^0 \end{cases} \]

or

\[k_1 + k_2 = 4 \] (5.41)

Also,

\[y'(0) = -1 = \left. \frac{dy}{dt} \right|_{t=0} = -k_1 e^{-t} - 3k_2 e^{-3t} + 6e^{-2t} \bigg|_{t=0} \]

or

\[-k_1 - 3k_2 = -7 \] (5.42)

Simultaneous solution of (5.41) and (5.42) yields \(k_1 = 2.5 \) and \(k_2 = 1.5 \). By substitution into (5.40), we get

\[y(t) = y_N + y_F = 2.5e^{-t} + 1.5e^{-3t} - 3e^{-2t} \] (5.43)

Check with MATLAB:

\[y = dsolve('D2y+4*Dy+3*y=3*exp(-2*t)', 'y(0)=1', 'Dy(0)=-1') \]

\[y = \frac{-3 \exp(-2 t) \exp(t) + 3/2 \exp(-3 t) \exp(t) + 5/2}{\exp(t)} \]

\[pretty(y) \]

\[-3 \exp(-2 t) \exp(t) + 3/2 \exp(-3 t) \exp(t) + 5/2 \]

\[\frac{\exp(t)}{\exp(t)} \]

\[ezplot(y,[0 8]) \]

The plot is shown in Figure 5.2

Example 5.8

Find the total solution of the ODE

\[\frac{d^2 y}{dt^2} + 6 \frac{dy}{dt} + 9y = 0 \] (5.44)

subject to the initial conditions \(y(0) = -1 \) and \(y'(0) = 1 \)
Figure 5.2. Plot for the function \(y = f(t) \) of Example 5.7.

Solution:

This is a homogeneous ODE and therefore its total solution is just the natural response found from the characteristic equation \(s^2 + 6s + 9 = 0 \) whose roots are \(s_1 = s_2 = -3 \) (repeated roots). Thus, the total response is

\[
y(t) = y_N = k_1 e^{-3t} + k_2 t e^{-3t}
\]

(5.45)

Next, we evaluate the constants \(k_1 \) and \(k_2 \) from the given initial conditions. For this example,

\[
y(0) = -1 = k_1 e^0 + k_2 (0) e^0
\]

or

\[
k_1 = -1
\]

(5.46)

Also,

\[
y'(0) = 1 = \frac{dy}{dt} \bigg|_{t=0} = -3k_1 e^{-3t} + k_2 e^{-3t} - 3k_2 t e^{-3t} \bigg|_{t=0}
\]

or

\[
-3k_1 + k_2 = 1
\]

(5.47)

From (5.46) and (5.47) we get yields \(k_1 = -1 \) and \(k_2 = -2 \). By substitution into (5.45),

\[
y(t) = -e^{-3t} - 2t e^{-3t}
\]

(5.48)

Check with MATLAB:

\[
y = \text{dsolve}('D2y+6*Dy+9*y=0', 'y(0)=-1', 'Dy(0)=1')
\]
Using the Method of Undetermined Coefficients for the Forced Response

\[y = -\exp(-3t) - 2\exp(-3t)t \]

\[\text{ezplot}(y,[0 4]) \]

The plot is shown in Figure 5.3.

\[y = -\exp(-3t) - 2\exp(-3t)t \]

\[\text{ezplot}(y,[0 4]) \]

The plot is shown in Figure 5.3.

Example 5.9

Find the total solution of the ODE

\[\frac{d^2y}{dt^2} + 5\frac{dy}{dt} + 6y = 3e^{-2t} \] \((5.49) \)

Solution:

No initial conditions are given; therefore, we will express the solution in terms of the constants \(k_1 \) and \(k_2 \). By inspection, the roots of the characteristic equation of (5.48) are \(s_1 = -2 \) and \(s_2 = -3 \) and thus the natural response has the form

\[y_N = k_1e^{-2t} + k_2e^{-3t} \] \((5.50) \)

Next, we find the forced response by assuming a solution of the form

\[y_F = Ae^{-2t} \] \((5.51) \)

We can find out whether our assumption is correct by substitution of (5.51) into the given ODE of (5.49). Then,

\[4Ae^{-2t} - 10Ae^{-2t} + 6Ae^{-2t} = 3e^{-2t} \] \((5.52) \)
but the sum of the three terms on the left side of (5.52) is zero whereas the right side can never be zero unless we let \(t \to \infty \) and this produces a meaningless result.

The problem here is that the right side of the given ODE of (5.49) has the same form as one of the terms of the natural response of (5.50), namely the term \(k_1 e^{-2t} \).

To work around this problem, we assume that the forced response has the form

\[
y_F = Ate^{-2t}
\]

(5.53)

that is, we multiply (5.51) by \(t \) in order to eliminate the duplication of terms in the total response. Then, by substitution of (5.53) into (5.49) and equating like terms, we find that \(A = 3 \). Therefore, the total response is

\[
y(t) = y_N + y_F = k_1 e^{-2t} + k_2 e^{-3t} + 3te^{-2t} \]

(5.54)

Check with MATLAB:

\[
y = \text{dsolve}('D2y+5*Dy+6*y=3*exp(-2*t)')
\]

\[
y = -3*exp(-2*t)+3*t*exp(-2*t)+C1*exp(-3*t)+C2*exp(-2*t)
\]

We observe that the first and last terms of the displayed expression above have the same form and thus they can be combined to form a single term \(C3*exp(-2*t) \).

Example 5.10

Find the total solution of the ODE

\[
\frac{d^2y}{dt^2} + 5\frac{dy}{dt} + 6y = 4\cos 5t
\]

(5.55)

Solution:

No initial conditions are given; therefore, we will express solution in terms of the constants \(k_1 \) and \(k_2 \). We observe that the left side of (5.55) is the same of that of Example 5.9. Therefore, the natural response is the same, that is, it has the form

\[
y_N = k_1 e^{-2t} + k_2 e^{-3t}
\]

(5.56)

Next, to find the forced response and we assume a solution of the form

\[
y_F = A\cos 5t
\]

(5.57)

We can find out whether our assumption is correct by substitution of the assumed solution of
Using the Method of Undetermined Coefficients for the Forced Response

(5.57) into the given ODE of (5.56). Then,

\[-25A \cos 5t - 25A \sin 5t + 6A \cos 5t = -19A \cos 5t - 25A \sin 5t = 4 \cos 5t \]

but this relation is invalid since by equating cosine and sine terms, we find that \(A = -4/19 \) and also \(A = 0 \). This inconsistency is a result of our failure to recognize that the derivatives of \(A\cos 5t \) produce new terms of the form \(B\sin 5t \) and these terms must be included in the forced response. Accordingly, we let

\[y_F = k_3 \sin 5t + k_4 \cos 5t \]
(5.58)

and by substitution into (5.54) we get

\[-25k_3 \sin 5t - 25k_4 \cos 5t + 25k_3 \cos 5t - 25k_4 \sin 5t + 6k_3 \sin 5t + 6k_4 \cos 5t = 4 \cos 5t \]

Collecting like terms and equating sine and cosine terms, we obtain the following set of equations

\[19k_3 + 25k_4 = 0 \]
\[25k_3 - 19k_4 = 4 \]
(5.59)

We use MATLAB to solve (5.59)

\textbf{format rat; \{k3 k4\}=solve(19*x+25*y, 25*x−19*y−4)}

\(k3 = 50/493 \)
\(k4 = -38/493 \)

Therefore, the total solution is

\[y(t) = y_N + y_F(t) = k_1 e^{-2t} + k_2 e^{-3t} + \frac{50}{493} \sin 5t + \frac{-38}{493} \cos 5t \]
(5.60)

Check with MATLAB:

\(y=\text{dsolve('D2y+5*Dy+6*y=4*cos(5*t)'); y=\text{simple}(y)} \)

\(y = -\frac{38}{493} \cos(5*t) + \frac{50}{493} \sin(5*t) + C1 \exp(-3*t) + C2 \exp(-2*t) \)

In most engineering problems the right side of the non-homogeneous ODE consists of elementary functions such as \(k \) (constant), \(x^n \) where \(n \) is a positive integer, \(e^{kx} \), \(\cos kx \), \(\sin kx \), and linear combinations of these. Table 5.1 summarizes the forms of the forced response for a second order ODE with constant coefficients.

We must remember that if \(f(t) \) is the sum of several terms, the most general form of the forced response \(y_F(t) \) is the linear combination of these terms. Also, if a term in \(y_F(t) \) is a duplicate of a
term in the natural response \(y_N(t) \), we must multiply \(y_F(t) \) by the lowest power of \(t \) that will eliminate the duplication.

Example 5.11

Find the total solution of the ODE

\[
\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 4y = te^{-2t} - e^{-2t} \tag{5.61}
\]

Solution:

No initial conditions are given; therefore we will express solution in terms of the constants \(k_1 \) and \(k_2 \). The roots of the characteristic equation are equal, that is, \(s_1 = s_2 = -2 \), and thus the natural response has the form

\[
y_N = k_1e^{-2t} + k_2te^{-2t} \tag{5.62}
\]

To find the forced response (particular solution), we refer to the table of the previous page and from the last row we choose the term \(kt^n e^{rt} \cos \alpha t \). This term with \(n = 1, r = -2, \) and \(\alpha = 0 \), reduces to \(kte^{-2t} \). Therefore the forced response will have the form

\[
y_F = (k_3 + k_4)e^{-2t} \tag{5.63}
\]

But the terms \(e^{-2t} \) and \(te^{-2t} \) are also present in (5.61); therefore, we multiply (5.62) by \(t^2 \) to
obtain a suitable form for the forced response which now is

\[y_F = (k_3 t^3 + k_4 t^2)e^{-2t} \]

(5.64)

Now, we need to evaluate the constants \(k_3 \) and \(k_4 \). This is done by substituting (5.64) into the given ODE of (5.61) and equating with the right side. We use MATLAB to do the computations as shown below.

```matlab
syms t k3 k4 % Define symbolic variables
f0=(k3*t^3+k4*t^2)*exp(-2*t); % Forced response (5.64)
f1=diff(f0); f1=simple(f1) % Compute and simplify first derivative
f1 =
-2*t*exp(-2*t)*(3*k3*t-2*k4+2*k3*t^2+2*k4*t)
f2=diff(f0,2); f2=simple(f2) % Compute and simplify second derivative
f2 =
2*exp(-2*t)*(3*k3*t+k4-6*k3*t^2-4*k4*t+2*k3*t^3+2*k4*t^2)
f=f2+4*f1+4*f0; f=simple(f) % Form and simplify the left side of the given ODE
f = 2*(3*k3*t+k4)*exp(-2*t)
```

Finally, we equate \(f \) above with the right side of the given ODE, that is

\[2(3k_3 t + k_4)e^{-2t} = te^{-2t} - e^{-2t} \]

(5.65)

and we find \(k_3 = 1/6 \) and \(k_4 = -1/2 \). By substitution of these values into (5.64) and combining the forced response with the natural response, we get the total solution

\[y(t) = k_1 e^{-2t} + k_2 te^{-2t} + \frac{1}{6} t^3 e^{-2t} - \frac{1}{2} t^2 e^{-2t} \]

(5.66)

We verify this solution with MATLAB as follows:

```matlab
z=dsolve('D2y+4*Dy+4*y=t*exp(-2*t)-exp(-2*t)')
z =
1/6*exp(-2*t)*t^3-1/2*exp(-2*t)*t^2+C1*exp(-2*t)+C2*t*exp(-2*t)
```

5.6 Using the Method of Variation of Parameters for the Forced Response

In certain non-homogeneous ODEs, the right side \(f(t) \) cannot be determined by the method of undetermined coefficients. For these ODEs we must use the method of variation of parameters. This method will work with all linear equations including those with variable coefficients such as
provided that the general form of the natural response is known. Our discussion will be restricted to second order ODEs with constant coefficients.

The method of variation of parameters replaces the constants \(k_1 \) and \(k_2 \) by two variables \(u_1 \) and \(u_2 \) that satisfy the following three relations:

\[
\begin{align*}
\frac{du_1}{dt} y_1 + \frac{du_2}{dt} y_2 &= 0 \quad (5.69) \\
\frac{dy_1}{dt} \cdot \frac{du_1}{dt} + \frac{dy_2}{dt} \cdot \frac{du_2}{dt} &= f(t) \quad (5.70)
\end{align*}
\]

Simultaneous solution of (5.68) and (5.69) will yield the values of \(\frac{du_1}{dt} \) and \(\frac{du_2}{dt} \); then, integration of these will produce \(u_1 \) and \(u_2 \), which when substituted into (5.67) will yield the total solution.

Example 5.12

Find the total solution of

\[
\frac{d^2 y}{dt^2} + \alpha(t) \frac{dy}{dt} + \beta(t) y = f(t) \quad (5.67)
\]

in terms of the constants \(k_1 \) and \(k_2 \) by the

a. method of undetermined coefficients

b. method of variation of parameters

Solution:

With either method, we must first find the natural response. The characteristic equation yields the roots \(s_1 = -1 \) and \(s_2 = -3 \). Therefore, the natural response is

\[
y_N = k_1 e^{-t} + k_2 e^{-3t} \quad (5.72)
\]

a. Using the method of undetermined coefficients we let \(y_F = k_3 \) (a constant). Then, by substitution into (5.70) we get \(k_3 = 4 \) and thus the total solution is
Using the Method of Variation of Parameters for the Forced Response

\[y(t) = y_N + y_F = k_1e^{-t} + k_2e^{-3t} + 4 \quad (5.73) \]

b. With the method of variation of parameters we start with the natural response found above as (5.71) and we let the solutions \(y_1 \) and \(y_2 \) be represented as

\[y_1 = e^{-t} \quad \text{and} \quad y_2 = e^{-3t} \quad (5.74) \]

Then by (5.68), the total solution is

\[y = u_1y_1 + u_2y_2 \]

or

\[y = u_1e^{-t} + u_2e^{-3t} \quad (5.75) \]

Also, from (5.69),

\[\frac{du_1}{dt}y_1 + \frac{du_2}{dt}y_2 = 0 \]

or

\[\frac{du_1}{dt}e^{-t} + \frac{du_2}{dt}e^{-3t} = 0 \quad (5.76) \]

and from (5.70),

\[\frac{du_1}{dt}\frac{dy_1}{dt} + \frac{du_2}{dt}\frac{dy_2}{dt} = f(t) \]

or

\[\frac{du_1}{dt}(-e^{-t}) + \frac{du_2}{dt}(-3e^{-3t}) = 12 \quad (5.77) \]

Next, we find \(\frac{du_1}{dt} \) and \(\frac{du_2}{dt} \) by Cramer’s rule as follows:

\[
\frac{du_1}{dt} = \begin{vmatrix}
0 & e^{-3t} \\
12 & -3e^{-3t} \\
e^{-t} & e^{-3t} \\
-e^{-t} & -3e^{-3t}
\end{vmatrix} = \frac{-12e^{-3t}}{-3e^{-4t} + e^{-4t}} = \frac{-12e^{-3t}}{-2e^{-4t}} = 6e^t \quad (5.78)
\]

and

\[
\frac{du_2}{dt} = \begin{vmatrix}
e^{-t} & 0 \\
-e^{-t} & 12 \\
-2e^{-4t} & -2e^{-4t}
\end{vmatrix} = \frac{12e^{-t}}{-2e^{-4t}} = -6e^3t \quad (5.79)
\]

Now, integration of (5.78) and (5.79) and substitution into (5.75) yields
We observe that the last expression in (5.81) is the same as (5.73) of part (a).

Check with MATLAB:

```matlab
y = dsolve('D2y+4*Dy+3*y=12')
```

\[y = \frac{4\exp(t)+C_1\exp(-3t)*\exp(t)+C_2}{\exp(t)} \]

Example 5.13

Find the total solution of

\[\frac{d^2y}{dt^2} + 4y = \tan 2t \]

in terms of the constants \(k_1 \) and \(k_2 \) by any method.

Solution:

This ODE cannot be solved by the method of undetermined coefficients; therefore, we will use the method of variation of parameters.

The characteristic equation is \(s^2 + 4 = 0 \) from which \(s = \pm j2 \) and thus the natural response is

\[y_N = k_1 e^{j2t} + k_2 e^{-j2t} \]

We let

\[y_1 = \cos 2t \quad \text{and} \quad y_2 = \sin 2t \]

Then, by (5.68) the solution is

\[y = u_1 y_1 + u_2 y_2 = u_1 \cos 2t + u_2 \sin 2t \]

Also, from (5.69),

\[\frac{du_1}{dt} y_1 + \frac{du_2}{dt} y_2 = 0 \]

or

\[\frac{du_1}{dt} \cos 2t + \frac{du_2}{dt} \sin 2t = 0 \]

(5.86)
and from (5.70),
\[
\frac{du_1}{dt} \cdot \frac{dy_1}{dt} + \frac{du_2}{dt} \cdot \frac{dy_2}{dt} = f(t) = \frac{du_1}{dt}(-2\sin 2t) + \frac{du_2}{dt}(2\cos 2t) = \tan 2t
\] (5.87)

Next, we find \(\frac{du_1}{dt} \) and \(\frac{du_2}{dt} \) by Cramer’s rule as follows:
\[
\frac{du_1}{dt} = \begin{vmatrix}
0 & \sin 2t \\
\tan 2t & 2\cos 2t \\
\cos 2t & \sin 2t \\
-2\sin 2t & 2\cos 2t
\end{vmatrix} = \frac{-\sin^2 2t}{\cos 2t} = \frac{-\sin^2 2t}{2\cos 2t}
\] (5.88)

and
\[
\frac{du_2}{dt} = \begin{vmatrix}
\cos 2t & 0 \\
-2\sin 2t & \tan 2t
\end{vmatrix} = \frac{\sin 2t}{2}
\] (5.89)

Now, integration of (5.88) and (5.89) and substitution into (5.85) yields
\[
u_1 = \frac{1}{2} \int \frac{\sin^2 2t}{\cos 2t} dt = \frac{\sin 2t}{4} - \frac{1}{4} \ln(\sec 2t + \tan 2t) + k_1
\] (5.90)

\[
u_2 = \frac{1}{2} \int \sin 2t dt = -\frac{\cos 2t}{4} + k_2
\] (5.91)

\[
y = u_1y_1 + u_2y_2 = \frac{\sin 2t \cos 2t}{4} - \frac{1}{4} \cos 2t \ln(\sec 2t + \tan 2t) + k_1 \cos 2t - \frac{\sin 2t \cos 2t}{4} + k_2 \sin 2t
\] (5.92)

Check with MATLAB:
\[
y = \text{dsolve}('D2y+4*y=\tan(2*t)')
\]
\[
y = -1/4*\cos(2*t)*\log((1+\sin(2*t))/\cos(2*t)) + C1*\cos(2*t) + C2*\sin(2*t)
\]

5.7 Expressing Differential Equations in State Equation Form

A first order differential equation with constant coefficients has the form
\[
a_1 \frac{dy}{dt} + a_0 y(t) = x(t)
\] (5.93)

In a second order differential equation the highest order is a second derivative.

An nth-order differential equation can be resolved to n first-order simultaneous differential equa-
tions with a set of auxiliary variables called state variables. The resulting first-order differential equations are called state space equations, or simply state equations. The state variable method offers the advantage that it can also be used with non-linear and time-varying systems. However, our discussion will be limited to linear, time-invariant systems.

State equations can also be solved with numerical methods such as Taylor series and Runge-Kutta methods; these will be discussed in Chapter 9. The state variable method is best illustrated through several examples presented in this chapter.

Example 5.14

A system is described by the integro-differential equation

\[Ri + L \frac{di}{dt} + \frac{1}{C} \int_{-\infty}^{t} idt = e^{j\omega t} \]

(5.94)

Differentiating both sides and dividing by \(L \) we get

\[\frac{d^2 i}{dt^2} + \frac{R}{L} \frac{di}{dt} + \frac{1}{LC} i = \frac{1}{L} j\omega e^{j\omega t} \]

(5.95)

or

\[\frac{d^2 i}{dt^2} = \frac{R}{L} \frac{di}{dt} - \frac{1}{LC} i + \frac{1}{L} j\omega e^{j\omega t} \]

(5.96)

Next, we define two state variables \(x_1 \) and \(x_2 \) such that

\[x_1 = i \]

(5.97)

and

\[x_2 = \frac{di}{dt} = \frac{dx_1}{dt} = \dot{x}_1 \]

(5.98)

Then,

\[\dot{x}_2 = \frac{d^2 i}{dt^2} \]

(5.99)

where \(\dot{x}_k \) denotes the derivative of the state variable \(x_k \).

From (5.96) through (5.99), we obtain the state equations

\[\dot{x}_1 = x_2 \]

\[\dot{x}_2 = -\frac{R}{L} x_2 - \frac{1}{LC} x_1 + \frac{1}{L} j\omega e^{j\omega t} \]

(5.100)

It is convenient and customary to express the state equations in matrix form. Thus, we write the state equations of (5.100) as
Expressing Differential Equations in State Equation Form

\[
\begin{bmatrix}
\dot{x}_1 \\
\dot{x}_2
\end{bmatrix} =
\begin{bmatrix}
0 & I \\
\frac{-L}{LC} & \frac{-R}{L}
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} +
\begin{bmatrix}
0 \\
\frac{1}{L}j\omega e^{j\omega t}
\end{bmatrix} u
\]

(5.101)

We usually write (5.101) in a compact form as

\[
\dot{x} = Ax + bu
\]

(5.102)

where

\[
\dot{x} = \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix}, \quad A = \begin{bmatrix} 0 & I \\ \frac{-L}{LC} & \frac{-R}{L} \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \quad b = \begin{bmatrix} 0 \\ \frac{1}{L}j\omega e^{j\omega t} \end{bmatrix}, \text{ and } u = \text{any input}
\]

(5.103)

The output \(y(t)\) is expressed by the state equation

\[
y = Cx + du
\]

(5.104)

where \(C\) is another matrix, and \(d\) is a column vector. Therefore, the state representation of a system can be described by the pair of the state space equations

\[
\begin{align*}
\dot{x} &= Ax + bu \\
y &= Cx + du
\end{align*}
\]

(5.105)

The state space equations of (5.105) can be realized with the block diagram of Figure 5.1.

\[\text{Figure 5.4. Block diagram for the realization of the state equations of (5.105)}\]

We will learn how to solve the matrix equations of (5.105) in the subsequent sections.

\textbf{Example 5.15}

A fourth-order system is described by the differential equation
Chapter 5 Differential Equations, State Variables, and State Equations

\[
\frac{d^4 y}{dt^4} + a_3 \frac{d^3 y}{dt^3} + a_2 \frac{d^2 y}{dt^2} + a_1 \frac{dy}{dt} + a_0 y(t) = u(t) \tag{5.106}
\]

where \(y(t) \) is the output and \(u(t) \) is any input. Express (5.15) as a set of state equations.

Solution:

The differential equation of (5.106) is of fourth-order; therefore, we must define four state variables that will be used with the resulting four first-order state equations.

We denote the state variables as \(x_1, x_2, x_3, \) and \(x_4 \), and we relate them to the terms of the given differential equation as

\[
\begin{align*}
 x_1 &= y(t) \\
 x_2 &= \frac{dy}{dt} \\
 x_3 &= \frac{d^2 y}{dt^2} \\
 x_4 &= \frac{d^3 y}{dt^3}
\end{align*}
\tag{5.107}
\]

We observe that

\[
\begin{align*}
 \dot{x}_1 &= x_2 \\
 \dot{x}_2 &= x_3 \\
 \dot{x}_3 &= x_4 \\
 \frac{d^4 y}{dt^4} &= \dot{x}_4 = -a_0 x_1 - a_1 x_2 - a_2 x_3 - a_3 x_4 + u(t)
\end{align*}
\tag{5.108}
\]

and in matrix form

\[
\begin{bmatrix}
 \dot{x}_1 \\
 \dot{x}_2 \\
 \dot{x}_3 \\
 \dot{x}_4 \\
\end{bmatrix} =
\begin{bmatrix}
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1 \\
 -a_0 & -a_1 & -a_2 & -a_3 \\
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 x_2 \\
 x_3 \\
 x_4 \\
\end{bmatrix} +
\begin{bmatrix}
 0 \\
 0 \\
 0 \\
 u(t)
\end{bmatrix}
\tag{5.109}
\]

In compact form, (5.109) is written as

\[
\dot{x} = Ax + bu \tag{5.110}
\]

where

\[
\begin{bmatrix}
 \dot{x}_1 \\
 \dot{x}_2 \\
 \dot{x}_3 \\
 \dot{x}_4 \\
\end{bmatrix},
\begin{bmatrix}
 x_1 \\
 x_2 \\
 x_3 \\
 x_4 \\
\end{bmatrix},
\begin{bmatrix}
 b
\end{bmatrix},
\begin{bmatrix}
 u(t)
\end{bmatrix}
\]

and

\[
\begin{bmatrix}
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1 \\
 -a_0 & -a_1 & -a_2 & -a_3 \\
\end{bmatrix}
\]

5-26 Numerical Analysis Using MATLAB and Spreadsheets, Second Edition
Orchard Publications
5.8 Solution of Single State Equations

Let us consider the state equations

\[
\dot{x} = \alpha x + \beta u \\
y = k_1 x + k_2 u
\]
(5.111)

where \(\alpha, \beta, k_1,\) and \(k_2\) are scalar constants, and the initial condition, if non-zero, is denoted as

\[
x_0 = x(t_0)
\]
(5.112)

We will now prove that the solution of the first state equation in (5.111) is

\[
x(t) = e^{\alpha(t-t_0)} x_0 + e^{\alpha t} \int_{t_0}^{t} e^{-\alpha \tau} \beta u(\tau) d\tau
\]
(5.113)

Proof:

First, we must show that (5.113) satisfies the initial condition of (5.112). This is done by substitution of \(t = t_0\) in (5.113). Then,

\[
x(t_0) = e^{\alpha(t_0-t_0)} x_0 + e^{\alpha t_0} \int_{t_0}^{t_0} e^{-\alpha \tau} \beta u(\tau) d\tau
\]
(5.114)

The first term in the right side of (114) reduces to \(x_0\) since

\[
e^{\alpha(t_0-t_0)} x_0 = e^0 x_0 = x_0
\]
(5.115)

The second term of (5.114) is zero since the upper and lower limits of integration are the same. Therefore, (5.114) reduces to \(x(t_0) = x_0\) and thus the initial condition is satisfied.

Next, we must prove that (5.113) satisfies also the first equation in (5.111). To prove this, we differentiate (5.113) with respect to \(t\) and we get

\[
\dot{x}(t) = \frac{d}{dt} \left(e^{\alpha(t-t_0)} x_0 + e^{\alpha t} \int_{t_0}^{t} e^{-\alpha \tau} \beta u(\tau) d\tau \right)
\]

\[
\dot{x}(t) = \alpha e^{\alpha(t-t_0)} x_0 + \alpha e^{\alpha t} \int_{t_0}^{t} e^{-\alpha \tau} \beta u(\tau) d\tau + e^{\alpha t} \left[e^{-\alpha \tau} \beta u(\tau) \right]_{\tau = t}
\]

\[
= \alpha \left[e^{\alpha(t-t_0)} x_0 + e^{\alpha t} \int_{t_0}^{t} e^{-\alpha \tau} \beta u(\tau) d\tau \right] + e^{\alpha t} e^{-\alpha t} \beta u(t)
\]

\[
\dot{x}(t) = \alpha e^{\alpha(t-t_0)} x_0 + \int_{t_0}^{t} e^{\alpha(t-\tau)} \beta u(\tau) d\tau + \beta u(t)
\]
(5.116)
We observe that the bracketed terms of (5.116) are the same as the right side of the assumed solution of (5.113). Therefore,

\[\dot{x} = \alpha x + \beta u \]

and this is the same as the first equation of (5.111). The second equation of (5.111) is an algebraic equation whose coefficients are scalar constants.

In summary, if \(\alpha \) and \(\beta \) are scalar constants, the solution of

\[\dot{x} = \alpha x + \beta u \]

with initial condition

\[x_0 = x(t_0) \]

is obtained from the relation

\[x(t) = e^{\alpha(t-t_0)}x_0 + \int_{t_0}^{t} e^{-\alpha \tau} \beta u(\tau) d\tau \]

5.9 The State Transition Matrix

Let us again consider the state equations pair

\[
\begin{align*}
\dot{x} &= Ax + bu \\
y &= Cx + du
\end{align*}
\]

where for two or more simultaneous differential equations \(A \) and \(C \) are \(2 \times 2 \) or higher order matrices, and \(b \) and \(d \) are column vectors with two or more rows. In this section we will introduce the state transition matrix \(e^{At} \), and we will prove that the solution of the matrix differential equation

\[\dot{x} = Ax + bu \]

with initial conditions

\[x(t_0) = x_0 \]

is obtained from the relation

\[x(t) = e^{A(t-t_0)}x_0 + \int_{t_0}^{t} e^{-A \tau} bu(\tau) d\tau \]

Proof:

Let \(A \) be any \(n \times n \) matrix whose elements are constants. Then, another \(n \times n \) matrix denoted as \(\varphi(t) \), is said to be the state transition matrix of (5.34), if it is related to the matrix \(A \) as the matrix power series

\[
\varphi(t) = e^{At} = I + At + \frac{1}{2!} A^2 t^2 + \frac{1}{3!} A^3 t^3 + \ldots + \frac{1}{n!} A^n t^n
\]

\[(5.124) \]
\[\text{The State Transition Matrix} \]

where \(I \) is the \(n \times n \) identity matrix.

From (5.124), we find that

\[\varphi(0) = e^{A0} = I + A0 + \ldots = I \] (5.125)

Differentiation of (5.124) with respect to \(t \) yields

\[\varphi'(t) = \frac{d}{dt} e^{At} = 0 + A \cdot I + A^2 t + \ldots = A + A^2 t + \ldots \] (5.126)

and by comparison with (5.124) we get

\[\frac{d}{dt} e^{At} = Ae^{At} \] (5.127)

To prove that (5.123) is the solution of the first equation of (5.120), we must prove that it satisfies both the initial condition and the matrix differential equation. The initial condition is satisfied from the relation

\[x(t_0) = e^{A(t_0-t_0)} x_0 + e^{A0} \int_{t_0}^{t_0} e^{-A \tau} bu(\tau) d\tau = e^{A0} x_0 + 0 = Ix_0 = x_0 \] (5.128)

where we have used (5.125) for the initial condition. The integral is zero since the upper and lower limits of integration are the same.

To prove that the first equation of (5.120) is also satisfied, we differentiate the assumed solution

\[x(t) = e^{A(t-t_0)} x_0 + e^{A0} \int_{t_0}^{t} e^{-A \tau} bu(\tau) d\tau \]

with respect to \(t \) and we use (5.127), that is,

\[\frac{d}{dt} e^{At} = Ae^{At} \]

Then,

\[\dot{x}(t) = Ae^{A(t-t_0)} x_0 + Ae^{A0} \int_{t_0}^{t} e^{-A \tau} bu(\tau) d\tau + e^{A0} e^{-At} bu(t) \]

or

\[\dot{x}(t) = A \left[e^{A(t-t_0)} x_0 + e^{A0} \int_{t_0}^{t} e^{-A \tau} bu(\tau) d\tau \right] + e^{A0} e^{-At} bu(t) \] (5.129)

We recognize the bracketed terms in (5.129) as \(x(t) \), and the last term as \(bu(t) \). Thus, the expression (5.129) reduces to

\[\dot{x}(t) = Ax + bu \]
In summary, if A is an $n \times n$ matrix whose elements are constants, $n \geq 2$, and b is a column vector with n elements, the solution of

$$\dot{x}(t) = Ax + bu \quad (5.130)$$

with initial condition

$$x_0 = x(t_0) \quad (5.131)$$

is

$$x(t) = e^{A(t-t_0)}x_0 + e^{At} \int_{t_0}^{t} e^{-A\tau}bu(\tau)d\tau \quad (5.132)$$

Therefore, the solution of second or higher order systems using the state variable method, entails the computation of the state transition matrix e^{At}, and integration of (5.132).

5.10 Computation of the State Transition Matrix e^{At}

Let A be an $n \times n$ matrix, and I be the $n \times n$ identity matrix. By definition, the eigenvalues λ_i, $i = 1, 2, \ldots, n$ of A are the roots of the nth order polynomial

$$\det[A - \lambda I] = 0 \quad (5.133)$$

We recall that expansion of a determinant produces a polynomial. The roots of the polynomial of (5.133) can be real (unequal or equal), or complex numbers.

Evaluation of the state transition matrix e^{At} is based on the Cayley-Hamilton theorem. This theorem states that a matrix can be expressed as an $(n-1)th$ degree polynomial in terms of the matrix A as

$$e^{At} = a_0I + a_1A + a_2A^2 + \ldots + a_{n-1}A^{n-1} \quad (5.134)$$

where the coefficients a_i are functions of the eigenvalues λ. We accept (5.134) without proving it. The proof can be found in Linear Algebra and Matrix Theory textbooks.

Since the coefficients a_i are functions of the eigenvalues λ, we must consider the following cases:

Case I: Distinct Eigenvalues (Real or Complex)

If $\lambda_1 \neq \lambda_2 \neq \lambda_3 \neq \ldots \neq \lambda_n$, that is, if all eigenvalues of a given matrix A are distinct, the coefficients a_i are found from the simultaneous solution of the following system of equations:
Example 5.16

Compute the state transition matrix e^{At} given that $A = \begin{bmatrix} -2 & 1 \\ 0 & -1 \end{bmatrix}$

Solution:

We must first find the eigenvalues λ of the given matrix A. These are found from the expansion of

$$\det[A - \lambda I] = 0$$

For this example,

$$\det[A - \lambda I] = \det \left(\begin{bmatrix} -2 & 1 \\ 0 & -1 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right) = \det \begin{bmatrix} -2 - \lambda & 1 \\ 0 & -1 - \lambda \end{bmatrix} = 0$$

or

$$(\lambda + 1)(\lambda + 2) = 0$$

Therefore,

$$\lambda_1 = -1 \quad \text{and} \quad \lambda_2 = -2$$

Next, we must find the coefficients a_i of (5.134). Since A is a 2×2 matrix, we only need to consider the first two terms of that relation, that is,

$$e^{At} = a_0 I + a_1 A$$

The coefficients a_0 and a_1 are found from (5.137). For this example,

$$a_0 + a_1 \lambda_1 = e^{\lambda_1 t}$$
$$a_0 + a_1 \lambda_2 = e^{\lambda_2 t}$$

or

$$a_0 + a_1(-1) = e^{-t}$$
$$a_0 + a_1(-2) = e^{-2t}$$

(5.138)
Simultaneous solution of (5.138) yields

\[a_0 = 2e^{-t} - e^{-2t} \]
\[a_1 = e^{-t} - e^{-2t} \]

and by substitution into (5.137),

\[e^{At} = (2e^{-t} - e^{-2t}) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + (e^{-t} - e^{-2t}) \begin{bmatrix} -2 & 1 \\ 0 & -1 \end{bmatrix} \]

or

\[e^{At} = \begin{bmatrix} e^{-2t} & e^{-t} - e^{-2t} \\ 0 & e^{-t} \end{bmatrix} \]

In summary, we compute the state transition matrix \(e^{At} \) for a given matrix \(A \) using the following procedure:

1. We find the eigenvalues \(\lambda \) from \(\det[A - \lambda I] = 0 \). We can write \([A - \lambda I] \) at once by subtracting \(\lambda \) from each of the main diagonal elements of \(A \). If the dimension of \(A \) is a \(2 \times 2 \) matrix, it will yield two eigenvalues; if it is a \(3 \times 3 \) matrix, it will yield three eigenvalues, and so on. If the eigenvalues are distinct, we perform steps 2 through 4; otherwise we refer to Case II below.

2. If the dimension of \(A \) is a \(2 \times 2 \) matrix, we use only the first 2 terms of the right side of the state transition matrix

\[e^{At} = a_0 I + a_1 A + a_2 A^2 + \ldots + a_{n-1} A^{n-1} \]

\[(5.141) \]

If \(A \) matrix is a \(3 \times 3 \) matrix, we use the first 3 terms, and so on.

3. We obtain the \(a_i \) coefficients from

\[a_0 + a_1 \lambda_1 + a_2 \lambda_1^2 + \ldots + a_{n-1} \lambda_1^{n-1} = e^{\lambda_1 t} \]

\[a_0 + a_1 \lambda_2 + a_2 \lambda_2^2 + \ldots + a_{n-1} \lambda_2^{n-1} = e^{\lambda_2 t} \]

\[\ldots \]

\[a_0 + a_1 \lambda_n + a_2 \lambda_n^2 + \ldots + a_{n-1} \lambda_n^{n-1} = e^{\lambda_n t} \]

We use as many equations as the number of the eigenvalues, and we solve for the coefficients \(a_i \).

4. We substitute the \(a_i \) coefficients into the state transition matrix of (5.141), and we simplify.
Example 5.17

Compute the state transition matrix \(e^{At} \) given that

\[
A = \begin{bmatrix}
5 & 7 & -5 \\
0 & 4 & -1 \\
2 & 8 & -3
\end{bmatrix}
\] (5.142)

Solution:

1. We first compute the eigenvalues from \(\det[A - \lambda I] = 0 \). We obtain \([A - \lambda I] \) at once, by subtracting \(\lambda \) from each of the main diagonal elements of \(A \). Then,

\[
\det[A - \lambda I] = \det \begin{bmatrix}
5 - \lambda & 7 & -5 \\
0 & 4 - \lambda & -1 \\
2 & 8 & -3 - \lambda
\end{bmatrix} = 0
\] (5.143)

and expansion of this determinant yields the polynomial

\[
\lambda^3 - 6\lambda^2 + 11\lambda - 6 = 0
\] (5.144)

We will use MATLAB `roots(p)` function to obtain the roots of (5.57).

\[p=[1 \ -6 \ 11 \ -6]; r=roots(p);\text{fprintf('lambda1 = %5.2f \t', r(1));... fprintf('lambda2 = %5.2f \t', r(2)); fprintf('lambda3 = %5.2f', r(3))}\]

\[
\text{lambda1} = 3.00 \quad \text{lambda2} = 2.00 \quad \text{lambda3} = 1.00
\]

and thus the eigenvalues are

\[
\lambda_1 = 1 \quad \lambda_2 = 2 \quad \lambda_3 = 3
\] (5.145)

2. Since \(A \) is a 3 x 3 matrix, we need to use the first 3 terms of (5.134), that is,

\[
e^{At} = a_0 I + a_1 A + a_2 A^2
\] (5.146)

3. We obtain the coefficients \(a_0, a_1, \) and \(a_2 \) from

\[
a_0 + a_1 \lambda_1 + a_2 \lambda_1^2 = e^{\lambda_1 t}
\]

\[
a_0 + a_1 \lambda_2 + a_2 \lambda_2^2 = e^{\lambda_2 t}
\]

\[
a_0 + a_1 \lambda_3 + a_2 \lambda_3^2 = e^{\lambda_3 t}
\]

or
We will use the following MATLAB code for the solution of (5.147).

\[
\begin{align*}
B &= \text{sym}([1 \ 1 \ 1 \ 2 \ 4; 1 \ 3 \ 9]); \\
b &= \text{sym}([\exp(t); \exp(2*t); \exp(3*t)]); \\
a &= B \backslash b; \\
\text{fprintf('\n');} \\
\text{disp('a0 = ')}; \\
\text{disp(a(1));} \\
\text{disp('a1 = ');} \\
\text{disp(a(2));} \\
\text{disp('a2 = ');} \\
\text{disp(a(3))}
\end{align*}
\]

\[
\begin{align*}
a_0 &= 3\exp(t) - 3\exp(2*t) + \exp(3*t) \\
a_1 &= -5/2\exp(t) + 4\exp(2*t) - 3/2\exp(3*t) \\
a_2 &= 1/2\exp(t) - \exp(2*t) + 1/2\exp(3*t)
\end{align*}
\]

Thus,

\[
\begin{align*}
a_0 &= 3e^t - 3e^{2t} + e^{3t} \\
a_1 &= -5/2e^t + 4e^{2t} - 3/2e^{3t} \\
a_2 &= 1/2e^t - e^{2t} + 1/2e^{3t}
\end{align*}
\]

4. We also use MATLAB to perform the substitution into the state transition matrix, and to perform the matrix multiplications. The code is shown below.

\[
\begin{align*}
s\text{yms t; a0 = 3*exp(t)+exp(3*t)-3*exp(2*t); a1 = -5/2*exp(t)-3/2*exp(3*t)+4*exp(2*t); a2 = 1/2*exp(t)+1/2*exp(3*t)-exp(2*t);} \\
A &= [5 \ 7; 0 \ 4; 2 \ 8; -3]; \\
eAt &= a0*\text{eye(3)}+a1*A+a2*A^2
\end{align*}
\]

\[
\begin{align*}
eAt &= \begin{bmatrix}
-2e^t+2e^{2t}+e^{3t} & -6e^t+5e^{2t}+e^{3t} & 4e^t-3e^{2t}-e^{3t} \\
-e^t+2e^{2t}-e^{3t} & -3e^t+5e^{2t}-e^{3t} & 2e^t-3e^{2t}+e^{3t} \\
-3e^t+4e^{2t}-e^{3t} & -9e^t+10e^{2t}-e^{3t} & 6e^t-6e^{2t}+e^{3t}
\end{bmatrix}
\end{align*}
\]
Computation of the State Transition Matrix

Case II: Multiple Eigenvalues

In this case, we will assume that the polynomial of

\[\det[A - \lambda I] = 0 \]

has \(n \) roots, and \(m \) of these roots are equal. In other words, the roots are

\[\lambda_1 = \lambda_2 = \lambda_3 \ldots = \lambda_m, \lambda_{m+1}, \lambda_n \]

(5.150)

The coefficients \(a_i \) of the state transition matrix

\[e^{At} = a_0 I + a_1 A + a_2 A^2 + \ldots + a_{n-1} A^{n-1} \]

(5.151)

are found from the simultaneous solution of the system of equations of (5.65) below.

\[
\begin{align*}
 a_0 + a_1 \lambda_1 + a_2 \lambda_1^2 + \ldots + a_{n-1} \lambda_1^{n-1} &= e^{\lambda_1 t} \\
 \frac{d}{d\lambda_1} (a_0 + a_1 \lambda_1 + a_2 \lambda_1^2 + \ldots + a_{n-1} \lambda_1^{n-1}) &= \frac{d}{d\lambda_1} e^{\lambda_1 t} \\
 \frac{d^2}{d\lambda_1^2} (a_0 + a_1 \lambda_1 + a_2 \lambda_1^2 + \ldots + a_{n-1} \lambda_1^{n-1}) &= \frac{d^2}{d\lambda_1^2} e^{\lambda_1 t} \\
 \vdots \hspace{2cm} & \ldots \\
 \frac{d^{m-1}}{d\lambda_1^{m-1}} (a_0 + a_1 \lambda_1 + a_2 \lambda_1^2 + \ldots + a_{n-1} \lambda_1^{n-1}) &= \frac{d^{m-1}}{d\lambda_1^{m-1}} e^{\lambda_1 t} \\
 a_0 + a_1 \lambda_{m+1} + a_2 \lambda_{m+1}^2 + \ldots + a_{n-1} \lambda_{m+1}^{n-1} &= e^{\lambda_{m+1} t} \\
 \vdots \hspace{2cm} & \ldots \\
 a_0 + a_1 \lambda_n + a_2 \lambda_n^2 + \ldots + a_{n-1} \lambda_n^{n-1} &= e^{\lambda_n t}
\end{align*}
\]

(5.152)

Example 5.18

Compute the state transition matrix \(e^{At} \) given that

\[A = \begin{bmatrix} -1 & 0 \\ 2 & -1 \end{bmatrix} \]

Solution:

1. We first find the eigenvalues \(\lambda \) of the matrix \(A \) and these are found from the polynomial of

\[\det[A - \lambda I] = 0 \]. For this example,
Chapter 5 Differential Equations, State Variables, and State Equations

\[\det[A - \lambda I] = \det \begin{bmatrix} -1 - \lambda & 0 \\ 2 & -1 - \lambda \end{bmatrix} = 0 \]
\[= (-1 - \lambda)(-1 - \lambda) = 0 \]
\[= (\lambda + 1)^2 = 0 \]

and thus,
\[\lambda_1 = \lambda_2 = -1 \]

2. Since \(A \) is a \(2 \times 2 \) matrix, we only need the first two terms of the state transition matrix, that is,
\[e^{At} = a_0 I + a_1 A \]
(5.153)

3. We find \(a_0 \) and \(a_1 \) from (5.65). For this example,
\[a_0 + a_1 \lambda_1 = e^{\lambda_1 t} \]
\[\frac{d}{d\lambda_1}(a_0 + a_1 \lambda_1) = \frac{d}{d\lambda_1} e^{\lambda_1 t} \]
or
\[a_0 + a_1 \lambda_1 = e^{\lambda_1 t} \]
\[a_1 = te^{\lambda_1 t} \]

and by substitution with \(\lambda_1 = \lambda_2 = -1 \), we get
\[a_0 - a_1 = e^{-t} \]
\[a_1 = te^{-t} \]

Simultaneous solution of the last two equations yields
\[a_0 = e^{-t} + te^{-t} \]
(5.154)
\[a_1 = te^{-t} \]

4. By substitution of (5.67) into (5.66), we get
\[e^{At} = (e^{-t} + te^{-t}) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + te^{-t} \begin{bmatrix} -1 & 0 \\ 2 & -1 \end{bmatrix} = e^{At} = \begin{bmatrix} e^{-t} & 0 \\ 2te^{-t} & e^{-t} \end{bmatrix} \]
(5.155)

We can use the MATLAB \texttt{eig(x)} function to find the eigenvalues of an \(n \times n \) matrix. To find out how it is used, we invoke the \texttt{help eig} command.
We will first use MATLAB to verify the values of the eigenvalues found in Examples 5.6 through 5.8, and we will briefly discuss eigenvectors on the next section.

For Example 5.6

\[A = \begin{bmatrix} -2 & 1 \\ 0 & -1 \end{bmatrix}; \text{lambda}=\text{eig}(A) \]

\[\text{lambda} = \\
-2 \\
-1 \]

For Example 5.7

\[B = \begin{bmatrix} 5 & 7 & -5 \\ 0 & 4 & -1 \\ 2 & 8 & -3 \end{bmatrix}; \text{lambda}=\text{eig}(B) \]

\[\text{lambda} = \\
1.0000 \\
3.0000 \\
2.0000 \]

For Example 5.8

\[C = \begin{bmatrix} -1 & 0 \\ 2 & -1 \end{bmatrix}; \text{lambda}=\text{eig}(C) \]

\[\text{lambda} = \\
-1 \\
-1 \]

5.11 Eigenvectors

Consider the relation

\[AX = \lambda X \quad (5.156) \]

where \(A \) is an \(n \times n \) matrix, \(X \) is a column vector, and \(\lambda \) is a scalar number. We can express this relation in matrix form as

\[
\begin{bmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{bmatrix} =
\lambda
\begin{bmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{bmatrix}
\]

We write (5.157) as

\[(A-\lambda I)X = 0 \quad (5.158) \]

or
The equations of (5.159) will have non-trivial solutions if and only if its determinant is zero* , that is, if

\[
(a_{11} - \lambda)x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = 0 \\
a_{21}x_1 + (a_{22} - \lambda)x_2 + \ldots + a_{2n}x_n = 0 \\
\ldots \\
a_{n1}x_1 + a_{n2}x_2 + \ldots + (a_{nn} - \lambda)x_n = 0
\]

The equations of (5.159) will have non-trivial solutions if and only if its determinant is zero* , that is, if

\[
\begin{vmatrix}
(a_{11} - \lambda) & a_{12} & \ldots & a_{1n} \\
a_{21} & (a_{22} - \lambda) & \ldots & a_{2n} \\
\ldots & \ldots & \ldots & \ldots \\
a_{n1} & a_{n2} & \ldots & (a_{nn} - \lambda)
\end{vmatrix} = 0
\]

Expansion of the determinant of (5.160) results in a polynomial equation of degree \(n \) in \(\lambda \), and it is called the characteristic equation.

We can express (5.73) in a compact form as

\[
det(A - \lambda I) = 0
\]

As we know, the roots \(\lambda \) of the characteristic equation are the eigenvalues of the matrix \(A \), and corresponding to each eigenvalue \(\lambda \), there is a non-trivial solution of the column vector \(X \), i.e., \(X \neq 0 \). This vector \(X \) is called eigenvector. Obviously, there is a different eigenvector for each eigenvalue. Eigenvectors are generally expressed as unit eigenvectors, that is, they are normalized to unit length. This is done by dividing each component of the eigenvector by the square root of the sum of the squares of their components, so that the sum of the squares of their components is equal to unity.

In many engineering applications the unit eigenvectors are chosen such that \(X \cdot X^T = I \) where \(X^T \) is the transpose of the eigenvector \(X \), and \(I \) is the identity matrix.

Two vectors \(X \) and \(Y \) are said to be orthogonal if their inner (dot) product is zero. A set of eigenvectors constitutes an orthonormal basis if the set is normalized (expressed as unit eigenvectors) and these vector are mutually orthogonal. An orthonormal basis can be formed with the Gram-Schmidt Orthogonalization Procedure; we will discuss it in Chapter 14.

The example that follows, illustrates the relationships between a matrix \(A \), its eigenvalues, and eigenvectors.

* This is because we want the vector \(X \) in (5.158) to be a non-zero vector and the product \((A - \lambda I)X \) to be zero.
Example 5.19

Given the matrix

\[A = \begin{bmatrix} 5 & 7 & -5 \\ 0 & 4 & -1 \\ 2 & 8 & -3 \end{bmatrix} \]

a. Find the eigenvalues of \(A \)

b. Find eigenvectors corresponding to each eigenvalue of \(A \)

c. Form a set of unit eigenvectors using the eigenvectors of part (b).

Solution:

a. This is the same matrix as in Example 5.17, where we found the eigenvalues to be

\[\lambda_1 = 1 \quad \lambda_2 = 2 \quad \lambda_3 = 3 \]

b. We start with

\[AX = \lambda X \]

and we let

\[X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \]

Then,

\[\begin{bmatrix} 5 & 7 & -5 \\ 0 & 4 & -1 \\ 2 & 8 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \lambda \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \]

or

\[\begin{bmatrix} 5x_1 & 7x_2 & -5x_3 \\ 0 & 4x_2 & -x_3 \\ 2x_1 & 8x_2 & -3x_3 \end{bmatrix} = \lambda \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \]

Equating corresponding rows and rearranging, we get

\[\begin{bmatrix} (5 - \lambda)x_1 & 7x_2 & -5x_3 \\ 0 & (4 - \lambda)x_2 & -3x_3 \\ 2x_1 & 8x_2 & -(3 - \lambda)x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \]

For \(\lambda = 1 \), (5.164) reduces to
By Cramé’s rule, or MATLAB, we get the indeterminate values

\[x_1 = 0/0 \quad x_2 = 0/0 \quad x_3 = 0/0 \]

(5.166)

Since the unknowns \(x_1, x_2, \) and \(x_3 \) are scalars, we can assume that one of these, say \(x_2 \), is known, and solve \(x_1 \) and \(x_3 \) in terms of \(x_2 \). Then, we get \(x_1 = 2x_2 \), and \(x_3 = 3x_2 \).

Therefore, an eigenvector for \(\lambda = 1 \) is

\[
X_{\lambda = 1} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2x_2 \\ x_2 \\ 3x_2 \end{bmatrix} = x_2 \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} = x_2 \lambda_1 \tag{5.167}
\]

since any eigenvector is a scalar multiple of the last vector in (5.167).

Similarly, for \(\lambda = 2 \), we get \(x_1 = x_2 \), and \(x_3 = 2x_2 \). Then, an eigenvector for \(\lambda = 2 \) is

\[
X_{\lambda = 2} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_2 \\ x_2 \\ 2x_2 \end{bmatrix} = x_2 \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} = x_2 \lambda_2 \tag{5.168}
\]

Finally, for \(\lambda = 3 \), we get \(x_1 = -x_2 \), and \(x_3 = x_2 \). Then, an eigenvector for \(\lambda = 3 \) is

\[
X_{\lambda = 3} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -x_2 \\ x_2 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix} = x_2 \lambda_3 \tag{5.169}
\]

c. We find the unit eigenvectors by dividing the components of each vector by the square root of the sum of the squares of the components. These are:

\[
\sqrt{2^2 + 1^2 + 3^2} = \sqrt{14}
\]

\[
\sqrt{1^2 + 1^2 + 2^2} = \sqrt{6}
\]

\[
\sqrt{(-1)^2 + 1^2 + 1^2} = \sqrt{3}
\]
The unit eigenvectors are

\[
\begin{align*}
\text{Unit } X_{\lambda_1} &= \begin{bmatrix} 2 \\ \sqrt{14} \end{bmatrix} \\
\text{Unit } X_{\lambda_2} &= \begin{bmatrix} 1 \\ \sqrt{6} \end{bmatrix} \\
\text{Unit } X_{\lambda_3} &= \begin{bmatrix} -1 \\ \sqrt{3} \end{bmatrix}
\end{align*}
\]

(5.170)

We observe that for the first unit eigenvector the sum of the squares is unity, that is,

\[
\left(\frac{2}{\sqrt{14}} \right)^2 + \left(\frac{1}{\sqrt{6}} \right)^2 + \left(\frac{3}{\sqrt{14}} \right)^2 = \frac{4}{14} + \frac{1}{14} + \frac{9}{14} = 1
\]

(5.171)

and the same is true for the other two unit eigenvectors in (5.170).

5.12 Summary

- Differential equations are classified by:

 Type - Ordinary or Partial

 Order - The highest order derivative which is included in the differential equation

 Degree - The exponent of the highest power of the highest order derivative after the differential equation has been cleared of any fractions or radicals in the dependent variable and its derivatives

- If the dependent variable \(y \) is a function of only a single variable \(x \), that is, if \(y = f(x) \), the differential equation which relates \(y \) and \(x \) is said to be an ordinary differential equation and it is abbreviated as ODE.

- If the dependent variable \(y \) is a function of two or more variables such as \(y = f(x, t) \), where \(x \) and \(t \) are independent variables, the differential equation that relates \(y, x, \) and \(t \) is said to be a partial differential equation and it is abbreviated as PDE.

- A function \(y = f(x) \) is a solution of a differential equation if the latter is satisfied when \(y \) and its derivatives are replaced throughout by \(f(x) \) and its corresponding derivatives. Also, the initial conditions must be satisfied.

- The ODE

\[
a_n \frac{d^n y}{dt^n} + a_{n-1} \frac{d^{n-1} y}{dt^{n-1}} + \ldots + a_1 \frac{dy}{dt} + a_0 y = b_m \frac{d^m x}{dt^m} + b_{m-1} \frac{d^{m-1} x}{dt^{m-1}} + \ldots + b_1 \frac{dx}{dt} + b_0 x
\]
is a non-homogeneous differential equation if the right side, known as forcing function, is not zero. If the forcing function is zero, the differential equation is referred to as homogeneous differential equation.

- The most general solution of an homogeneous ODE is the linear combination\[y_H(t) = k_1 y_1(t) + k_2 y_2(t) + k_3 y_3(t) + \cdots + k_n y_n(t) \]
where the subscript \(H\) is used to denote homogeneous and \(k_1, k_2, k_3, \ldots, k_n\) are arbitrary constants.

- Generally, in engineering the solution of the homogeneous ODE, also known as the complementary solution, is referred to as the natural response, and is denoted as \(y_N(t)\) or simply \(y_N\). The particular solution of a non-homogeneous ODE is referred to as the forced response, and is denoted as \(y_F(t)\) or simply \(y_F\). The total solution of the non-homogeneous ODE is the summation of the natural and forces responses, that is,\[y(t) = y_{Natural} + y_{Forced} = y_N + y_F \]

The natural response \(y_N\) contains arbitrary constants and these can be evaluated from the given initial conditions. The forced response \(y_F\), however, contains no arbitrary constants. It is imperative to remember that the arbitrary constants of the natural response must be evaluated from the total response.

- For an \(n\)th order homogeneous differential equation the solutions are\[y_1 = k_1 e^{s_1 t}, \quad y_2 = k_2 e^{s_2 t}, \quad y_3 = k_3 e^{s_3 t}, \ldots, \quad y_n = k_n e^{s_n t} \]
where \(s_1, s_2, \ldots, s_n\) are the solutions of the characteristic equation\[a_n s^n + a_{n-1} s^{n-1} + \cdots + a_1 s + a_0 = 0 \]
and \(a_n, a_{n-1}, \ldots, a_1, a_0\) are the constant coefficients of the ODE.

- If the roots of the characteristic equation are distinct, the \(n\) solutions of the natural response are independent and the most general solution is:\[y_N = k_1 e^{s_1 t} + k_2 e^{s_2 t} + \cdots + k_n e^{s_n t} \]

- If the solution of the characteristic equation contains \(m\) equal roots, the most general solution has the form:\[y_N = (k_1 + k_2 t + \cdots + k_m t^{m-1}) e^{s_1 t} + k_{n-m} e^{s_2 t} + \cdots + k_n e^{s_n t} \]
Summary

- If the characteristic equation contains complex roots, these occur as complex conjugate pairs. Thus, if one root is \(s_1 = -\alpha + j\beta \) where \(\alpha \) and \(\beta \) are real numbers, then another root is \(s_2 = -\alpha - j\beta \). Then, for two complex conjugate roots we evaluate the constants from the expressions
 \[
 k_1 e^{s_1 t} + k_2 e^{s_2 t} = e^{-\alpha t} (k_3 \cos \beta t + k_4 \sin \beta t) = e^{-\alpha t} k_5 \cos (\beta t + \phi)
 \]

- The forced response of a non-homogeneous ODE can be found by the method of undetermined coefficients or the method of variation of parameters.

- With the method of undetermined coefficients, the forced response is a function similar to the right side of the non-homogeneous ODE. The form of the forced response for second order non-homogeneous ODEs is given in Table 5.1.

- In certain non-homogeneous ODEs, the right side \(f(t) \) cannot be determined by the method of undetermined coefficients. For these ODEs we must use the method of variation of parameters. This method will work with all linear equations including those with variable coefficients provided that the general form of the natural response is known.

- For second order ODEs with constant coefficients, the method of variation of parameters replaces the constants \(k_1 \) and \(k_2 \) by two variables \(u_1 \) and \(u_2 \) that satisfy the following three relations:
 \[
 y' = u_1 y_1 + u_2 y_2
 \]
 \[
 \frac{du_1}{dt} y_1 + \frac{du_2}{dt} y_2 = 0
 \]
 \[
 \frac{du_1}{dt} \cdot \frac{dy_1}{dt} + \frac{du_2}{dt} \cdot \frac{dy_2}{dt} = f(t)
 \]

Simultaneous solution of last two expressions above will yield the values of \(\frac{du_1}{dt} \) and \(\frac{du_2}{dt} \); then, integration of these will produce \(u_1 \) and \(u_2 \), which when substituted into the first will yield the total solution.

- An nth-order differential equation can be resolved to \(n \) first-order simultaneous differential equations with a set of auxiliary variables called state variables. The resulting first-order differential equations are called state space equations, or simply state equations.

- The state representation of a system can be described by the pair of the of the state space equations
 \[
 \dot{x} = Ax + bu
 \]
 \[
 y = Cx + du
 \]
In a system of state equations of the form
\[\dot{x} = \alpha x + \beta u \]
\[y = k_1 x + k_2 u \]
where \(\alpha, \beta, k_1, \) and \(k_2 \) are scalar constants, and the initial condition, if non-zero is denoted as \(x_0 = x(t_0) \), the solution of the first state equation above is
\[x(t) = e^{\alpha(t-t_0)} x_0 + e^{\alpha t} \int_{t_0}^{t} e^{-\alpha \tau} \beta u(\tau) d\tau \]

In a system of state equations of the form
\[\dot{x} = Ax + bu \]
\[y = Cx + du \]
where for two or more simultaneous differential equations \(A \) and \(C \) are \(2 \times 2 \) or higher order matrices, and \(b \) and \(d \) are column vectors with two or more rows, the solution of the matrix differential equation \(\dot{x} = Ax + bu \) with initial conditions \(x(t_0) = x_0 \) is obtained from the relation
\[x(t) = e^{At-t_0} x_0 + e^{At} \int_{t_0}^{t} e^{-A\tau} bu(\tau) d\tau \]
where the state transition matrix \(e^{At} \) is defined as the matrix power series
\[\varphi(t) \equiv e^{At} = I + At + \frac{1}{2!} A^2 t^2 + \frac{1}{3!} A^3 t^3 + \ldots + \frac{1}{n!} A^n t^n \]
and \(I \) is the \(n \times n \) identity matrix.

If \(A \) is an \(n \times n \) matrix, and \(I \) be the \(n \times n \) identity matrix, the eigenvalues \(\lambda_i, i = 1, 2, \ldots, n \) of \(A \) are the roots of the \(n \)th order polynomial
\[\det[A - \lambda I] = 0 \]

Evaluation of the state transition matrix \(e^{At} \) is based on the Cayley-Hamilton theorem. This theorem states that a matrix can be expressed as an \((n-1)th\) degree polynomial in terms of the matrix \(A \) as
\[e^{At} = a_0 I + a_1 A + a_2 A^2 + \ldots + a_{n-1} A^{n-1} \]
where the coefficients \(a_i \) are functions of the eigenvalues \(\lambda \).
Summary

• If \(\lambda_1 \neq \lambda_2 \neq \lambda_3 \neq \ldots \neq \lambda_n \), that is, if all eigenvalues of a given matrix \(A \) are distinct, the coefficients \(a_i \) are found from the simultaneous solution of the following system of equations:

\[
\begin{align*}
a_0 + a_1 \lambda_1 + a_2 \lambda_1^2 + \ldots + a_{n-1} \lambda_1^{n-1} &= e^{\lambda_1 t} \\
ap_0 + a_1 \lambda_2 + a_2 \lambda_2^2 + \ldots + a_{n-1} \lambda_2^{n-1} &= e^{\lambda_2 t} \\
\vdots \\
a_0 + a_1 \lambda_n + a_2 \lambda_n^2 + \ldots + a_{n-1} \lambda_n^{n-1} &= e^{\lambda_n t}
\end{align*}
\]

• If the polynomial of \(\text{det}[A - \lambda I] = 0 \) has \(n \) roots, and \(m \) of these roots are equal, that is, if \(\lambda_1 = \lambda_2 = \lambda_3 = \ldots = \lambda_m, \lambda_{m+1}, \lambda_n \), the coefficients \(a_i \) of the state transition matrix

\[e^{At} = a_0 I + a_1 A + a_2 A^2 + \ldots + a_{n-1} A^{n-1} \]

are found from the simultaneous solution of the system of equations below.

\[
\begin{align*}
a_0 + a_1 \lambda_i + a_2 \lambda_i^2 + \ldots + a_{n-1} \lambda_i^{n-1} &= e^{\lambda_i t} \\
\frac{d}{d\lambda_i} (a_0 + a_1 \lambda_i + a_2 \lambda_i^2 + \ldots + a_{n-1} \lambda_i^{n-1}) &= \frac{d}{d\lambda_i} e^{\lambda_i t} \\
\frac{d^2}{d\lambda_i^2} (a_0 + a_1 \lambda_i + a_2 \lambda_i^2 + \ldots + a_{n-1} \lambda_i^{n-1}) &= \frac{d^2}{d\lambda_i^2} e^{\lambda_i t} \\
\vdots \\
\frac{d^{m-1}}{d\lambda_i^{m-1}} (a_0 + a_1 \lambda_i + a_2 \lambda_i^2 + \ldots + a_{n-1} \lambda_i^{n-1}) &= \frac{d^{m-1}}{d\lambda_i^{m-1}} e^{\lambda_i t} \\
a_0 + a_1 \lambda_{m+1} + a_2 \lambda_{m+1}^2 + \ldots + a_{n-1} \lambda_{m+1}^{n-1} &= e^{\lambda_{m+1} t} \\
\vdots \\
a_0 + a_1 \lambda_n + a_2 \lambda_n^2 + \ldots + a_{n-1} \lambda_n^{n-1} &= e^{\lambda_n t}
\end{align*}
\]

• We can use the MATLAB \texttt{eig(x)} function to find the eigenvalues of an \(n \times n \) matrix.

• If \(A \) is an \(n \times n \) matrix, \(X \) is a non-zero column vector, and \(\lambda \) is a scalar number, the vector \(X \) is called \textit{eigenvector}. Obviously, there is a different eigenvector for each eigenvalue. Eigenvectors are generally expressed as \textit{unit eigenvectors}, that is, they are normalized to unit length. This is done by dividing each component of the eigenvector by the square root of the sum of the squares of their components, so that the sum of the squares of their components is equal to unity.
5.13 Exercises

Solve the following ODEs by any method and verify your answers with MATLAB.

1. \[\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 3y = t - 1 \]

2. \[\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 3y = 4e^{-t} \]

3. \[\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + y = \cos^2 t \quad \text{Hint: Use } \cos^2 t = \frac{1}{2}(\cos 2t + 1) \]

4. \[\frac{d^2y}{dt^2} + y = \sec t \]

5. Express the integro-differential equation below as a matrix of state equations where \(k_1, k_2, \) and \(k_3 \) are constants.

\[\frac{dv}{dt} + k_3 \frac{dv}{dt} + k_2 y + k_1 \int_0^t v dt = \sin 3t + \cos 3t \]

6. Express the matrix of the state equations below as a single differential equation, and let \(x(y) = y(t) \).

\[\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \\ \dot{x}_4 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & -2 & -3 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} u(t) \]

7. Compute the eigenvalues of the matrices \(A, B, \) and \(C \) below.

\[A = \begin{bmatrix} 1 & 2 \\ 3 & -1 \end{bmatrix} \quad B = \begin{bmatrix} a & 0 \\ -a & b \end{bmatrix} \quad C = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} \]

Hint: One of the eigenvalues of matrix \(C \) is \(-1\).

8. Compute \(e^{At} \) given that

\[A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} \]
5.14 Solutions to Exercises

1. The characteristic equation of the homogeneous part is \(s^2 + 4s + 3 = 0 \) from which \(s_1 = -1 \) and \(s_2 = -3 \). Thus \(y_N = k_1e^{-t} + k_2e^{-3t} \). For the forced response, we refer to Table 5.1 and we assume a solution of the form \(y_F = k_3t + k_4 \) and the total solution is

\[
y = k_1e^{-t} + k_2e^{-3t} + k_3t + k_4
\]

The first and second derivatives of \(y \) are

\[
dy/dt = -k_1e^{-t} - 3k_2e^{-3t} + k_3
\]

\[
d^2y/dt^2 = k_1e^{-t} + 9k_2e^{-3t}
\]

and by substitution into the given ODE

\[
k_1e^{-t} + 9k_2e^{-3t} + 4(-k_1e^{-t} - 3k_2e^{-3t} + k_3) + 3(k_1e^{-t} + k_2e^{-3t} + k_3t + k_4) = t - 1
\]

Equating like terms we get

\[
4k_3 + 3k_3t + 3k_4 = t - 1
\]

\[
3k_3t = t
\]

\[
4k_3 + 3k_4 = -1
\]

and simultaneous solution of the last two yields \(k_3 = 1/3 \) and \(k_4 = -7/9 \). Therefore,

\[
y = k_1e^{-t} + k_2e^{-3t} + 1/3t - 7/9
\]

Check with MATLAB:

\[
y = \text{dsolve}('D2y+4*Dy+3*y=t-1'); y = \text{simple}(y)
\]

\[
y = -7/9+1/3*t+C1/\exp(t)+C2/\exp(t)^3
\]

2. The characteristic equation of the homogeneous part is the same as for Exercise 1 and thus \(y_N = k_1e^{-t} + k_2e^{-3t} \). For the forced response, we refer to Table 5.1 and we assume a solution of the form \(y_F = k_3te^{-t} \) where we multiplied \(e^{-t} \) by \(t \) to avoid the duplication with \(k_1e^{-t} \). By substitution of this assumed solution into the given ODE and using MATLAB to find the first and second derivatives we get:

\[
y = k_1e^{-t} + k_2e^{-3t} + k_3te^{-t}
\]
We will use MATLAB to find the first and second derivatives of this expression.

```matlab
syms t k3 % Define symbolic variables
y0=k3*t*exp(-t) % Assumed form of total solution
y1=diff(y0); f1=simple(y1) % Compute and simplify first derivative

f1 =
-k3*exp(-t) * (-1+t)
```

Thus, the first derivative of \(y \) is

\[
\frac{dy}{dt} = k_3 e^{-t} - k_3 t e^{-t}
\]

```matlab
y2=diff(y0,2); f2=simple(y2) % Compute and simplify second derivative

f2 =
k3*exp(-t) * (-2+t)
```

and the second derivative of \(y \) is

\[
\frac{d^2y}{dt^2} = -2k_3 e^{-t} + k_3 t e^{-t}
\]

```matlab
f=y2+4*y1+3*y0; f=simple(f) % Form and simplify the left side of the given ODE

f =
2*k3/exp(t)
```

and by substitution into the given ODE

\[
2k_3 e^{-t} = 4 e^{-t}
\]

or \(k_3 = 2 \). Therefore,

\[
y = k_1 e^{-t} + k_2 e^{-3t} + 2te^{-t}
\]

Check with MATLAB:

```matlab
y=dsolve('D2y+4*Dy+3*y=4*exp(-t)'); y=simple(y)
2*t/exp(t)-1/exp(t)+C1/exp(t)+C2/exp(t)^3
```

We observe that the second and third terms of the displayed expression above have the same form and thus they can be combined to form a single term \(C_3 / e^{3t} \).

3. The characteristic equation yields two equal roots \(s_1 = s_2 = -1 \) and thus the natural response has the form

\[
y_N = k_1 e^{-t} + k_2 e^{-t}
\]

For the forced response we assume a solution of the form

\[
y_F = k_3 \cos 2t + k_4 \sin 2t + k_5
\]
We will use MATLAB to find the first and second derivatives of this expression.

```plaintext
syms t k1 k2 k3 k4 k5 % Define symbolic variables
y0=k3*cos(2*t)+k4*sin(2*t)+k5; % Assumed form of total solution
y1=diff(y0); f1=simple(y1) % Compute and simplify first derivative
f1 =
-2*k3*sin(2*t)+2*k4*cos(2*t)

Thus, the first derivative of \( y_F \) is

\[
\frac{dy_F}{dt} = -2k_3\sin 2t + 2k_4\cos 2t
\]

y2=diff(y0,2); f2=simple(y2) % Compute and simplify second derivative
f2 =
-4*k3*cos(2*t)-4*k4*sin(2*t)

and the second derivative of \( y \) is

\[
\frac{d^2y}{dt^2} = -4k_3\cos 2t-4k_4\sin 2t
\]

f=y2+2*y1+y0; f=simple(f) % Form and simplify the left side of the given ODE
f =
-3*k3*cos(2*t)-3*k4*sin(2*t)-4*k3*sin(2*t)+4*k4*cos(2*t)+k5

Simplifying this expression and equating with the right side of the given ODE we get:

\[
(-3k_3+4k_4)\cos 2t-(4k_3+3k_4)\sin 2t+k_5 = \frac{\cos 2t}{2} + \frac{1}{2}
\]

Equating like terms and solving for the \( k \) terms we get

\[
-3k_3 + 4k_4 = 1/2
\]

\[
-4k_3 - 3k_4 = 0
\]

\[
k_5 = 1/2
\]

Simultaneous solution of the first two equations above yields \( k_3 = -3/50 \) and \( k_4 = 4/50 \). Therefore, the forced response is

\[
y_F = (-3/50)\cos 2t + (4/50)\sin 2t + 1/2
\]

and the total response is

\[
y = k_1e^{-t} + k_2te^{-t} + \frac{1}{2} \left( \frac{3\cos 2t - 4\sin 2t}{50} \right)
\]

Check with MATLAB:

y = dsolve('D2y+2*Dy+y=cos(2*t)/2+1/2'); f = simplify(y)

f =
-3/50*cos(2*t)+2/25*sin(2*t)+1/2+C1*exp(-t)+C2*exp(-t)*t

4. It is very difficult, if not impossible, to assume a solution for the forced response of this ODE. Therefore, we will use the method of variation of parameters.

The characteristic equation is $s^2 + 1 = 0$ from which $s = \pm j$ and thus the natural response is

$$y_N = k_1e^{jt} + k_2e^{-jt}$$

We let

$$y_1 = \cos t \quad \text{and} \quad y_2 = \sin t$$

Then, by (5.68) the solution is

$$y = u_1y_1 + u_2y_2 = u_1\cos t + u_2\sin t \quad (1)$$

Also, from (5.69),

$$\frac{du_1}{dt}y_1 + \frac{du_2}{dt}y_2 = 0$$

or

$$\frac{du_1}{dt}\cos t + \frac{du_2}{dt}\sin t = 0$$

and from (5.70),

$$\frac{du_1}{dt}\cdot \frac{dy_1}{dt} + \frac{du_2}{dt}\cdot \frac{dy_2}{dt} = f(t) = \frac{du_1}{dt}(-\sin t) + \frac{du_2}{dt}(\cos t) = \sec t$$

Next, we find $du_1/dt$ and $du_2/dt$ by Cramer's rule as follows:

$$\frac{du_1}{dt} = \frac{\begin{vmatrix} 0 & \sin t \\ \cos t & \cos t \end{vmatrix}}{\begin{vmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{vmatrix}} = \frac{\sin t}{\cos^2 t + \sin^2 t} = \frac{-\tan t}{l} = -\tan (2)$$

and

$$\frac{du_2}{dt} = \frac{\begin{vmatrix} \cos t & 0 \\ -\sin t & \sec t \end{vmatrix}}{\begin{vmatrix} \sin t & \cos t \\ \cos t & \sin t \end{vmatrix}} = \frac{1}{l} = l \quad (3)$$

Integration of (2) and (3) above and substitution into (1) yields

$$u_1 = \int (-\tan t) dt = -(-\ln \cos t) + k_1 = \ln \cos t + k_1$$

$$u_2 = \int dt = t + k_2$$
Check with MATLAB:

```matlab
y = dsolve('D2y+y=sec(t)'); f = simple(y)
```

```matlab
f =
sin(t)*t+log(cos(t))*cos(t)+C1*sin(t)+C2*cos(t)
```

5. Differentiating the given integro-differential equation with respect to $t$ we get

\[
\frac{d^3 v}{dt^3} + k_3 \frac{d^2 v}{dt^2} + k_2 \frac{d v}{dt} + k_1 v = 3 \cos 3t - 3 \sin 3t = 3(\cos 3t - \sin 3t)
\]

or

\[
\frac{d^3 v}{dt^3} = -k_3 \frac{d^2 v}{dt^2} - k_2 \frac{d v}{dt} - k_1 v + 3(\cos 3t - \sin 3t) \quad (1)
\]

We let

\[
v = x_1 \quad \frac{dv}{dt} = x_2 = \dot{x}_1 \quad \frac{d^2 v}{dt^2} = x_3 = \dot{x}_2
\]

Then,

\[
\frac{d^3 v}{dt^3} = \ddot{x}_3
\]

and by substitution into (1)

\[
\ddot{x}_3 = -k_1 x_1 - k_2 x_2 - k_3 x_3 + 3(\cos 3t - \sin 3t)
\]

Thus, the state equations are

\[
\begin{align*}
\dot{x}_1 &= x_2 \\
\dot{x}_2 &= x_3 \\
\dot{x}_3 &= -k_1 x_1 - k_2 x_2 - k_3 x_3 + 3(\cos 3t - \sin 3t)
\end{align*}
\]

and in matrix form

\[
\begin{bmatrix}
\dot{x}_1 \\
\dot{x}_2 \\
\dot{x}_3
\end{bmatrix} =
\begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
-k_1 & -k_2 & -k_3
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} +
\begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix} \cdot 3(\cos 3t - \sin 3t)
\]
6. Expansion of the given matrix yields

\[
\begin{align*}
\dot{x}_1 &= x_2 \\
\dot{x}_2 &= x_3 \\
\dot{x}_3 &= x_2 \\
\dot{x}_4 &= -x_1 - 2x_2 - 3x_3 - 4x_4 + u(t)
\end{align*}
\]

Letting \( x = y \) we get

\[
\frac{dy^4}{dt^4} + 4 \frac{dy^3}{dt^3} + 3 \frac{dy^2}{dt^2} + 2 \frac{dy}{dt} + y = u(t)
\]

7.

a. \( A = \begin{bmatrix} 1 & 2 \\ 3 & -1 \end{bmatrix} \)

\( \det(A - \lambda I) = \det \begin{bmatrix} 1 - \lambda & 2 \\ 3 & -1 - \lambda \end{bmatrix} = 0 \)

\((1-\lambda)(-1-\lambda) - 6 = 0, -1 - \lambda + \lambda + \lambda^2 - 6 = 0, \lambda^2 = 7, \) and thus \( \lambda_1 = \sqrt{7}, \lambda_2 = -\sqrt{7} \)

b. \( B = \begin{bmatrix} a & 0 \\ -a & b \end{bmatrix} \)

\( \det(B - \lambda I) = \det \begin{bmatrix} a - \lambda & 0 \\ -a & b - \lambda \end{bmatrix} = 0 \)

\((a - \lambda)(b - \lambda) = 0, \) and thus \( \lambda_1 = a, \lambda_2 = b \)

c. \( C = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} \)

\( \det(C - \lambda I) = \det \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 - \lambda \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -6 & -11 & -6 \end{bmatrix} = 0 \)

\( \lambda^2(-6-\lambda) - (-11)(-\lambda) = \lambda^3 + 6\lambda^2 + 11\lambda + 6 = 0 \) and it is given that \( \lambda_1 = -1. \) Then,

\[
\frac{\lambda^3 + 6\lambda^2 + 11\lambda + 6}{(\lambda + 1)} = \lambda^2 + 5\lambda + 6 \Rightarrow (\lambda + 1)(\lambda + 2)(\lambda + 3) = 0
\]

and thus \( \lambda_1 = -1, \lambda_2 = -2, \lambda_3 = -3 \)

8.

a. Matrix \( A \) is the same as Matrix \( C \) in Exercise 7. Then,

\( \lambda_1 = -1, \lambda_2 = -2, \lambda_3 = -3 \)
and since $A$ is a $3 \times 3$ matrix the state transition matrix is

$$e^{At} = a_0 I + a_1 A + a_2 A^2 \quad (1)$$

Then,

$$a_0 + a_1 \lambda_1 + a_2 \lambda_1^2 = e^{\lambda_1 t} \Rightarrow a_0 - a_1 + a_2 = e^{-t}$$

$$a_0 + a_1 \lambda_2 + a_2 \lambda_2^2 = e^{\lambda_2 t} \Rightarrow a_0 - 2a_1 + 4a_2 = e^{-2t}$$

$$a_0 + a_1 \lambda_3 + a_2 \lambda_3^2 = e^{\lambda_3 t} \Rightarrow a_0 - 3a_1 + 9a_2 = e^{-3t}$$

```matlab
syms t; A=[1 -1 1; 1 -2 4; 1 -3 9];
a=sym('[exp(-t); exp(-2*t); exp(-3*t)]');
x=A\a; fprintf('
');
disp('a0 = '); disp(x(1)); disp('a1 = '); disp(x(2)); disp('a2 = '); disp(x(3))
a0 =
3*exp(-t) -3*exp(-2*t)+exp(-3*t)
a1 =
5/2*exp(-t) -4*exp(-2*t)+3/2*exp(-3*t)
a2 =
1/2*exp(-t) -exp(-2*t)+1/2*exp(-3*t)
Thus,

$$a_0 = 3e^{-t} -3e^{-2t} + 3e^{-3t}$$

$$a_1 = 2.5e^{-t} -4e^{-2t} + 1.5e^{-3t}$$

$$a_2 = 0.5e^{-t} -e^{-2t} + 0.5e^{-3t}$$

Now, we compute e^{At} of (1) with the following MATLAB code:

```matlab
syms t; a0=3*exp(-t)-3*exp(-2*t)+exp(-3*t); a1=5/2*exp(-t)-4*exp(-2*t)+3/2*exp(-3*t); a2=1/2*exp(-t)-exp(-2*t)+1/2*exp(-3*t); A=[0 1 0; 0 0 1; -6 -11 -6]; fprintf('
');
eAt=a0*eye(3)+a1*A+a2*A^2
eAt =
[3*exp(-t) -3*exp(-2*t)+exp(-3*t), 5/2*exp(-t) -4*exp(-2*t)+3/2*exp(-3*t)]
[-3*exp(-t) +6*exp(-2*t) -3*exp(-3*t) , -5/2*exp(-t) +8*exp(-2*t) -9/2*exp(-3*t) , -1/2*exp(-t) +2*exp(-2*t) -3/2*exp(-3*t)]
[3*exp(-t) -12*exp(-2*t) +9*exp(-3*t) , 5/2*exp(-t) -16*exp(-2*t) +27/2*exp(-3*t) , 1/2*exp(-t) -4*exp(-2*t) +9/2*exp(-3*t)]
```

Then,
Chapter 5 Differential Equations, State Variables, and State Equations

\[e^{At} = \begin{bmatrix}
3e^{-t} - 3e^{-2t} + e^{-3t} & 2.5e^{-t} - 4e^{-2t} + 1.5e^{-3t} & 0.5e^{-t} - e^{-2t} + 0.5e^{-3t} \\
-3e^{-t} + 6e^{-2t} - 3e^{-3t} & -2.5e^{-t} + 8e^{-2t} - 4.5e^{-3t} & -0.5e^{-t} + 2e^{-2t} - 1.5e^{-3t} \\
3e^{-t} - 12e^{-2t} + 9e^{-3t} & 2.5e^{-t} - 16e^{-2t} + 13.5e^{-3t} & 0.5e^{-t} - 4e^{-2t} + 4.5e^{-3t}
\end{bmatrix} \]
Chapter 6

Fourier, Taylor, and Maclaurin Series

This chapter is an introduction to Fourier and power series. We begin with the definition of sinusoids that are harmonically related and the procedure for determining the coefficients of the trigonometric form of the series. Then, we discuss the different types of symmetry and how they can be used to predict the terms that may be present. Several examples are presented to illustrate the approach. The alternate trigonometric and the exponential forms are also presented. We conclude with a discussion on power series expansion with the Taylor and Maclaurin series.

6.1 Wave Analysis

The French mathematician Fourier found that any periodic waveform, that is, a waveform that repeats itself after some time, can be expressed as a series of harmonically related sinusoids, i.e., sinusoids whose frequencies are multiples of a fundamental frequency (or first harmonic). For example, a series of sinusoids with frequencies 1 MHz, 2 MHz, 3 MHz, and so on, contains the fundamental frequency of 1 MHz, a second harmonic of 2 MHz, a third harmonic of 3 MHz, and so on. In general, any periodic waveform \(f(t) \) can be expressed as

\[
f(t) = \frac{1}{2}a_0 + a_1 \cos \omega t + a_2 \cos 2\omega t + a_3 \cos 3\omega t + a_4 \cos 4\omega t + \ldots
\]

or

\[
f(t) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos n\omega t + b_n \sin n\omega t)
\]

where the first term \(a_0/2 \) is a constant, and represents the DC (average) component of \(f(t) \). Thus, if \(f(t) \) represents some voltage \(v(t) \), or current \(i(t) \), the term \(a_0/2 \) is the average value of \(v(t) \) or \(i(t) \).

The terms with the coefficients \(a_1 \) and \(b_1 \) together, represent the fundamental frequency component \(\omega \). Likewise, the terms with the coefficients \(a_2 \) and \(b_2 \) together, represent the second harmonic component \(2\omega \), and so on.

* We recall that \(k_1 \cos \omega t + k_2 \sin \omega t = k \cos (\omega t + \theta) \) where \(\theta \) is a constant.
Chapter 6 Fourier, Taylor, and Maclaurin Series

Since any periodic waveform \(f(t) \) can be expressed as a Fourier series, it follows that the sum of the DC, the fundamental, the second harmonic, and so on, must produce the waveform \(f(t) \). Generally, the sum of two or more sinusoids of different frequencies produce a waveform that is not a sinusoid as shown in Figure 6.1.

![Figure 6.1. Summation of a fundamental, second and third harmonic](image)

6.2 Evaluation of the Coefficients

Evaluations of \(a_i \) and \(b_i \) coefficients of (6.1) is not a difficult task because the sine and cosine are orthogonal functions, that is, the product of the sine and cosine functions under the integral evaluated from \(0 \) to \(2\pi \) is zero. This will be shown shortly.

Let us consider the functions \(\sin mt \) and \(\cos nt \) where \(m \) and \(n \) are any integers, and for convenience, we have assumed that \(\omega = 1 \). Then,

\[
\int_0^{2\pi} \sin mt \, dt = 0 \quad (6.3)
\]

\[
\int_0^{2\pi} \cos nt \, dt = 0 \quad (6.4)
\]

\[
\int_0^{2\pi} (\sin mt)(\cos nt) \, dt = 0 \quad (6.5)
\]

The integrals of (6.3) and (6.4) are zero since the net area over the \(0 \) to \(2\pi \) area is zero. The integral of (6.5) is also zero since

\[
\sin x \cos y = \frac{1}{2} [\sin(x + y) + \sin(x - y)]
\]
This is also obvious from the plot of Figure 6.2, where we observe that the net shaded area above and below the time axis is zero.

![Graphical proof of \(\int_0^{2\pi} (\sin mt)(\cos nt)dt = 0 \)](image)

Figure 6.2. Graphical proof of \(\int_0^{2\pi} (\sin mt)(\cos nt)dt = 0 \)

Moreover, if \(m \) and \(n \) are different integers, then,

\[
\int_0^{2\pi} (\sin mt)(\sin nt)dt = 0
\]

(6.6)
since

\[
(\sin x)(\sin y) = \frac{1}{2}[\cos(x-y) - \cos(x+y)]
\]

The integral of (6.6) can also be confirmed graphically as shown in Figure 6.3, where \(m = 2 \) and \(n = 3 \). We observe that the net shaded area above and below the time axis is zero.

![Graphical proof of \(\int_0^{2\pi} (\sin mt)(\sin nt)dt = 0 \) for \(m = 2 \) and \(n = 3 \)](image)

Figure 6.3. Graphical proof of \(\int_0^{2\pi} (\sin mt)(\sin nt)dt = 0 \) for \(m = 2 \) and \(n = 3 \)
Also, if \(m \) and \(n \) are different integers, then,

\[
\int_{0}^{2\pi} (\cos mt)(\cos nt) \, dt = 0 \tag{6.7}
\]

since

\[
(\cos x)(\cos y) = \frac{1}{2} [\cos(x + y) + \cos(x - y)]
\]

The integral of (6.7) can also be confirmed graphically as shown in Figure 6.4, where \(m = 2 \) and \(n = 3 \). We observe that the net shaded area above and below the time axis is zero.

![Figure 6.4. Graphical proof of \(\int_{0}^{2\pi} (\cos mt)(\cos nt) \, dt = 0 \) for \(m = 2 \) and \(n = 3 \)](image)

However, if in (6.6) and (6.7), \(m = n \), then,

\[
\int_{0}^{2\pi} (\sin mt)^2 \, dt = \pi \tag{6.8}
\]

and

\[
\int_{0}^{2\pi} (\cos mt)^2 \, dt = \pi \tag{6.9}
\]

The integrals of (6.8) and (6.9) can also be seen to be true graphically with the plots of Figures 6.5 and 6.6.

It was stated earlier that the sine and cosine functions are orthogonal* to each other. The simplification obtained by application of the orthogonality properties of the sine and cosine functions, becomes apparent in the discussion that follows.

* We will discuss orthogonal functions in Chapter 14
Evaluation of the Coefficients

In (6.1), for simplicity, we let $\omega = 1$. Then,

$$f(t) = \frac{1}{2} a_0 + a_1 \cos t + a_2 \cos 2t + a_3 \cos 3t + a_4 \cos 4t + \ldots$$

$$+ b_1 \sin t + b_2 \sin 2t + b_3 \sin 3t + b_4 \sin 4t + \ldots \quad (6.10)$$

To evaluate any coefficient, say b_2, we multiply both sides of (6.10) by $\sin 2t$. Then,

$$f(t) \sin 2t = \frac{1}{2} a_0 \sin 2t + a_1 \cos t \sin 2t + a_2 \cos 2t \sin 2t + a_3 \cos 3t \sin 2t + a_4 \cos 4t \sin 2t + \ldots$$

$$+ b_1 \sin t \sin 2t + b_2 (\sin 2t)^2 + b_3 \sin 3t \sin 2t + b_4 \sin 4t \sin 2t + \ldots$$

Next, we multiply both sides of the above expression by dt, and we integrate over the period θ to 2π. Then,

Figure 6.5. Graphical proof of $\int_{0}^{2\pi} (\sin^2 t) \, dt = \pi$

Figure 6.6. Graphical proof of $\int_{0}^{2\pi} (\cos^2 t) \, dt = \pi$
We observe that every term on the right side of (6.11) except the term

\[b_2 \int_0^{2\pi} (\sin 2t)^2 dt \]

is zero as we found in (6.6) and (6.7). Therefore, (6.11) reduces to

\[\int_0^{2\pi} f(t) \sin 2t \, dt = b_2 \int_0^{2\pi} (\sin 2t)^2 \, dt = b_2 \pi \]

or

\[b_2 = \frac{1}{\pi} \int_0^{2\pi} f(t) \sin 2t \, dt \]

and thus we can evaluate this integral for any given function \(f(t) \). The remaining coefficients can be evaluated similarly.

The coefficients \(a_0 \), \(a_n \), and \(b_n \) are found from the following relations.

\[\frac{1}{2} a_0 = \frac{1}{2\pi} \int_0^{2\pi} f(t) \, dt \quad (6.12) \]

\[a_n = \frac{1}{\pi} \int_0^{2\pi} f(t) \cos nt \, dt \quad (6.13) \]

\[b_n = \frac{1}{\pi} \int_0^{2\pi} f(t) \sin nt \, dt \quad (6.14) \]

The integral of (6.12) yields the average (DC) value of \(f(t) \).
6.3 Symmetry

With a few exceptions such as the waveform of Example 6.6, the most common waveforms used in science and engineering, do not have the average, cosine, and sine terms all present. Some waveforms have cosine terms only, while others have sine terms only. Still other waveforms have or have not DC components. Fortunately, it is possible to predict which terms will be present in the trigonometric Fourier series, by observing whether or not the given waveform possesses some kind of symmetry.

We will discuss three types of symmetry that can be used to facilitate the computation of the trigonometric Fourier series form. These are:

1. **Odd symmetry** – If a waveform has odd symmetry, that is, if it is an odd function, the series will consist of sine terms only. In other words, if \(f(t) \) is an odd function, all the \(a_i \) coefficients including \(a_0 \), will be zero.

2. **Even symmetry** – If a waveform has even symmetry, that is, if it is an even function, the series will consist of cosine terms only, and \(a_0 \) may or may not be zero. In other words, if \(f(t) \) is an even function, all the \(b_i \) coefficients will be zero.

3. **Half-wave symmetry** – If a waveform has half-wave symmetry (to be defined shortly), only odd (odd cosine and odd sine) harmonics will be present. In other words, all even (even cosine and even sine) harmonics will be zero.

We will now define even and odd functions and we should remember that even functions have nothing to do with even harmonics, and odd functions have nothing to do with odd harmonics.

A function \(f(t) \) is an even function of time if the following relation holds.

\[
\boxed{f(-t) = f(t)} \tag{6.15}
\]

that is, if in an even function we replace \(t \) with \(-t\), the function \(f(t) \) does not change. Thus, polynomials with even exponents only, and with or without constants, are even functions. For instance, the cosine function is an even function because it can be written as the power series*

\[
\cos t = 1 - \frac{t^2}{2!} + \frac{t^4}{4!} - \frac{t^6}{6!} + \ldots
\]

Other examples of even functions are shown in Figure 6.7.

* We will discuss power series later in this chapter.
A function \(f(t) \) is an odd function of time if the following relation holds.

\[
-f(-t) = f(t)
\]

(6.16)

that is, if in an odd function we replace \(t \) with \(-t\), we obtain the negative of the function \(f(t) \). Thus, polynomials with odd exponents only, and no constants are odd functions. For instance, the sine function is an odd function because it can be written as the power series

\[
sin t = t - \frac{t^3}{3!} + \frac{t^5}{5!} - \frac{t^7}{7!} + \ldots
\]

Other examples of odd functions are shown in Figure 6.8.

We observe that for odd functions, \(f(0) = 0 \). However, the reverse is not always true; that is, if \(f(0) = 0 \), we should not conclude that \(f(t) \) is an odd function. An example of this is the function \(f(t) = t^2 \) in Figure 6.7.

The product of two even or two odd functions is an even function, and the product of an even function times an odd function, is an odd function.

Henceforth, we will denote an even function with the subscript \(e \), and an odd function with the subscript \(o \). Thus, \(f_e(t) \) and \(f_o(t) \) will be used to represent even and odd functions of time respectively.

Also,

\[
\int_{-T}^{T} f_e(t)dt = 2\int_{0}^{T} f_e(t)dt
\]

(6.17)

and
A function \(f(t) \) that is neither even nor odd can be expressed as

\[
f_e(t) = \frac{1}{2} [f(t) + f(-t)]
\]

or as

\[
f_o(t) = \frac{1}{2} [f(t) - f(-t)]
\]

By addition of (6.16) with (6.17), we get

\[
f(t) = f_e(t) + f_o(t)
\]

that is, any function of time can be expressed as the sum of an even and an odd function.

To understand half-wave symmetry, we recall that any periodic function with period \(T \), is expressed as

\[
f(t) = f(t + T)
\]

that is, the function with value \(f(t) \) at any time \(t \), will have the same value again at a later time \(t + T \).

A periodic waveform with period \(T \), has half-wave symmetry if

\[
-f \left(t + \frac{T}{2} \right) = f(t)
\]

that is, the shape of the negative half-cycle of the waveform is the same as that of the positive half-cycle, but inverted.

We will test the waveforms of Figures 6.9 through 6.13 for any of the three types of symmetry.

1. **Square waveform**

For the waveform of Figure 6.9, the average value over one period \(T \) is zero, and therefore, \(a_0 = 0 \). It is also an odd function and has half-wave symmetry since \(-f(-t) = f(t) \) and \(-f \left(t + \frac{T}{2} \right) = f(t) \)
An easy method to test for half-wave symmetry is to choose any half-period $T/2$ length on the time axis as shown in Figure 6.9, and observe the values of $f(t)$ at the left and right points on the time axis, such as $f(a)$ and $f(b)$. If there is half-wave symmetry, these will always be equal but will have opposite signs as we slide the half-period $T/2$ length to the left or to the right on the time axis at non-zero values of $f(t)$.

2. **Square waveform with ordinate axis shifted**

If we shift the ordinate axis $\pi/2$ radians to the right, as shown in Figure 6.10, we see that the square waveform now becomes an even function and has half-wave symmetry since $f(-t) = f(t)$ and $-f(t + T/2) = f(t)$. Also, $a_0 = 0$.

Obviously, if the ordinate axis is shifted by any other value other than an odd multiple of $\pi/2$, the waveform will have neither odd nor even symmetry.

3. **Sawtooth waveform**

For the sawtooth waveform of Figure 6.11, the average value over one period T is zero and therefore, $a_0 = 0$. It is also an odd function because $-f(-t) = f(t)$, but has no half-wave symmetry.
since \(-f(t + T/2) \neq f(t)\)

\[
\begin{align*}
A &\quad T/2 \\
-2\pi &\quad -\pi \\
-\pi &\quad \pi \\
\pi &\quad 2\pi \\
\omega t
\end{align*}
\]

4. Triangular waveform

For this triangular waveform of Figure 6.12, the average value over one period \(T\) is zero and therefore, \(a_0 = 0\). It is also an odd function since \(-f(-t) = f(t)\). Moreover, it has half-wave symmetry because \(-f(t + T/2) = f(t)\)

\[
\begin{align*}
A &\quad T/2 \\
-2\pi &\quad -\pi \\
-\pi &\quad \pi \\
\pi &\quad 2\pi \\
\omega t
\end{align*}
\]

5. Fundamental, Second and Third Harmonics of a Sinusoid

Figure 6.13 shows a fundamental, second, and third harmonic of a typical sinewave where the half period \(T/2\), is chosen as the half period of the period of the fundamental frequency. This is necessary in order to test the fundamental, second, and third harmonics for half-wave symmetry. The fundamental has half-wave symmetry since the \(a\) and \(-a\) values, when separated by \(T/2\), are equal and opposite. The second harmonic has no half-wave symmetry because the ordinates \(b\) on the left and \(b\) on the right, although are equal, there are not opposite in sign. The third harmonic has half-wave symmetry since the \(c\) and \(-c\) values, when separated by \(T/2\) are equal and opposite. These waveforms can be either odd or even depending on the position of the ordinate. Also, all three waveforms have zero average value unless the abscissa axis is shifted up or down.
In the expressions of the integrals in (6.12) through (6.14), the limits of integration for the coefficients a_n and b_n are given as 0 to 2π, that is, one period T. Of course, we can choose the limits of integration as $-\pi$ to $+\pi$. Also, if the given waveform is an odd function, or an even function, or has half-wave symmetry, we can compute the non-zero coefficients a_n and b_n by integrating from 0 to π only, and multiply the integral by 2. Moreover, if the waveform has half-wave symmetry and is also an odd or an even function, we can choose the limits of integration from 0 to $\pi/2$ and multiply the integral by 4. The proof is based on the fact that, the product of two even functions is another even function, and also that the product of two odd functions results also in an even function. However, it is important to remember that when using these shortcuts, we must evaluate the coefficients a_n and b_n for the integer values of n that will result in non-zero coefficients. This point will be illustrated in Example 6.2.

We will now derive the trigonometric Fourier series of the most common periodic waveforms.

6.4 Waveforms in Trigonometric Form of Fourier Series

Example 6.1

Compute the trigonometric Fourier series of the square waveform of Figure 6.14.
Solution:

The trigonometric series will consist of sine terms only because, as we already know, this waveform is an odd function. Moreover, only odd harmonics will be present since this waveform has half-wave symmetry. However, we will compute all coefficients to verify this. Also, for brevity, we will assume that \(\omega = 1 \).

The \(a_i \) coefficients are found from

\[
a_n = \frac{1}{\pi} \int_{0}^{2\pi} f(t) \cos nt \, dt = \frac{1}{\pi} \left[\int_{0}^{\pi} At \cos nt \, dt + \int_{\pi}^{2\pi} (-A) \cos nt \, dt \right] = \frac{A}{n\pi} \left(\sin nt \big|_{0}^{\pi} - \sin nt \big|_{\pi}^{2\pi} \right)
\]

and since \(n \) is an integer (positive or negative) or zero, the terms inside the parentheses on the second line of (6.24) are zero and therefore, all \(a_i \) coefficients are zero, as expected, since the square waveform has odd symmetry. Also, by inspection, the average (DC) value is zero, but if we attempt to verify this using (6.24), we will get the indeterminate form \(0/0 \). To work around this problem, we will evaluate \(a_0 \) directly from (6.12). Then,

\[
a_0 = \frac{1}{\pi} \left[\int_{0}^{\pi} At \, dt + \int_{\pi}^{2\pi} (-A) \, dt \right] = \frac{A}{\pi} (\pi - 0 - 2\pi + \pi) = 0
\]

The \(b_i \) coefficients are found from (6.14), that is,

\[
b_n = \frac{1}{\pi} \int_{0}^{2\pi} f(t) \sin nt \, dt = \frac{1}{\pi} \left[\int_{0}^{\pi} Asin nt \, dt + \int_{\pi}^{2\pi} (-A) \sin nt \, dt \right] = \frac{A}{n\pi} \left(-\cos nt \big|_{0}^{\pi} + \cos nt \big|_{\pi}^{2\pi} \right)
\]

For \(n = \text{even} \), (6.26) yields

\[
b_n = \frac{A}{n\pi} (1 - 2 + 1) = 0
\]

as expected, since the square waveform has half-wave symmetry.

For \(n = \text{odd} \), (6.21) reduces to

\[
b_n = \frac{A}{n\pi} (1 + 2 + 1) = \frac{4A}{n\pi}
\]

and thus

\[
b_1 = \frac{4A}{\pi}
\]
Chapter 6 Fourier, Taylor, and Maclaurin Series

\[b_3 = \frac{4A}{3\pi} \]
\[b_5 = \frac{4A}{5\pi} \]

and so on.

Therefore, the trigonometric Fourier series for the square waveform with odd symmetry is

\[f(t) = \frac{4A}{\pi} \left(\sin \omega t + \frac{1}{3} \sin 3\omega t + \frac{1}{5} \sin 5\omega t + \ldots \right) = \frac{4A}{\pi} \sum_{n = \text{odd}}^{\infty} \frac{1}{n} \sin n\omega t \quad (6.27) \]

It was stated above that, if the given waveform has half-wave symmetry, and it is also an odd or an even function, we can integrate from 0 to \(\pi/2 \), and multiply the integral by 4. We will apply this property to the following example.

Example 6.2

Compute the trigonometric Fourier series of the square waveform of Example 1 by integrating from 0 to \(\pi/2 \), and multiplying the result by 4.

Solution:

Since the waveform is an odd function and has half-wave symmetry, we are only concerned with the odd \(b_n \) coefficients. Then,

\[b_n = 4\int_{0}^{\pi/2} f(t) \sin nt \, dt = \frac{4A}{n\pi} (- \cos nt \bigg|_{0}^{\pi/2}) = \frac{4A}{n\pi} (- \cos \frac{n\pi}{2} + 1) \quad (6.28) \]

For \(n = \text{odd} \), (6.28) becomes

\[b_n = \frac{4A}{n\pi} (- 0 + 1) = \frac{4A}{n\pi} \quad (6.29) \]

as before, and thus the series is the same as in Example 1.

Example 6.3

Compute the trigonometric Fourier series of the square waveform of Figure 6.15.

Solution:

This is the same waveform as in Example 6.1, except that the ordinate has been shifted to the right by \(\pi/2 \) radians, and has become an even function. However, it still has half-wave symmetry. Therefore, the trigonometric Fourier series will consist of odd cosine terms only.
Waveforms in Trigonometric Form of Fourier Series

Since the waveform has half-wave symmetry and is an even function, it will suffice to integrate from 0 to $\pi/2$, and multiply the integral by 4. The a_n coefficients are found from

$$a_n = 4 \frac{1}{\pi} \int_0^{\pi/2} f(t) \cos nt \, dt = \frac{4}{n\pi} \left(\int_0^{\pi/2} f(t) \cos nt \, dt \right) = \frac{4A}{n\pi} \left(\sin nt \right|_0^{\pi/2} = \frac{4A}{n\pi} \left(\sin \frac{\pi}{2} \right) \right)$$

(6.30)

We observe that for $n = \text{even}$, all a_n coefficients are zero, and thus all even harmonics are zero as expected. Also, by inspection, the average (DC) value is zero.

For $n = \text{odd}$, we observe from (6.30) that $\sin \frac{\pi}{2}$ will alternate between $+1$ and -1 depending on the odd integer assigned to n. Thus,

$$a_n = \pm \frac{4A}{n\pi}$$

(6.31)

For $n = 1, 5, 9, 13, \text{and so on}$, (6.30) becomes

$$a_n = \frac{4A}{n\pi}$$

and for $n = 3, 7, 11, 15, \text{and so on}$, it becomes

$$a_n = -\frac{4A}{n\pi}$$

Then, the trigonometric Fourier series for the square waveform with even symmetry is

$$f(t) = \frac{4A}{\pi} \left(\cos \omega t - \frac{1}{3} \cos 3\omega t + \frac{1}{5} \cos 5\omega t - \ldots \right) = \frac{4A}{\pi} \sum_{n = odd}^{(n-1)/2} (-1)^{n-1} \frac{1}{n} \cos n\omega t$$

(6.32)
Alternate Solution:

Since the waveform of Example 6.3 is the same as of Example 6.1, but shifted to the right by \(\pi/2 \) radians, we can use the result of Example 6.1, i.e.,

\[
f(t) = \frac{4A}{\pi} \left(\sin \omega t + \frac{1}{3} \sin 3\omega t + \frac{1}{5} \sin 5\omega t + \ldots \right) \tag{6.33}
\]

and substitute \(\omega t \) with \(\omega t + \pi/2 \), that is, we let \(\omega t = \omega \tau + \pi/2 \). With this substitution, relation (6.33) becomes

\[
f(\tau) = \frac{4A}{\pi} \left[\sin \left(\omega \tau + \frac{\pi}{2} \right) + \frac{1}{3} \sin 3 \left(\omega \tau + \frac{\pi}{2} \right) + \frac{1}{5} \sin 5 \left(\omega \tau + \frac{\pi}{2} \right) + \ldots \right] \tag{6.34}
\]

and using the identities \(\sin(x + \pi/2) = \cos x \), \(\sin(x + 3\pi/2) = -\cos x \), and so on, we rewrite (6.34) as

\[
f(\tau) = \frac{4A}{\pi} \left[\cos \omega \tau - \frac{1}{3} \cos 3 \omega \tau + \frac{1}{5} \cos 5 \omega \tau - \ldots \right] \tag{6.35}
\]

and this is the same as (6.27).

Therefore, if we compute the trigonometric Fourier series with reference to one ordinate, and afterwards we want to recompute the series with reference to a different ordinate, we can use the above procedure to save time.

Example 6.4

Compute the trigonometric Fourier series of the sawtooth waveform of Figure 6.14.

\[\text{Figure 6.16. Sawtooth waveform}\]
Waveforms in Trigonometric Form of Fourier Series

Solution:

This waveform is an odd function but has no half-wave symmetry; therefore, it contains sine terms only with both odd and even harmonics. Accordingly, we only need to evaluate the b_n coefficients. By inspection, the DC component is zero. As before, we will assume that $\omega = 1$.

If we choose the limits of integration from 0 to 2π we will need to perform two integrations since

$$f(t) = \begin{cases}
\frac{A}{\pi} t & 0 < t < \pi \\
\frac{A}{\pi} t - 2A & \pi < t < 2\pi
\end{cases}$$

However, we can choose the limits from $-\pi$ to $+\pi$, and thus we will only need one integration since

$$f(t) = \frac{A}{\pi} t \quad -\pi < t < \pi$$

Better yet, since the waveform is an odd function, we can integrate from 0 to π, and multiply the integral by 2; this is what we will do.

From tables of integrals,

$$\int x \sin ax \, dx = \frac{1}{a^2} \sin ax - \frac{x}{a} \cos ax$$

Then,

$$b_n = \frac{2}{\pi} \int_0^{\pi} \frac{A}{\pi} t \sin nt \, dt = \frac{2A}{n^2 \pi^2} \int_0^{\pi} t \sin nt \, dt = \frac{2A}{n^2 \pi^2} \left(\int_0^{\pi} \frac{1}{n^2} \sin nt \, dt - \frac{t}{n} \cos nt \right) \left|^{\pi}_0 \right.$$}

$$= \frac{2A}{n^2 \pi^2} (\sin nt - nt \cos nt) \left|^{\pi}_0 \right. = \frac{2A}{n^2 \pi^2} (\sin n\pi - n\pi \cos n\pi)$$

We observe that:

1. If $n = \text{even}$, $\sin n\pi = 0$ and $\cos n\pi = 1$. Then, (6.37) reduces to

$$b_n = \frac{2A}{n^2 \pi^2} (-n\pi) = -\frac{2A}{n\pi}$$

that is, the even harmonics have negative coefficients.

2. If $n = \text{odd}$, $\sin n\pi = 0$, $\cos n\pi = -1$. Then,

$$b_n = \frac{2A}{n^2 \pi^2} (n\pi) = \frac{2A}{n\pi}$$

that is, the odd harmonics have positive coefficients.
Thus, the trigonometric Fourier series for the sawtooth waveform with odd symmetry is

\[
f(t) = \frac{2A}{\pi} \left(\sin \omega t - \frac{1}{2} \sin 2\omega t + \frac{1}{3} \sin 3\omega t - \frac{1}{4} \sin 4\omega t + \ldots \right) = \frac{2A}{\pi} \sum (-1)^{n-1} \frac{1}{n} \sin n\omega t \tag{6.38}\]

Example 6.5

Find the trigonometric Fourier series of the triangular waveform of Figure 6.17. Assume \(\omega = 1 \).

![Figure 6.17. Triangular waveform for Example 6.5](image)

Solution:

This waveform is an odd function and has half-wave symmetry; then, the trigonometric Fourier series will contain sine terms only with odd harmonics. Accordingly, we only need to evaluate the \(b_n \) coefficients. We will choose the limits of integration from 0 to \(\pi/2 \), and will multiply the integral by 4.

By inspection, the DC component is zero. From tables of integrals,

\[
\int x \sin ax \, dx = \frac{1}{a^2} \left(ax \sin ax - \frac{x}{a} \cos ax \right) \tag{6.39}
\]

Then,

\[
b_n = \frac{4}{\pi} \int_0^{\pi/2} \frac{2A}{\pi} \sin n\omega t \, dt = \frac{8A}{\pi^2} \int_0^{\pi/2} \sin n\omega t \, dt = \frac{8A}{\pi^2} \left(\frac{1}{n^2} \sin n\omega t - \frac{t}{n} \cos n\omega t \right) \Bigg|_0^{\pi/2} \tag{6.40}
\]

\[
= \frac{8A}{n^2 \pi} \left(\sin n\omega \frac{\pi}{2} - n\omega \frac{\pi}{2} \cos n\omega \frac{\pi}{2} \right)
\]

We are only interested in the odd integers of \(n \), and we observe that:

\[
\cos n \frac{\pi}{2} = 0
\]

For odd integers of \(n \), the sine term yields
Waveforms in Trigonometric Form of Fourier Series

\[
\sin n\frac{\pi}{2} = \begin{cases}
1 & \text{for } n = 1, 5, 9, \ldots \text{ then, } \quad b_n = \frac{8A}{n^2\pi^2} \\
-1 & \text{for } n = 3, 7, 11, \ldots \text{ then, } \quad b_n = -\frac{8A}{n^2\pi^2}
\end{cases}
\]

Thus, the trigonometric Fourier series for the triangular waveform with odd symmetry is

\[
f(t) = \frac{8A}{\pi^2} \left(\sin \omega t - \frac{1}{9} \sin 3\omega t + \frac{1}{25} \sin 5\omega t - \frac{1}{49} \sin 7\omega t + \ldots \right) = \frac{8A}{\pi^2} \sum_{n = \text{odd}}^{(n-1)\frac{\pi}{2}} (-1)^\frac{2}{n^2} \frac{1}{n^2} \sin n\omega t \quad (6.41)
\]

Example 6.6

A half-wave rectification waveform is defined as

\[
f(t) = \begin{cases}
\sin \omega t & 0 < \omega t < \pi \\
0 & \pi < \omega t < 2\pi
\end{cases}
\]

Express \(f(t) \) as a trigonometric Fourier series. Assume \(\omega = 1 \).

Solution:

The waveform for this example is shown in Figure 6.18.

\[
Figure 6.18. \ f(t) \ for \ Example \ 6.6
\]

By inspection, the average is a non-zero value, and the waveform has neither odd nor even symmetry. Therefore, we expect all terms to be present. The \(a_n \) coefficients are found from

\[
a_n = \frac{1}{\pi} \int_{0}^{2\pi} f(t) \cos nt \, dt
\]

For this example,

\[
a_n = \frac{A}{\pi} \int_{0}^{\pi} \sin t \cos nt \, dt + \frac{A}{\pi} \int_{\pi}^{2\pi} 0 \cos nt \, dt
\]
and from tables of integrals
\[
\int (\sin mx)(\cos nx) \, dx = \frac{-\cos(m-n)x}{2(m-n)} - \frac{\cos(m+n)x}{2(m+n)} \quad (m^2 \neq n^2)
\]
Then,
\[
a_n = \frac{A}{\pi} \left\{ \frac{-1}{2} \int_{-\pi}^{\pi} \frac{\cos(1-n)t}{l-n} + \frac{\cos(1+n)t}{l+n} \, dt \right\} \quad (6.43)
\]
Using the trigonometric identities
\[
cos(x-y) = \cos x \cos y + \sin x \sin y
\]
and
\[
cos(x+y) = \cos x \cos y - \sin x \sin y
\]
we get
\[
cos(\pi-n\pi) = \cos \pi \cos n\pi + \sin \pi \sin n\pi = -\cos n\pi
\]
and
\[
cos(\pi+n\pi) = \cos \pi \cos n\pi - \sin \pi \sin n\pi = -\cos n\pi
\]
Then, by substitution into (6.43),
\[
a_n = -\frac{A}{2\pi} \left\{ \frac{-\cos n\pi}{l-n} + \frac{\cos n\pi}{l+n} \right\} = \frac{A}{2\pi} \left\{ \frac{\cos n\pi}{l-n} + \frac{\cos n\pi}{l+n} + \frac{2}{l-n^2} \right\} \quad (6.44)
\]
Next, we can evaluate all the \(a_n\) coefficients, except \(a_1\), from (6.44).

First, we will evaluate \(a_0\) to obtain the DC value. By substitution of \(n = 0\), we get \(a_0 = 2A/\pi\)
Therefore, the DC value is
\[
\frac{1}{2}a_0 = \frac{A}{\pi} \quad (6.45)
\]
We cannot use (6.44) to obtain the value of \(a_1\); therefore, we will evaluate the integral
\[
a_1 = \frac{A}{\pi} \int_{0}^{\pi} \sin t \cos t \, dt
\]
From tables of integrals,
\[
\int (\sin ax)(\cos ax) \, dx = \frac{1}{2a}(\sin ax)^2
\]
and thus,
\[a_1 = \frac{A}{2\pi} (\sin t) \bigg|_0^\pi = 0 \] (6.46)

From (6.44) with \(n = 2, 3, 4, 5, \ldots \), we get
\[a_2 = \frac{A}{\pi} \left(\frac{\cos 2\pi + 1}{(1 - 2^2)} \right) = \frac{-2A}{3\pi} \] (6.47)
\[a_3 = \frac{A(\cos 3\pi + 1)}{\pi(1 - 3^2)} = 0 \] (6.48)

We see that for odd integers of \(n \), \(a_n = 0 \). However, for \(n = \text{even} \), we get
\[a_4 = \frac{A(\cos 4\pi + 1)}{\pi(1 - 4^2)} = \frac{-2A}{15\pi} \] (6.49)
\[a_6 = \frac{A(\cos 6\pi + 1)}{\pi(1 - 6^2)} = \frac{-2A}{35\pi} \] (6.50)
\[a_8 = \frac{A(\cos 8\pi + 1)}{\pi(1 - 8^2)} = \frac{-2A}{63\pi} \] (6.51)

and so on.

Now, we need to evaluate the \(b_n \) coefficients. For this example,
\[b_n = A \frac{1}{\pi} \int_0^{2\pi} f(t) \sin nt \, dt = A \frac{1}{\pi} \int_0^{\pi} \sin t \sin nt \, dt + A \frac{1}{\pi} \int_\pi^{2\pi} 0 \sin nt \, dt \]

and from tables of integrals,
\[\int (\sin mx)(\sin nx) \, dx = \frac{\sin(m-n)x}{2(m-n)} - \frac{\sin(m+n)x}{2(m+n)} \quad (m^2 \neq n^2) \]

Therefore,
\[b_n = \frac{A}{\pi} \frac{1}{2} \left[\left. \frac{\sin(1-n)t}{1-n} - \frac{\sin(1+n)t}{1+n} \right|_0^\pi \right] \]
\[= \frac{A}{2\pi} \left[\frac{\sin(1-n)\pi}{1-n} - \frac{\sin(1+n)\pi}{1+n} - 0 + 0 \right] = 0 \quad (n \neq 1) \]

that is, all the \(b_n \) coefficients, except \(b_1 \), are zero.
We will find \(b_1 \) by direct substitution into (6.14) for \(n = 1 \). Thus,

\[
\frac{b_1}{\pi} = \frac{A}{\pi} \int_0^\pi (\sin t)^2 dt = \frac{A}{\pi} \left[\frac{t}{2} - \frac{\sin 2t}{4} \right]_0^\pi = \frac{A}{\pi} \left[\frac{\pi}{2} - \frac{\sin 2\pi}{4} \right] = \frac{A}{2}
\]

Combining (6.45) and (6.47) through (6.52), we find that the trigonometric Fourier series for the half-wave rectification waveform with no symmetry is

\[
f(t) = \frac{A}{\pi} + \frac{A}{2} \sin \frac{t}{\pi} - \frac{A}{\pi} \left[\frac{\cos 2t}{3} + \frac{\cos 4t}{15} + \frac{\cos 6t}{35} + \frac{\cos 8t}{63} + \ldots \right]
\]

Example 6.7

A full-wave rectification waveform is defined as

\[
f(t) = |A \sin \omega t|
\]

Express \(f(t) \) as a trigonometric Fourier series. Assume \(\omega = 1 \).

Solution:

The waveform is shown in Figure 6.19 where the ordinate was arbitrarily chosen as shown.

![Figure 6.19. Full-wave rectified waveform with even symmetry](image)

By inspection, the average is a non-zero value. We choose the period of the input sinusoid so that the output will be expressed in terms of the fundamental frequency. We also choose the limits of integration as \(-\pi\) and \(+\pi\), we observe that the waveform has even symmetry.

Therefore, we expect only cosine terms to be present. The \(a_n \) coefficients are found from

\[
a_n = \frac{1}{\pi} \int_0^{2\pi} f(t) \cos nt dt
\]

where for this example,
Waveforms in Trigonometric Form of Fourier Series

\[
a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} Asintcostdt = \frac{2A}{\pi} \int_{0}^{\pi} sintcostdt
\] \hspace{1cm} (6.55)

and from tables of integrals,

\[
\int (\sin mx) (\cos nx) dx = \frac{\cos(m-n)x}{2(n-m)} - \frac{\cos(m+n)x}{2(m+n)} \hspace{1cm} (m^2 \neq n^2)
\]

Since

\[
\cos(x-y) = \cos(y-x) = \cos x \cos y + \sin x \sin y
\]

we express (6.55) as

\[
a_n = \frac{2A}{\pi} \cdot \frac{1}{\pi} \left[\left\{ \frac{\cos(n-1)x}{n-1} - \frac{\cos(n+1)x}{n+1} \right\} \right]_{0}^{\pi}
\]

\[
= \frac{A}{\pi} \left[\frac{\cos(n-1)\pi}{n-1} - \frac{\cos(n+1)\pi}{n+1} \right] - \left[\frac{1}{n-1} - \frac{1}{n+1} \right] \hspace{1cm} (6.56)
\]

To simplify the last expression in (6.56), we make use of the trigonometric identities

\[
\cos(n\pi + \pi) = \cos n\pi \cos \pi - \sin n\pi \sin \pi = -\cos n\pi
\]

and

\[
\cos(n\pi - \pi) = \cos n\pi \cos \pi + \sin n\pi \sin \pi = -\cos n\pi
\]

Then, (6.56) simplifies to

\[
a_n = \frac{A}{\pi} \left[\frac{\cos(n+1)\pi}{n+1} - \frac{\cos(n-1)\pi}{n-1} \right] = \frac{A}{\pi} \left[\frac{-2 + (n-1)\cos n\pi - (n+1)\cos n\pi}{n^2 - 1} \right]
\]

\[
= \frac{-2A}{\pi(n^2 - 1)} \hspace{1cm} n \neq 1 \hspace{1cm} (6.57)
\]

Now, we can evaluate all the \(a_n \) coefficients, except \(a_1 \), from (6.57). First, we will evaluate \(a_0 \) to obtain the DC value. By substitution of \(n = 0 \), we get

\[
a_0 = \frac{4A}{\pi}
\]

Therefore, the DC value is

\[
\frac{1}{2} a_0 = \frac{2A}{\pi} \hspace{1cm} (6.58)
\]

From (6.57) we observe that for all \(n = odd \), other than \(n = 1 \), \(a_n = 0 \).
To obtain the value of \(a_1 \), we must evaluate the integral

\[
a_1 = \frac{1}{\pi} \int_0^\pi \sin t \cos dt
\]

From tables of integrals,

\[
\int (\sin ax)(\cos ax) \, dx = \frac{1}{2a} (\sin ax)^2
\]

and thus,

\[
a_1 = \frac{1}{2\pi} (\sin t)^2 \bigg|_0^\pi = 0
\]

(6.59)

For \(n = \text{even} \), from (6.57) we get

\[
a_2 = \frac{-2A(\cos 2\pi + 1)}{\pi(2^2 - 1)} = \frac{-4A}{3\pi}
\]

(6.60)

\[
a_4 = \frac{-2A(\cos 4\pi + 1)}{\pi(4^2 - 1)} = \frac{-4A}{15\pi}
\]

(6.61)

\[
a_6 = \frac{-2A(\cos 6\pi + 1)}{\pi(6^2 - 1)} = \frac{-4A}{35\pi}
\]

(6.62)

\[
a_8 = \frac{-2A(\cos 8\pi + 1)}{\pi(8^2 - 1)} = \frac{-4A}{63\pi}
\]

(6.63)

and so on. Then, combining the terms of (6.58) and (6.60) through (6.63) we get

\[
f(t) = \frac{2A}{\pi} - \frac{4A}{\pi} \left\{ \cos 2\omega t + \frac{\cos 4\omega t}{3} + \frac{\cos 6\omega t}{15} + \frac{\cos 8\omega t}{35} + \cdots \right\}
\]

(6.64)

Therefore, the trigonometric form of the Fourier series for the full-wave rectification waveform with even symmetry is

\[
f(t) = \frac{2A}{\pi} - \frac{4A}{\pi} \sum_{n=2,4,6,\ldots}^{\infty} \frac{1}{n^2 - 1} \cos n\omega t
\]

(6.65)

This series of (6.65) shows that there is no component of the fundamental frequency. This is because we chose the period to be from \(-\pi\) and \(+\pi\). Generally, the period is defined as the shortest period of repetition. In any waveform where the period is chosen appropriately, it is very unlikely that a Fourier series will consist of even harmonic terms only.
6.5 Alternate Forms of the Trigonometric Fourier Series

We recall that the trigonometric Fourier series is expressed as

\[f(t) = \frac{1}{2}a_0 + a_1 \cos \omega t + a_2 \cos 2\omega t + a_3 \cos 3\omega t + a_4 \cos 4\omega t + \ldots \]
\[+ b_1 \sin \omega t + b_2 \sin 2\omega t + b_3 \sin 3\omega t + b_4 \sin 4\omega t + \ldots \]
(6.66)

If a given waveform does not have any kind of symmetry, it may be advantageous of using the alternate form of the trigonometric Fourier series where the cosine and sine terms of the same frequency are grouped together, and the sum is combined to a single term, either cosine or sine. However, we still need to compute the \(a_n \) and \(b_n \) coefficients separately.

We use the triangle shown in Figure 6.20 for the derivation of the alternate forms.

\[c_n = \sqrt{a_n + b_n} \]
\[\cos \theta_n = \frac{a_n}{\sqrt{a_n + b_n}} = \frac{a_n}{c_n} \]
\[\sin \theta_n = \frac{b_n}{\sqrt{a_n + b_n}} = \frac{b_n}{c_n} \]
\[\cos \theta_n = \sin \varphi_n \]
\[\theta_n = \arctan \frac{b_n}{a_n} \]
\[\varphi_n = \arctan \frac{a_n}{b_n} \]

Figure 6.20. Derivation of the alternate form of the trigonometric Fourier series

We assume \(\omega = 1 \), and for \(n = 1, 2, 3, \ldots \), we rewrite (6.66) as

\[
f(t) = \frac{1}{2}a_0 + c_1 \left(\frac{a_1 \cos t + b_1 \sin t}{c_1} \right) + c_2 \left(\frac{a_2 \cos 2t + b_2 \sin 2t}{c_2} \right) + \ldots \\
+ c_n \left(\frac{a_n \cos nt + b_n \sin nt}{c_n} \right) \\
= \frac{1}{2}a_0 + c_1 \left(\frac{\cos \theta_1 \cos t + \sin \theta_1 \sin t}{\cos(t - \theta_1)} \right) + c_2 \left(\frac{\cos \theta_2 \cos 2t + \sin \theta_2 \sin 2t}{\cos(2t - \theta_2)} \right) + \ldots \\
+ c_n \left(\frac{\cos \theta_n \cos nt + \sin \theta_n \sin nt}{\cos(nt - \theta_n)} \right)
\]

and, in general, for \(\omega \neq 1 \), we get

\[f(t) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} c_n \cos(n\omega t - \theta_n) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} c_n \cos\left(n\omega t - \arctan \frac{b_n}{a_n}\right) \]
(6.67)
Similarly,

\[
f(t) = \frac{1}{2} a_0 + c_1 \left(\frac{\sin \varphi_1 \cos t + \cos \varphi_1 \sin t}{\sin(t + \varphi_1)} \right) + c_2 \left(\frac{\sin \varphi_2 \cos 2t + \cos \varphi_2 \sin 2t}{\sin(2t + \varphi_2)} \right) + \ldots + c_n \left(\frac{\sin \varphi_n \cos nt + \cos \varphi_n \sin nt}{\sin(nt + \varphi_n)} \right)
\]

and, in general, where \(\omega \neq 1 \), we get

\[
f(t) = \frac{1}{2} a_0 + \sum_{n=1}^{\infty} c_n \sin(n \omega t + \varphi_n) = \frac{1}{2} a_0 + \sum_{n=1}^{\infty} c_n \sin(n \omega t + \arctan \frac{a_n}{b_n})
\]

(6.68)

The series of (6.67) and (6.68) can be expressed as phasors. Since it is customary to use the cosine function in the time domain to phasor transformation, we choose to use the transformation of (6.63) below.

\[
\frac{1}{2} a_0 + \sum_{n=1}^{\infty} c_n \cos(n \omega t - \arctan \frac{b_n}{a_n}) \leftrightarrow \frac{1}{2} a_0 + \sum_{n=1}^{\infty} c_n \angle -\arctan \frac{b_n}{a_n}
\]

(6.69)

Example 6.8

Find the first 5 terms of the alternate form of the trigonometric Fourier series for the waveform of Figure 6.21.

\[f(t)\]

\[\pi/2 \quad \pi \quad 3\pi/2 \quad 2\pi \quad t\]

\[\omega = 1\]

Figure 6.21. Waveform for Example 6.8

Solution:

The given waveform has no symmetry; thus, we expect both cosine and sine functions with odd and even terms present. Also, by inspection the DC value is not zero.

We will compute the \(a_n\) and \(b_n\) coefficients, the DC value, and we will combine them to get an expression in the form of (6.63). Then,
Alternate Forms of the Trigonometric Fourier Series

\[a_n = \frac{1}{\pi} \int_0^{\pi/2} (3 \cos nt) dt + \frac{1}{\pi} \int_{\pi/2}^{2\pi} (1) \cos nt dt = \frac{3}{n\pi} \sin n t \bigg|_0^{\pi/2} + \frac{1}{n\pi} \sin n t \bigg|_{\pi/2}^{2\pi} \]

\[= \frac{3}{n\pi} \sin n \frac{\pi}{2} + \frac{1}{n\pi} \sin 2\pi - \frac{1}{n\pi} \sin \frac{\pi}{2} = \frac{2}{n\pi} \sin \frac{\pi}{2} \]

We observe that for \(n = \text{even} \), \(a_n = 0 \).

For \(n = \text{odd} \),

\[a_1 = \frac{2}{\pi} \]

and

\[a_3 = -\frac{2}{3\pi} \]

The DC value is

\[\frac{1}{2} a_0 = \frac{1}{2\pi} \int_0^{\pi/2} (3) dt + \frac{1}{2\pi} \int_{\pi/2}^{2\pi} (1) dt = \frac{1}{2\pi} (3t|_0^{\pi/2} + t|_{\pi/2}^{2\pi}) \]

\[= \frac{1}{2\pi} \left(\frac{3\pi}{2} + 2\pi - \frac{\pi}{2} \right) = \frac{1}{2\pi} (\pi + 2\pi) = \frac{3}{2} \]

The \(b_n \) coefficients are

\[b_n = \frac{1}{\pi} \int_0^{\pi/2} (3 \sin nt) dt + \frac{1}{\pi} \int_{\pi/2}^{2\pi} (1) \sin nt dt = \frac{3}{n\pi} \cos nt \bigg|_0^{\pi/2} + \frac{1}{n\pi} \cos nt \bigg|_{\pi/2}^{2\pi} \]

\[= \frac{3}{n\pi} \cos n \frac{\pi}{2} + \frac{1}{n\pi} \cos 2\pi + \frac{1}{n\pi} \cos \frac{\pi}{2} = \frac{1}{n\pi} (3 - \cos 2\pi) = \frac{2}{n\pi} \]

Then,

\[b_1 = 2/\pi \]

\[b_2 = 1/\pi \]

\[b_3 = 2/3\pi \]

\[b_4 = 1/2\pi \]

From (6.69),

\[\frac{1}{2} a_0 + \sum_{n=1}^{\infty} c_n \cos \left(n\omega t - \text{atan} \frac{b_n}{a_n} \right) \leftrightarrow \frac{1}{2} a_0 + \sum_{n=1}^{\infty} c_n \text{atan} \frac{b_n}{a_n} \]
where
\[
 c_n \triangleq \frac{b_n}{a_n} = \sqrt{a_n^2 + b_n^2} \triangleq \frac{a_n^2 + b_n^2}{a_n} \triangleq \theta_n = a_n - j b_n
\]

Thus, for \(n = 1, 2, 3, \text{and} 4 \), we get:
\[
 a_1 - j b_1 = \frac{2}{\pi} - j \frac{2}{\pi} = \sqrt{\left(\frac{2}{\pi}\right)^2 + \left(\frac{2}{\pi}\right)^2} \triangleq -45^\circ
\]
\[
 = \frac{2\sqrt{2}}{\pi} \triangleq -45^\circ \iff \frac{2\sqrt{2}}{\pi} \cos(\omega t - 45^\circ)
\]

Similarly,
\[
 a_2 - j b_2 = 0 - j \frac{1}{\pi} = \frac{1}{\pi} \triangleq -90^\circ \iff \frac{1}{\pi} \cos(2\omega t - 90^\circ)
\]
\[
 a_3 - j b_3 = -\frac{2}{3\pi} - j \frac{2}{3\pi} = \frac{2\sqrt{2}}{3\pi} \triangleq -135^\circ \iff \frac{2\sqrt{2}}{3\pi} \cos(3\omega t - 135^\circ)
\]

and
\[
 a_4 - j b_4 = 0 - j \frac{1}{2\pi} = \frac{1}{2\pi} \triangleq -90^\circ \iff \frac{1}{2\pi} \cos(4\omega t - 90^\circ)
\]

Combining the terms of (6.73) and (6.80) through (6.83), we find that the alternate form of the trigonometric Fourier series representing the waveform of this example is
\[
 f(t) = \frac{3}{2} + \frac{1}{\pi} \left[2\sqrt{2} \cos(\omega t - 45^\circ) + \cos(2\omega t - 90^\circ)
 \right.
 \]
\[
 \left. + \frac{2\sqrt{2}}{3} \cos(3\omega t - 135^\circ) + \frac{1}{2}\cos(4\omega t - 90^\circ) + \ldots \right]
\]

6.6 The Exponential Form of the Fourier Series

The Fourier series are often expressed in exponential form. The advantage of the exponential form is that we only need to perform one integration rather than two, one for the \(a_n \), and another for the \(b_n \) coefficients in the trigonometric form of the series. Moreover, in most cases the integration is simpler.

The exponential form is derived from the trigonometric form by substitution of
\[
 \cos \omega t = \frac{e^{j\omega t} + e^{-j\omega t}}{2}
\]

and
The Exponential Form of the Fourier Series

\[\sin \omega t = \frac{e^{j\omega t} - e^{-j\omega t}}{j2} \]

(6.86)

into \(f(t) \). Thus,

\[f(t) = \frac{1}{2}a_0 + a_1 \left(\frac{e^{j\omega t} + e^{-j\omega t}}{2} \right) + a_2 \left(\frac{e^{j2\omega t} + e^{-j2\omega t}}{2} \right) + \]

\[\ldots + b_1 \left(\frac{e^{j\omega t} - e^{-j\omega t}}{j2} \right) + b_2 \left(\frac{e^{j2\omega t} - e^{-j2\omega t}}{j2} \right) + \ldots \]

(6.87)

and grouping terms with same exponents, we get

\[f(t) = \ldots + \left(\frac{a_2 - b_2}{j2} \right) e^{-j2\omega t} + \left(\frac{a_1 - b_1}{j2} \right) e^{-j\omega t} + \frac{1}{2}a_0 + \left(\frac{a_1 + b_1}{j2} \right) e^{j\omega t} + \left(\frac{a_2 + b_2}{j2} \right) e^{j2\omega t} \]

(6.88)

The terms of (6.88) in parentheses are usually denoted as

\[C_{-n} = \frac{1}{2} \left(a_n - \frac{b_n}{j} \right) = \frac{1}{2}(a_n + jb_n) \]

(6.89)

\[C_n = \frac{1}{2} \left(a_n + \frac{b_n}{j} \right) = \frac{1}{2}(a_n - jb_n) \]

(6.90)

\[C_0 = \frac{1}{2}a_0 \]

(6.91)

Then, (6.88) is written as

\[f(t) = \ldots + C_{-2}e^{-j2\omega t} + C_{-1}e^{-j\omega t} + C_0 + C_1e^{j\omega t} + C_2e^{j2\omega t} + \ldots \]

(6.92)

We must remember that the \(C_i \) coefficients, except \(C_0 \), are complex and occur in complex conjugate pairs, that is,

\[C_{-n} = C_n^* \]

(6.93)

We can derive a general expression for the complex coefficients \(C_n \), by multiplying both sides of (6.92) by \(e^{-jn\omega t} \) and integrating over one period, as we did in the derivation of the \(a_n \) and \(b_n \) coefficients of the trigonometric form. Then, with \(\omega = 1 \),
\[
\int_0^{2\pi} f(t)e^{-jnt} \, dt = \ldots + \int_0^{2\pi} C_{-2}e^{-j2t} \, dt + \int_0^{2\pi} C_{-1}e^{-jt} \, dt + \int_0^{2\pi} C_0e^{-jnt} \, dt + \int_0^{2\pi} C_1e^{jt} \, dt + \int_0^{2\pi} C_2e^{j2t} \, dt + \ldots + \int_0^{2\pi} C_ne^{jnt} \, dt \quad (6.94)
\]

We observe that all the integrals on the right side of (6.97) are zero except the last one. Therefore,

\[
\int_0^{2\pi} f(t)e^{-jnt} \, dt = \int_0^{2\pi} C_ne^{jnt} \, dt = \int_0^{2\pi} C_n dt = 2\pi C_n
\]

or

\[
C_n = \frac{1}{2\pi} \int_0^{2\pi} f(t)e^{-jnt} \, dt
\]

and, in general, for \(\omega \neq 1 \),

\[
C_n = \frac{1}{2\pi} \int_0^{2\pi} f(t)e^{-j\omega t} \, d(\omega t) \quad (6.95)
\]

or

\[
C_n = \frac{1}{T} \int_0^{T} f(t)e^{-j\omega t} \, d(\omega t) \quad (6.96)
\]

We can derive the trigonometric Fourier series from the exponential series by addition and subtraction of the exponential form coefficients \(C_n \) and \(C_{-n} \). Thus, from (6.89) and (6.90),

\[
C_n + C_{-n} = \frac{1}{2}(a_n - jb_n + a_n + jb_n)
\]

or

\[
a_n = C_n + C_{-n} \quad (6.97)
\]

Similarly,

\[
C_n - C_{-n} = \frac{1}{2}(a_n - jb_n - a_n - jb_n)
\]

or

\[
b_n = j(C_n - C_{-n}) \quad (6.99)
\]

Symmetry in Exponential Series

1. For even functions, all coefficients \(C_i \) are real
We recall from (6.89) and (6.90) that

\[C_{-n} = \frac{1}{2} \left(a_n - \frac{b_n}{j} \right) = \frac{1}{2} (a_n + j b_n) \tag{6.100} \]

and

\[C_n = \frac{1}{2} \left(a_n + \frac{b_n}{j} \right) = \frac{1}{2} (a_n - j b_n) \tag{6.101} \]

Since even functions have no sine terms, the \(b_n \) coefficients in (6.100) and (6.101) are zero. Therefore, both \(C_{-n} \) and \(C_n \) are real.

2. **For odd functions, all coefficients \(C_i \) are imaginary**

Since odd functions have no cosine terms, the \(a_n \) coefficients in (6.100) and (6.101) are zero. Therefore, both \(C_{-n} \) and \(C_n \) are imaginary.

3. **If there is half-wave symmetry, \(C_n = 0 \) for \(n = \text{even} \)**

We recall from the trigonometric Fourier series that if there is half-wave symmetry, all even harmonics are zero. Therefore, in (6.100) and (6.101) the coefficients \(a_n \) and \(b_n \) are both zero for \(n = \text{even} \), and thus, both \(C_{-n} \) and \(C_n \) are also zero for \(n = \text{even} \).

4. If there is no symmetry, \(f(t) \) is complex.

5. \(C_{-n} = C_n^* \) *always*

This can be seen in (6.100) and (6.101)

Example 6.9

Compute the exponential Fourier series for the square waveform of Figure 6.22 below. Assume that \(\omega = 1 \).

![Figure 6.22. Waveform for Example 6.9](image)
Chapter 6 Fourier, Taylor, and Maclaurin Series

Solution:
This is the same waveform as in Example 6.1, and as we know, it is an odd function, has half-wave symmetry, and its DC component is zero. Therefore, the \(C_n \) coefficients will be imaginary, \(C_n = 0 \) for \(n = \text{even} \), and \(C_0 = 0 \). Using (6.95) with \(\omega = 1 \), we get

\[
C_n = \frac{1}{2\pi} \int_0^{2\pi} f(t)e^{-j\omega t} dt = \frac{1}{2\pi} \int_0^{\pi} Ae^{-j\omega t} dt + \frac{1}{2\pi} \int_{\pi}^{2\pi} -Ae^{-j\omega t} dt
\]

and for \(n = 0 \),

\[
C_0 = \frac{1}{2\pi} \left[\int_0^{\pi} Ae^{-0} dt + \int_{\pi}^{2\pi} (-A)e^{-0} dt \right] = \frac{A}{2\pi}(\pi - 2\pi + \pi) = 0
\]
as expected.

For \(n \neq 0 \),

\[
C_n = \frac{1}{2\pi} \left[\int_0^{\pi} Ae^{-jnt} dt + \int_{\pi}^{2\pi} -Ae^{-jnt} dt \right] = \frac{1}{2\pi} \left[\frac{A}{-jn} e^{-jnt} \right]_0^{\pi} + \frac{A}{-jn} e^{-jnt} \right]_\pi^{2\pi} \]

\[
= \frac{A}{2jn\pi} \left[(1 - e^{-jn\pi} + e^{-jn2\pi} - e^{-jn\pi}) \right] \]

\[
= \frac{A}{2jn\pi} (e^{-jn\pi} - 1)^2 \] \hspace{1cm} (6.102)

For \(n = \text{even} \), \(e^{-jn\pi} = 1 \); then,

\[
C_n = \frac{A}{2jn\pi} (e^{-jn\pi} - 1)^2 = \frac{A}{2jn\pi} (1 - 1)^2 = 0 \] \hspace{1cm} (6.103)
as expected.

For \(n = \text{odd} \), \(e^{-jn\pi} = -1 \). Therefore,

\[
C_n = \frac{A}{2jn\pi} (e^{-jn\pi} - 1)^2 = \frac{A}{2jn\pi} (-1 - 1)^2 = \frac{A}{2jn\pi} (-2)^2 = \frac{2A}{jn\pi} \] \hspace{1cm} (6.104)

Using (6.92), that is,

\[
f(t) = \ldots + C_{-2}e^{-j2\omega t} + C_{-1}e^{-j\omega t} + C_0 + C_1e^{j\omega t} + C_2e^{j2\omega t} + \ldots
\]

we obtain the exponential Fourier series for the square waveform with odd symmetry as

6-32 Numerical Analysis Using MATLAB and Spreadsheets, Second Edition
Orchard Publications
The minus (−) sign of the first two terms within the parentheses results from the fact that $C_{-n} = C_n^*$. For instance, since $C_3 = 2A/j3\pi$, it follows that $C_{-3} = C_3^* = -2A/j3\pi$. We observe that $f(t)$ is purely imaginary, as expected, since the waveform is an odd function.

To prove that (6.105) and (6.22) are the same, we group the two terms inside the parentheses of (6.105) for which $n = 1$; this will produce the fundamental frequency $\sin\omega t$. Then, we group the two terms for which $n = 3$, and this will produce the third harmonic $\sin3\omega t$, and so on.

6.7 Line Spectra

When the Fourier series are known, it is useful to plot the amplitudes of the harmonics on a frequency scale that shows the first (fundamental frequency) harmonic, and the higher harmonics times the amplitude of the fundamental. Such a plot is known as line spectrum and shows the spectral lines that would be displayed by a spectrum analyzer.*

Figure 6.23 shows the line spectrum of the square waveform of Example 6.1.

![Figure 6.23. Line spectrum for square waveform of Example 6.1](image)

Figure 6.24 shows the line spectrum for the half-wave rectification waveform of Example 6.6.

![Figure 6.24. Line spectrum for half-wave rectifier of Example 6.6](image)

* An instrument that displays the spectral lines of a waveform.
The line spectra of other waveforms can be easily constructed from the Fourier series.

Example 6.10

Compute the exponential Fourier series for the waveform of Figure 6.25, and plot its line spectra. Assume $\omega = 1$.

![Figure 6.25. Waveform for Example 6.11](image)

Solution:

This recurrent rectangular pulse is used extensively in digital communications systems. To determine how faithfully such pulses will be transmitted, it is necessary to know the frequency components.

As shown in Figure 6.25, the pulse duration is T/k. Thus, the recurrence interval (period) T, is k times the pulse duration. In other words, k is the ratio of the pulse repetition time to the duration of each pulse.

For this example, the components of the exponential Fourier series are found from

$$C_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} A e^{j\omega t} dt = \frac{A}{2\pi} \int_{-\pi/k}^{\pi/k} e^{-jnt} dt$$

(6.106)

The value of the average (DC component) is found by letting $n = 0$. Then, from (6.106) we get

$$C_0 = \frac{A}{2\pi} \left. \frac{n}{k} \right|_{-\pi/k}^{\pi/k} = \frac{A}{2\pi} \left(\frac{\pi}{k} + \frac{\pi}{k} \right) = \frac{A}{k}$$

(6.107)

For the values for $n \neq 0$, integration of (6.106) yields

$$C_n = \frac{A}{-jn2\pi} \left. e^{-jnt} \right|_{-\pi/k}^{\pi/k} = \frac{A}{n\pi} \cdot \frac{e^{jn\pi/k} - e^{-jn\pi/k}}{j2} = \frac{A}{n\pi} \cdot \sin\left(\frac{n\pi}{k}\right)$$

(6.108)

and thus,
The relation of (6.109) has the \(\sin x/x \) form, and the line spectrum is shown in Figures 6.26 through 6.28, for \(k = 2 \), \(k = 5 \) and \(k = 10 \).

\[
f(t) = \sum_{n = -\infty}^{\infty} \frac{A}{k} \frac{\sin(n\pi/k)}{n\pi/k}
\]

(6.109)

Figure 6.26. Line spectrum of (6.109) for \(k = 2 \)

Figure 6.27. Line spectrum of (6.109) for \(k = 5 \)

Figure 6.28. Line spectrum of (6.112) for \(k = 10 \)
The spectral lines are separated by the distance \(1/k \) and thus, as \(k \) gets larger, the lines get closer together while the lines are further apart as \(k \) gets smaller. Although the space between lines seems to be the same in each case, we should observe that the number of lines between line crossings, are different.

6.8 Numerical Evaluation of Fourier Coefficients

Quite often, it is necessary to construct the Fourier expansion of a function based on observed values instead of an analytic expression. Examples are meteorological or economic quantities whose period may be a day, a week, a month or even a year. In these situations, we need to evaluate the integral(s) using numerical integration.

The procedure presented here, will work for both the waveforms that have an analytical solution and those that do not. Even though we may already know the Fourier series from analytical methods, we can use this procedure to check our results.

Consider the waveform of \(f(x) \) shown in Figure 6.29, were we have divided it into small pulses of width \(\Delta x \). Obviously, the more pulses we use, the better the approximation.

If the time axis is in degrees, we can choose \(\Delta x \) to be \(2.5^\circ \) and it is convenient to start at the zero point of the waveform. Then, using a spreadsheet, such as Microsoft Excel, we can divide the period \(0^\circ \) to \(360^\circ \) in \(2.5^\circ \) intervals, and enter these values in Column \(A \) of the spreadsheet.

![Figure 6.29. Waveform whose analytical expression is unknown](image)

Since the arguments of the sine and the cosine are in radians, we multiply degrees by \(\pi \) (3.1459...) and divide by 180 to perform the conversion. We enter these in Column \(B \) and we denote them as \(x \). In Column \(C \) we enter the corresponding values of \(y = f(x) \) as measured from the waveform. In Columns \(D \) and \(E \) we enter the values of \(\cos x \) and the product \(y\cos x \) respectively. Similarly, we enter the values of \(\sin x \) and \(y\sin x \) in Columns \(F \) and \(G \) respectively.
Next, we form the sums of $y\cos x$ and $y\sin x$, we multiply these by Δx, and we divide by π to obtain the coefficients a_1 and b_1. To compute the coefficients of the higher order harmonics, we form the products $y\cos 2x$, $y\sin 2x$, $y\cos 3x$, $y\sin 3x$, and so on, and we enter these in subsequent columns of the spreadsheet.

Figure 6.30 is a partial table showing the computation of the coefficients of the square waveform, and Figure 6.31 is a partial table showing the computation of the coefficients of a clipped sine waveform. The complete tables extend to the seventh harmonic to the right and to 360° down.

6.9 Power Series Expansion of Functions

A **power series** has the form

$$
\sum_{k=0}^{\infty} a_k x^k = a_0 + a_1 x + a_2 x^2 + \ldots
$$

(6.110)

Some familiar power series expansions for real values of x are

$$
e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \ldots
$$

(6.111)

$$
\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \ldots
$$

(6.112)

$$
\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \ldots
$$

(6.113)

The following example illustrates the fact that a power series expansion can lead us to a **Fourier Series**.

Example 6.11

If the applied voltage v is small (no greater than 5 volts), the current i in a semiconductor diode can be approximated by the relation

$$
i = a(e^{kv} - 1)
$$

(6.114)

where a and k are arbitrary constants, and the input voltage is a sinusoid, that is,

$$
v = V_{\text{max}} \cos \omega t
$$

(6.115)

Express the current i in (6.114) as a power series.
Fourier, Taylor, and Maclaurin Series

Figure 6.30. Numerical computation of the coefficients of the square waveform (partial listing)

Analytical:

\[f(t) = 4\left(\sin\frac{wt}{p} + \sin\frac{3wt}{3p} + \sin\frac{5wt}{5p} + \ldots\right) \]

Numerical:

<table>
<thead>
<tr>
<th></th>
<th>DC</th>
<th>a1</th>
<th>b1</th>
<th>a2</th>
<th>b2</th>
<th>a3</th>
<th>b3</th>
<th>a4</th>
<th>b4</th>
<th>a5</th>
<th>b5</th>
<th>a6</th>
<th>b6</th>
<th>a7</th>
<th>b7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.000</td>
<td>0.000</td>
<td>1.273</td>
<td>0.000</td>
<td>0.000</td>
<td>0.424</td>
<td>0.254</td>
<td>0.000</td>
<td>0.000</td>
<td>0.254</td>
<td>0.180</td>
<td>0.000</td>
<td>0.000</td>
<td>0.180</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x(deg)</th>
<th>x(rad)</th>
<th>y=f(x)</th>
<th>0.5*a0</th>
<th>cosx</th>
<th>y*cosx</th>
<th>sinx</th>
<th>y*sinx</th>
<th>cos2x</th>
<th>y*cos2x</th>
<th>sin2x</th>
<th>y*sin2x</th>
<th>cos3x</th>
<th>y*cos3x</th>
<th>sin3x</th>
<th>y*sin3x</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>1.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>1.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>2.5</td>
<td>0.044</td>
<td>1.000</td>
<td>0.044</td>
<td>0.999</td>
<td>0.999</td>
<td>0.044</td>
<td>0.996</td>
<td>0.996</td>
<td>0.087</td>
<td>0.087</td>
<td>0.991</td>
<td>0.991</td>
<td>0.131</td>
<td>0.131</td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td>0.087</td>
<td>1.000</td>
<td>0.044</td>
<td>0.996</td>
<td>0.996</td>
<td>0.087</td>
<td>0.985</td>
<td>0.985</td>
<td>0.174</td>
<td>0.174</td>
<td>0.966</td>
<td>0.966</td>
<td>0.259</td>
<td>0.259</td>
<td></td>
</tr>
<tr>
<td>7.5</td>
<td>0.131</td>
<td>1.000</td>
<td>0.044</td>
<td>0.991</td>
<td>0.991</td>
<td>0.131</td>
<td>0.966</td>
<td>0.966</td>
<td>0.259</td>
<td>0.259</td>
<td>0.924</td>
<td>0.924</td>
<td>0.383</td>
<td>0.383</td>
<td></td>
</tr>
<tr>
<td>10.0</td>
<td>0.175</td>
<td>1.000</td>
<td>0.044</td>
<td>0.985</td>
<td>0.985</td>
<td>0.174</td>
<td>0.940</td>
<td>0.940</td>
<td>0.342</td>
<td>0.342</td>
<td>0.866</td>
<td>0.866</td>
<td>0.500</td>
<td>0.500</td>
<td></td>
</tr>
<tr>
<td>12.5</td>
<td>0.218</td>
<td>1.000</td>
<td>0.044</td>
<td>0.976</td>
<td>0.976</td>
<td>0.216</td>
<td>0.906</td>
<td>0.906</td>
<td>0.423</td>
<td>0.423</td>
<td>0.793</td>
<td>0.793</td>
<td>0.609</td>
<td>0.609</td>
<td></td>
</tr>
<tr>
<td>15.0</td>
<td>0.262</td>
<td>1.000</td>
<td>0.044</td>
<td>0.966</td>
<td>0.966</td>
<td>0.259</td>
<td>0.866</td>
<td>0.866</td>
<td>0.500</td>
<td>0.500</td>
<td>0.707</td>
<td>0.707</td>
<td>0.707</td>
<td>0.707</td>
<td></td>
</tr>
<tr>
<td>17.5</td>
<td>0.305</td>
<td>1.000</td>
<td>0.044</td>
<td>0.954</td>
<td>0.954</td>
<td>0.301</td>
<td>0.819</td>
<td>0.819</td>
<td>0.574</td>
<td>0.574</td>
<td>0.609</td>
<td>0.609</td>
<td>0.793</td>
<td>0.793</td>
<td></td>
</tr>
<tr>
<td>20.0</td>
<td>0.349</td>
<td>1.000</td>
<td>0.044</td>
<td>0.940</td>
<td>0.940</td>
<td>0.342</td>
<td>0.766</td>
<td>0.766</td>
<td>0.643</td>
<td>0.643</td>
<td>0.500</td>
<td>0.500</td>
<td>0.866</td>
<td>0.866</td>
<td></td>
</tr>
<tr>
<td>22.5</td>
<td>0.393</td>
<td>1.000</td>
<td>0.044</td>
<td>0.924</td>
<td>0.924</td>
<td>0.383</td>
<td>0.707</td>
<td>0.707</td>
<td>0.707</td>
<td>0.707</td>
<td>0.383</td>
<td>0.383</td>
<td>0.924</td>
<td>0.924</td>
<td></td>
</tr>
<tr>
<td>25.0</td>
<td>0.436</td>
<td>1.000</td>
<td>0.044</td>
<td>0.906</td>
<td>0.906</td>
<td>0.423</td>
<td>0.643</td>
<td>0.643</td>
<td>0.766</td>
<td>0.766</td>
<td>0.259</td>
<td>0.259</td>
<td>0.966</td>
<td>0.966</td>
<td></td>
</tr>
<tr>
<td>27.5</td>
<td>0.480</td>
<td>1.000</td>
<td>0.044</td>
<td>0.887</td>
<td>0.887</td>
<td>0.462</td>
<td>0.574</td>
<td>0.574</td>
<td>0.819</td>
<td>0.819</td>
<td>0.131</td>
<td>0.131</td>
<td>0.991</td>
<td>0.991</td>
<td></td>
</tr>
<tr>
<td>30.0</td>
<td>0.524</td>
<td>1.000</td>
<td>0.044</td>
<td>0.866</td>
<td>0.866</td>
<td>0.500</td>
<td>0.866</td>
<td>0.866</td>
<td>0.500</td>
<td>0.500</td>
<td>0.000</td>
<td>0.000</td>
<td>1.000</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>32.5</td>
<td>0.567</td>
<td>1.000</td>
<td>0.044</td>
<td>0.843</td>
<td>0.843</td>
<td>0.537</td>
<td>0.423</td>
<td>0.423</td>
<td>0.906</td>
<td>0.906</td>
<td>-0.131</td>
<td>-0.131</td>
<td>0.991</td>
<td>0.991</td>
<td></td>
</tr>
<tr>
<td>35.0</td>
<td>0.611</td>
<td>1.000</td>
<td>0.044</td>
<td>0.819</td>
<td>0.819</td>
<td>0.574</td>
<td>0.342</td>
<td>0.342</td>
<td>0.940</td>
<td>0.940</td>
<td>-0.259</td>
<td>-0.259</td>
<td>0.966</td>
<td>0.966</td>
<td></td>
</tr>
<tr>
<td>37.5</td>
<td>0.654</td>
<td>1.000</td>
<td>0.044</td>
<td>0.793</td>
<td>0.793</td>
<td>0.609</td>
<td>0.259</td>
<td>0.259</td>
<td>0.966</td>
<td>0.966</td>
<td>-0.383</td>
<td>-0.383</td>
<td>0.924</td>
<td>0.924</td>
<td></td>
</tr>
<tr>
<td>40.0</td>
<td>0.698</td>
<td>1.000</td>
<td>0.044</td>
<td>0.766</td>
<td>0.766</td>
<td>0.643</td>
<td>0.174</td>
<td>0.174</td>
<td>0.985</td>
<td>0.985</td>
<td>-0.500</td>
<td>-0.500</td>
<td>0.866</td>
<td>0.866</td>
<td></td>
</tr>
<tr>
<td>42.5</td>
<td>0.742</td>
<td>1.000</td>
<td>0.044</td>
<td>0.737</td>
<td>0.737</td>
<td>0.676</td>
<td>0.087</td>
<td>0.087</td>
<td>0.996</td>
<td>0.996</td>
<td>-0.609</td>
<td>-0.609</td>
<td>0.793</td>
<td>0.793</td>
<td></td>
</tr>
<tr>
<td>45.0</td>
<td>0.785</td>
<td>1.000</td>
<td>0.044</td>
<td>0.707</td>
<td>0.707</td>
<td>0.707</td>
<td>0.000</td>
<td>0.000</td>
<td>1.000</td>
<td>1.000</td>
<td>-0.707</td>
<td>-0.707</td>
<td>0.707</td>
<td>0.707</td>
<td></td>
</tr>
<tr>
<td>47.5</td>
<td>0.829</td>
<td>1.000</td>
<td>0.044</td>
<td>0.676</td>
<td>0.676</td>
<td>0.737</td>
<td>-0.087</td>
<td>-0.087</td>
<td>0.996</td>
<td>0.996</td>
<td>-0.793</td>
<td>-0.793</td>
<td>0.609</td>
<td>0.609</td>
<td></td>
</tr>
<tr>
<td>50.0</td>
<td>0.873</td>
<td>1.000</td>
<td>0.044</td>
<td>0.643</td>
<td>0.643</td>
<td>0.766</td>
<td>-0.174</td>
<td>-0.174</td>
<td>0.985</td>
<td>0.985</td>
<td>-0.866</td>
<td>-0.866</td>
<td>0.500</td>
<td>0.500</td>
<td></td>
</tr>
</tbody>
</table>

Square waveform
Figure 6.31. Numerical computation of the coefficients of a clipped sine waveform (partial listing)

Analytical:

\[f(t) = \text{unknown} \]

Numerical:

- **DC**: 0.000
- **a1**: 0.000, **b1**: 0.609
- **a2**: 0.000, **b2**: 0.000
- **a3**: 0.000, **b3**: 0.138
- **a4**: 0.000, **b4**: 0.000
- **a5**: 0.000, **b5**: 0.028
- **a6**: 0.000, **b6**: 0.000
- **a7**: 0.000, **b7**: -0.010

Table:

<table>
<thead>
<tr>
<th>x(deg)</th>
<th>x(rad)</th>
<th>y=f(x)</th>
<th>0.5*a0</th>
<th>cosx</th>
<th>ycosx</th>
<th>sinx</th>
<th>ysinx</th>
<th>cos2x</th>
<th>ycos2x</th>
<th>sin2x</th>
<th>ysin2x</th>
<th>cos3x</th>
<th>ycos3x</th>
<th>sin3x</th>
<th>ysin3x</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>1.000</td>
<td>0.000</td>
<td>0.000</td>
<td>1.000</td>
<td>0.000</td>
<td>0.000</td>
<td>1.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>0.044</td>
<td>0.044</td>
<td>0.002</td>
<td>0.999</td>
<td>0.044</td>
<td>0.044</td>
<td>0.002</td>
<td>0.996</td>
<td>0.043</td>
<td>0.087</td>
<td>0.004</td>
<td>0.991</td>
<td>0.043</td>
<td>0.131</td>
<td>0.006</td>
</tr>
<tr>
<td>5.0</td>
<td>0.087</td>
<td>0.087</td>
<td>0.004</td>
<td>0.996</td>
<td>0.087</td>
<td>0.087</td>
<td>0.008</td>
<td>0.985</td>
<td>0.086</td>
<td>0.174</td>
<td>0.015</td>
<td>0.966</td>
<td>0.084</td>
<td>0.259</td>
<td>0.023</td>
</tr>
<tr>
<td>7.5</td>
<td>0.131</td>
<td>0.131</td>
<td>0.006</td>
<td>0.991</td>
<td>0.129</td>
<td>0.131</td>
<td>0.017</td>
<td>0.966</td>
<td>0.126</td>
<td>0.259</td>
<td>0.034</td>
<td>0.924</td>
<td>0.121</td>
<td>0.383</td>
<td>0.050</td>
</tr>
<tr>
<td>10.0</td>
<td>0.175</td>
<td>0.174</td>
<td>0.008</td>
<td>0.985</td>
<td>0.171</td>
<td>0.174</td>
<td>0.030</td>
<td>0.940</td>
<td>0.163</td>
<td>0.342</td>
<td>0.059</td>
<td>0.866</td>
<td>0.150</td>
<td>0.500</td>
<td>0.087</td>
</tr>
<tr>
<td>12.5</td>
<td>0.218</td>
<td>0.216</td>
<td>0.009</td>
<td>0.976</td>
<td>0.211</td>
<td>0.216</td>
<td>0.047</td>
<td>0.906</td>
<td>0.196</td>
<td>0.423</td>
<td>0.091</td>
<td>0.793</td>
<td>0.172</td>
<td>0.609</td>
<td>0.132</td>
</tr>
<tr>
<td>15.0</td>
<td>0.262</td>
<td>0.259</td>
<td>0.011</td>
<td>0.966</td>
<td>0.250</td>
<td>0.259</td>
<td>0.067</td>
<td>0.866</td>
<td>0.224</td>
<td>0.500</td>
<td>0.129</td>
<td>0.707</td>
<td>0.183</td>
<td>0.707</td>
<td>0.183</td>
</tr>
<tr>
<td>17.5</td>
<td>0.305</td>
<td>0.301</td>
<td>0.013</td>
<td>0.954</td>
<td>0.287</td>
<td>0.301</td>
<td>0.090</td>
<td>0.819</td>
<td>0.246</td>
<td>0.574</td>
<td>0.172</td>
<td>0.609</td>
<td>0.183</td>
<td>0.793</td>
<td>0.239</td>
</tr>
<tr>
<td>20.0</td>
<td>0.349</td>
<td>0.342</td>
<td>0.015</td>
<td>0.940</td>
<td>0.321</td>
<td>0.342</td>
<td>0.117</td>
<td>0.766</td>
<td>0.262</td>
<td>0.643</td>
<td>0.220</td>
<td>0.500</td>
<td>0.171</td>
<td>0.866</td>
<td>0.296</td>
</tr>
<tr>
<td>22.5</td>
<td>0.393</td>
<td>0.383</td>
<td>0.017</td>
<td>0.924</td>
<td>0.354</td>
<td>0.383</td>
<td>0.146</td>
<td>0.707</td>
<td>0.271</td>
<td>0.707</td>
<td>0.271</td>
<td>0.383</td>
<td>0.146</td>
<td>0.924</td>
<td>0.354</td>
</tr>
<tr>
<td>25.0</td>
<td>0.436</td>
<td>0.423</td>
<td>0.018</td>
<td>0.906</td>
<td>0.383</td>
<td>0.423</td>
<td>0.179</td>
<td>0.643</td>
<td>0.272</td>
<td>0.766</td>
<td>0.324</td>
<td>0.259</td>
<td>0.109</td>
<td>0.966</td>
<td>0.408</td>
</tr>
<tr>
<td>27.5</td>
<td>0.480</td>
<td>0.462</td>
<td>0.020</td>
<td>0.887</td>
<td>0.410</td>
<td>0.462</td>
<td>0.213</td>
<td>0.574</td>
<td>0.265</td>
<td>0.819</td>
<td>0.378</td>
<td>0.131</td>
<td>0.060</td>
<td>0.991</td>
<td>0.458</td>
</tr>
<tr>
<td>30.0</td>
<td>0.524</td>
<td>0.500</td>
<td>0.022</td>
<td>0.866</td>
<td>0.433</td>
<td>0.500</td>
<td>0.250</td>
<td>0.500</td>
<td>0.250</td>
<td>0.866</td>
<td>0.433</td>
<td>0.000</td>
<td>0.000</td>
<td>1.000</td>
<td>0.500</td>
</tr>
<tr>
<td>32.5</td>
<td>0.567</td>
<td>0.500</td>
<td>0.022</td>
<td>0.843</td>
<td>0.422</td>
<td>0.537</td>
<td>0.269</td>
<td>0.423</td>
<td>0.211</td>
<td>0.906</td>
<td>0.453</td>
<td>-0.131</td>
<td>-0.065</td>
<td>0.991</td>
<td>0.496</td>
</tr>
<tr>
<td>35.0</td>
<td>0.611</td>
<td>0.500</td>
<td>0.022</td>
<td>0.819</td>
<td>0.410</td>
<td>0.574</td>
<td>0.287</td>
<td>0.342</td>
<td>0.171</td>
<td>0.940</td>
<td>0.470</td>
<td>-0.259</td>
<td>-0.129</td>
<td>0.966</td>
<td>0.483</td>
</tr>
<tr>
<td>37.5</td>
<td>0.654</td>
<td>0.500</td>
<td>0.022</td>
<td>0.793</td>
<td>0.397</td>
<td>0.609</td>
<td>0.304</td>
<td>0.259</td>
<td>0.129</td>
<td>0.966</td>
<td>0.483</td>
<td>-0.383</td>
<td>-0.191</td>
<td>0.924</td>
<td>0.462</td>
</tr>
<tr>
<td>40.0</td>
<td>0.698</td>
<td>0.500</td>
<td>0.022</td>
<td>0.766</td>
<td>0.383</td>
<td>0.643</td>
<td>0.321</td>
<td>0.174</td>
<td>0.087</td>
<td>0.985</td>
<td>0.492</td>
<td>-0.500</td>
<td>-0.250</td>
<td>0.866</td>
<td>0.433</td>
</tr>
<tr>
<td>42.5</td>
<td>0.742</td>
<td>0.500</td>
<td>0.022</td>
<td>0.737</td>
<td>0.369</td>
<td>0.676</td>
<td>0.338</td>
<td>0.087</td>
<td>0.044</td>
<td>0.996</td>
<td>0.498</td>
<td>-0.609</td>
<td>-0.304</td>
<td>0.793</td>
<td>0.397</td>
</tr>
<tr>
<td>45.0</td>
<td>0.785</td>
<td>0.500</td>
<td>0.022</td>
<td>0.707</td>
<td>0.354</td>
<td>0.707</td>
<td>0.354</td>
<td>0.000</td>
<td>0.000</td>
<td>1.000</td>
<td>0.500</td>
<td>-0.707</td>
<td>-0.354</td>
<td>0.707</td>
<td>0.354</td>
</tr>
<tr>
<td>47.5</td>
<td>0.829</td>
<td>0.500</td>
<td>0.022</td>
<td>0.676</td>
<td>0.338</td>
<td>0.737</td>
<td>0.369</td>
<td>-0.087</td>
<td>-0.044</td>
<td>0.996</td>
<td>0.498</td>
<td>-0.793</td>
<td>-0.397</td>
<td>0.609</td>
<td>0.304</td>
</tr>
<tr>
<td>50.0</td>
<td>0.873</td>
<td>0.500</td>
<td>0.022</td>
<td>0.643</td>
<td>0.321</td>
<td>0.766</td>
<td>0.383</td>
<td>-0.174</td>
<td>-0.087</td>
<td>0.985</td>
<td>0.492</td>
<td>-0.866</td>
<td>-0.433</td>
<td>0.500</td>
<td>0.250</td>
</tr>
</tbody>
</table>

Sine wave clipped at \(\pi/6, 5\pi/6 \text{ etc.} \)
Chapter 6 Fourier, Taylor, and Maclaurin Series

Solution:

The term e^{kv} inside the parentheses of (6.114) suggests the power series expansion of (6.111). Accordingly, we rewrite (6.114) as

$$i = a \left(1 + kv + \frac{(kv)^2}{2!} + \frac{(kv)^3}{3!} + \frac{(kv)^4}{4!} + \ldots - 1 \right) = a \left(kv + \frac{(kv)^2}{2!} + \frac{(kv)^3}{3!} + \frac{(kv)^4}{4!} + \ldots \right)$$

(6.116)

Substitution of (6.115) into (6.116) yields,

$$i = a \left(k V_{\text{max}} \cos \omega t + \frac{(k V_{p} \cos \omega t)^2}{2!} + \frac{(k V_{p} \cos \omega t)^3}{3!} + \frac{(k V_{p} \cos \omega t)^4}{4!} + \ldots \right)$$

(6.117)

This expression can be simplified with the use of the following trigonometric identities:

$$\cos^2 x = \frac{1}{2} + \frac{1}{2} \cos 2x$$
$$\cos^3 x = \frac{3}{4} \cos x + \frac{1}{4} \cos 3x$$

(6.118)

$$\cos^4 x = \frac{3}{8} + \frac{3}{4} \cos 2x + \frac{1}{8} \cos 4x$$

Then, substitution of (6.118) into (6.117) and after simplification, we obtain a series of the following form:

$$i = A_0 + A_1 \cos \omega t + A_2 \cos 2\omega t + A_3 \cos 3\omega t + A_4 \cos 4\omega t + \ldots$$

(6.119)

We recall that the series of (6.119) is the trigonometric series form of the Fourier series. We observe that it consists of a constant term, a term of the fundamental frequency, and terms of all harmonic frequencies, that is, higher frequencies which are multiples of the fundamental frequency.

6.10 Taylor and Maclaurin Series

A function $f(x)$ which possesses all derivatives up to order n at a point $x = x_0$ can be expanded in a Taylor series as

$$f(x) = f(x_0) + f'(x_0)(x-x_0) + \frac{f''(x_0)}{2!}(x-x_0)^2 + \ldots + \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n$$

(6.120)

If $x_0 = 0$, (6.120) reduces to
Relation (6.121) is known as Maclaurin series, and has the form of power series of (6.110) with

\[a_n = \frac{f^{(n)}(0)}{n!} . \]

To appreciate the usefulness and application of the Taylor series, we will consider the plot of Figure 6.32, where \(i(v) \) represents some experimental data for the current-voltage (i-v) characteristics of a semiconductor diode operating at the 0 ≤ \(v \) ≤ 5 volts region.

Now, suppose that we want to approximate the function \(i(v) \) by a power series, in the neighborhood of some arbitrary point \(P(v_0, i_0) \) shown in Figure 6.33. We assume that the first \(n \) derivatives of the function \(i(v) \) exist at this point.

We begin by referring to the power series of (6.110), where we observe that the first term on the right side is a constant. Therefore, we are seeking a constant that it will be the best approximation to the given curve in the vicinity of point \(P \). Obviously, the horizontal line \(i_0 \) passes through point \(P \), and we denote this first approximation as \(a_0 \) shown in Figure 6.34.
The next term in the power series is the linear term a_1x. Thus, we seek a linear term of the form $a_0 + a_1x$. But since we want the power series to be a good approximation to the given function for some distance on either side of point P, we are interested in the difference $v - v_0$. Accordingly, we express the desired power series as

$$f(v) = a_0 + a_1(v - v_0) + a_2(v - v_0)^2 + a_3(v - v_0)^3 + a_4(v - v_0)^4 + \ldots$$ (6.122)

Now, we want the linear term $a_0 + a_1(v - v_0)$ to be the best approximation to the function $i(v)$ in the vicinity of point P. This will be accomplished if the linear term has the same slope as the given function as shown in Figure 6.35.
Taylor and Maclaurin Series

It is evident that the slope of \(i(v) \) at \(v_0 \) is \(i'(v_0) = a_1 \) and therefore, the linear term \(a_0 + a_1(v - v_0) \) can be expressed as \(i(v_0) + i'(v_0)(v - v_0) \).

The third term in (6.122), that is, \(a_2(v - v_0)^2 \) is a quadratic and therefore, we choose \(a_2 \) such that it matches the second derivative of the function \(i(v) \) in the vicinity of point \(P \) as shown in Figure 6.36.

Then, \(2a_2 = i''(v_0) \) or \(a_2 = i''(v_0)/2 \). The remaining coefficients \(a_3, a_4, a_5 \), and so on of (6.122) are found by matching the third, fourth, fifth, and higher order derivatives of the given function with these coefficients. When this is done, we obtain the following Taylor series.
We can also describe any function that has an analytical expression, by a Taylor series as illustrated by the following example.

Example 6.12

Compute the first three terms of the Taylor series expansion for the function

\[y = f(x) = \tan x \] \hspace{1cm} (6.124)

at \(a = \pi/4 \).

Solution:

The Taylor series expansion about point \(a \) is given by

\[f_n(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \ldots \] \hspace{1cm} (6.125)

and since we are asked to compute the first three terms, we must find the first and second derivatives of \(f(x) = \tan x \).

From math tables, \(\frac{d}{dx} \tan x = \sec^2 x \), so \(f'(x) = \sec^2 x \). To find \(f''(x) \) we need to find the first derivative of \(\sec^2 x \), so we let \(z = \sec^2 x \). Then, using \(\frac{d}{dx} \sec x = \sec x \cdot \tan x \), we get

\[\frac{dz}{dx} = 2\sec x \cdot \frac{d}{dx} \sec x = 2\sec x (\sec x \cdot \tan x) = 2\sec^2 x \cdot \tan x \] \hspace{1cm} (6.126)

Next, using the trigonometric identity

\[\sec^2 x = \tan^2 x + 1 \] \hspace{1cm} (6.127)

and by substitution of (6.127) into (6.126), we get,

\[\frac{dz}{dx} = f''(x) = 2(\tan^2 x + 1)\tan x \] \hspace{1cm} (6.128)

Now, at point \(a = \pi/4 \) we have:

\[f(a) = f\left(\frac{\pi}{4}\right) = \tan\left(\frac{\pi}{4}\right) = 1 \quad f'(a) = f'\left(\frac{\pi}{4}\right) = 1 + 1 = 2 \quad f''(a) = f''\left(\frac{\pi}{4}\right) = 2(1^2 + 1)1 = 4 \] \hspace{1cm} (6.129)

and by substitution into (6.125),
Taylor and Maclaurin Series

\[f_n(x) = 1 + 2\left(x - \frac{\pi}{4}\right) + 2\left(x - \frac{\pi}{4}\right)^2 + \ldots \]

(6.130)

We can also obtain a Taylor series expansion with the MATLAB `taylor(f,n,a)` function where \(f \) is a symbolic expression, \(n \) produces the first \(n \) terms in the series, and \(a \) defines the Taylor approximation about point \(a \). A detailed description can be displayed with the `help taylor` command. For example, the following code will compute the first 8 terms of the Taylor series expansion of \(y = f(x) = \tan x \) about \(a = \pi/4 \).

\[
x = \text{sym('x')}; \quad y = \tan(x); \quad z = \text{taylor}(y,8,\pi/4); \quad \text{pretty}(z)
\]

\[
2 \quad 3 \quad 4 \\
1 + 2x - 1/2 \pi + 2(x - 1/4 \pi) + 8/3(x - 1/4 \pi) + 10/3(x - 1/4 \pi) + 64/15(x - 1/4 \pi) + 5/45(x - 1/4 \pi) + 244/315(x - 1/4 \pi)
\]

Example 6.13

Express the function

\[y = f(t) = e^t \]

(6.131)

in a Maclaurin’s series.

Solution:

A Maclaurin’s series has the form of (6.132), that is,

\[f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \ldots + \frac{f^{(n)}(0)}{n!}x^n \]

(6.132)

For this function, we have \(f(t) = e^t \) and thus \(f(0) = 1 \). Since all derivatives are \(e^t \), then,

\[f'(0) = f''(0) = f'''(0) = \ldots = 1 \]

and therefore,

\[f_n(t) = 1 + t + \frac{t^2}{2!} + \frac{t^3}{3!} + \ldots \]

(6.133)

MATLAB displays the same result.

\[
t = \text{sym('t')}; \quad \text{fn} = \text{taylor}(\exp(t)); \quad \text{pretty}(\text{fn})
\]

\[
2 \quad 3 \quad 4 \quad 5 \\
1 + t + 1/2 t + 1/6 t + 1/24 t + 1/120 t
\]
Example 6.14

In a semiconductor diode D, the instantaneous current i_D and voltage v_D are related as

$$i_D(v_D) = I_D e^{v_D/nV_T} \quad (6.134)$$

where I_D is the DC (average) component of the current, the constant n has a value between 1 and 2 depending on the material and physical structure of the diode, and V_T is the thermal voltage which depends on the temperature, and its value at room temperature is approximately 25 mV.

Expand this relation into a power series that can be used to compute the current when the voltage is small and varies about $v_D = 0$.

Solution:

Since the voltage is small and varies about $v_D = 0$, we can use the following Maclaurin’s series.

$$i_D(v_D) = i_D(0) + i_D'(0)v_D + \frac{i_D''(0)}{2!}v_D^2 + \frac{i_D'''(0)}{3!}v_D^3 + \ldots \quad (6.135)$$

The first term $i_D(0)$ on the right side of (6.135) is found by letting $v_D = 0$ in (6.134). Then,

$$i_D(0) = I_D \quad (6.136)$$

To compute the second and third terms of (6.135), we must find the first and second derivatives of (6.134). These are:

$$i_D'(v_D) = \frac{d}{dv_D}i_D = \frac{I}{nV_T} \cdot I_D e^{v_D/nV_T} \quad \text{and} \quad i_D'(0) = \frac{I}{nV_T} \cdot I_D \quad (6.137)$$

$$i_D''(v_D) = \frac{d^2}{dv_D^2}i_D = \frac{I}{n^2V_T^2} \cdot I_D e^{v_D/nV_T} \quad \text{and} \quad i_D''(0) = \frac{I}{n^2V_T^2} \cdot I_D \quad (6.138)$$

Then, by substitution of (6.136), (6.137), and (6.138) into (6.135) we get

$$i_D(v_D) = I_D \left(1 + \frac{I}{nV_T} v_D + \frac{I}{n^2V_T^2} v_D^2 + \ldots \right) \quad (6.139)$$
6.11 Summary

- Any periodic waveform \(f(t) \) can be expressed as

\[
f(t) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} \left(a_n \cos nt + b_n \sin nt \right)
\]

where the first term \(a_0/2 \) is a constant, and represents the DC (average) component of \(f(t) \). The terms with the coefficients \(a_1 \) and \(b_1 \) together, represent the fundamental frequency component \(\omega \). Likewise, the terms with the coefficients \(a_2 \) and \(b_2 \) together, represent the second harmonic component \(2\omega \), and so on. The coefficients \(a_0, a_n, \) and \(b_n \) are found from the following relations:

\[
\frac{1}{2}a_0 = \frac{1}{2\pi} \int_{0}^{2\pi} f(t) dt \\
\]

\[
a_n = \frac{1}{\pi} \int_{0}^{2\pi} f(t) \cos nt dt \\
\]

\[
b_n = \frac{1}{\pi} \int_{0}^{2\pi} f(t) \sin nt dt \\
\]

- If a waveform has odd symmetry, that is, if it is an odd function, the series will consist of sine terms only. Odd functions are those for which \(-f(-t) = f(t) \).

- If a waveform has even symmetry, that is, if it is an even function, the series will consist of cosine terms only, and \(a_0 \) may or may not be zero. Even functions are those for which \(f(-t) = f(t) \).

- A periodic waveform with period \(T \), has half-wave symmetry if

\[
-f \left(t + \frac{T}{2} \right) = f(t)
\]

that is, the shape of the negative half-cycle of the waveform is the same as that of the positive half-cycle, but inverted. If a waveform has half-wave symmetry only odd (odd cosine and odd sine) harmonics will be present. In other words, all even (even cosine and even sine) harmonics will be zero.

- The trigonometric Fourier series for the square waveform with odd symmetry is

\[
f(t) = \frac{4A}{\pi} \left(\sin \omega t + \frac{1}{3} \sin 3\omega t + \frac{1}{5} \sin 5\omega t + \ldots \right) = \frac{4A}{\pi} \sum_{n = \text{odd}} \frac{1}{n} \sin n\omega t
\]

- The trigonometric Fourier series for the square waveform with even symmetry is
Chapter 6 Fourier, Taylor, and Maclaurin Series

\[f(t) = \frac{4A}{\pi} \left[\cos \omega t - \frac{1}{3} \cos 3\omega t + \frac{1}{5} \cos 5\omega t - \ldots \right] = \frac{4A}{\pi} \sum_{n = odd}^{(n-1)} (-1)^{\frac{n}{2}} \frac{1}{n} \cos n\omega t \]

- The trigonometric Fourier series for the sawtooth waveform with odd symmetry is

\[f(t) = \frac{2A}{\pi} \left[\sin \omega t - \frac{1}{2} \sin 2\omega t + \frac{1}{3} \sin 3\omega t - \frac{1}{4} \sin 4\omega t + \ldots \right] = \frac{2A}{\pi} \sum_{n = odd}(-1)^{n-1} \frac{1}{n} \sin n\omega t \]

- The trigonometric Fourier series for the triangular waveform with odd symmetry is

\[f(t) = \frac{8A}{\pi^2} \left[\sin \omega t - \frac{1}{9} \sin 3\omega t + \frac{1}{25} \sin 5\omega t - \frac{1}{49} \sin 7\omega t + \ldots \right] = \frac{8A}{\pi^2} \sum_{n = odd}(-1)^{\frac{n}{2}} \frac{1}{n^2} \sin n\omega t \]

- The trigonometric Fourier series for the half-wave rectification waveform with no symmetry is

\[f(t) = \frac{A}{\pi} + \frac{A}{2} \sin t - \frac{A}{\pi} \left[\cos \frac{2t}{3} + \cos \frac{4t}{15} + \cos \frac{6t}{35} + \cos \frac{8t}{63} + \ldots \right] \]

- The trigonometric Fourier series for the full-wave rectification waveform with even symmetry is

\[f(t) = \frac{2A}{\pi} - \frac{4A}{\pi} \sum_{n = 2, 4, 6, \ldots}^{\infty} \frac{1}{(n^2 - 1)} \cos n\omega t \]

- The Fourier series are often expressed in exponential form as

\[f(t) = \ldots + C_{-2}e^{-j2\omega t} + C_{-1}e^{-j\omega t} + C_0 + C_1e^{j\omega t} + C_2e^{j2\omega t} + \ldots \]

where the \(C_i \) coefficients are related to the trigonometric form coefficients as

\[C_{-n} = \frac{1}{2} \left(a_n - \frac{b_n}{j} \right) = \frac{1}{2}(a_n + jb_n) \]

\[C_n = \frac{1}{2} \left(a_n + \frac{b_n}{j} \right) = \frac{1}{2}(a_n - jb_n) \]

\[C_0 = \frac{1}{2}a_0 \]

- The \(C_i \) coefficients, except \(C_0 \), are complex, and appear as complex conjugate pairs, that is, \(C_{-n} = C_n^{*} \)

- In general, for \(\omega \neq 1 \),
Summary

We can derive the trigonometric Fourier series from the exponential series from the relations

\[a_n = C_n + C_{-n} \]

and

\[b_n = j(C_n - C_{-n}) \]

For even functions, all coefficients \(C_i \) are real.

For odd functions, all coefficients \(C_i \) are imaginary.

If there is half-wave symmetry, \(C_n = 0 \) for \(n = \text{even} \).

\(C_{-n} = C_{n}^* \) always.

A line spectrum is a plot that shows the amplitudes of the harmonics on a frequency scale.

The frequency components of a recurrent rectangular pulse follow a sin\(x/x \) form.

We can evaluate the Fourier coefficients of a function based on observed values instead of an analytic expression using numerical evaluations with the aid of a spreadsheet.

A power series has the form

\[\sum_{k=0}^{\infty} a_k x^k = a_0 + a_1 x + a_2 x^2 + \ldots \]

A function \(f(x) \) that possesses all derivatives up to order \(n \) at a point \(x = x_0 \) can be expanded in a Taylor series as

\[f(x) = f(x_0) + f'(x_0)(x-x_0) + \frac{f''(x_0)}{2!}(x-x_0)^2 + \ldots + \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n \]

If \(x_0 = 0 \), the series above reduces to

\[f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \ldots + \frac{f^{(n)}(0)}{n!}x^n \]

and this relation is known as Maclaurin series.

We can also obtain a Taylor series expansion with the MATLAB \texttt{taylor(f,n,a)} function where \(f \) is a symbolic expression, \(n \) produces the first \(n \) terms in the series, and \(a \) defines the Taylor approximation about point \(a \).
6.12 Exercises

1. Compute the first 5 components of the trigonometric Fourier series for the waveform of Figure 6.37. Assume $\omega = 1$.

![Figure 6.37. Waveform for Exercise 1](image)

2. Compute the first 5 components of the trigonometric Fourier series for the waveform of Figure 6.38. Assume $\omega = 1$.

![Figure 6.38. Waveform for Exercise 2](image)

3. Compute the first 5 components of the exponential Fourier series for the waveform of Figure 6.39. Assume $\omega = 1$.

![Figure 6.39. Waveform for Exercise 3](image)

4. Compute the first 5 components of the exponential Fourier series for the waveform of Figure 6.40. Assume $\omega = 1$.

![Figure 6.40. Waveform for Exercise 4](image)
5. Compute the first 5 components of the exponential Fourier series for the waveform of Figure 6.41. Assume $\omega = 1$.

![Figure 6.41. Waveform for Exercise 5](image)

6. Compute the first 5 components of the exponential Fourier series for the waveform of Figure 6.42. Assume $\omega = 1$.

![Figure 6.42. Waveform for Exercise 6](image)

7. Compute the first 4 terms of the Maclaurin series for each of the following functions.
 a. $f(x) = e^{-x}$
 b. $f(x) = \sin x$
 c. $f(x) = \sinh x$

 Confirm your answers with MATLAB.

8. Compute the first 4 terms of the Taylor series for each of the following functions.
 a. $f(x) = \frac{1}{x}$ about $a = -1$
 b. $f(x) = \sin x$ about $a = \frac{\pi}{4}$

 Confirm your answers with MATLAB.

9. In a non-linear device, the voltage and current are related as

 $$i(v) = k \left(1 + \frac{v}{V}\right)^{1.5}$$

 where k is a constant and V is the DC component of the instantaneous voltage v. Expand this function into a power series that can be used to compute the current i, when the voltage v is small, and varies about $v = \theta$.

Exercises
6.13 Solutions to Exercises

1. This is an even function; therefore, the series consists of cosine terms only. There is no half-wave symmetry and the average (DC component) is not zero. We will integrate from 0 to π and multiply by 2. Then,

$$a_n = \frac{2}{\pi} \int_0^\pi A \cos nt \, dt = \frac{2A}{\pi^2} \int_0^\pi t \cos nt \, dt \quad (1)$$

From tables of integrals,

$$\int x \cos ax \, dx = \frac{1}{a^2} \cos ax + \frac{x}{a} \sin ax$$

and thus (1) becomes

$$a_n = \frac{2A}{\pi^2} \left(\frac{1}{n^2} \cos nt + \frac{t}{n} \sin nt \right) \bigg|_0^\pi = \frac{2A}{\pi^2} \left(\frac{1}{n^2} \cos n\pi + \frac{t}{n} \sin n\pi - \frac{1}{n^2} - 0 \right)$$

and since $\sin n\pi = 0$ for all integer n,

$$a_n = \frac{2A}{\pi^2} \left(\frac{1}{n^2} \cos n\pi - \frac{1}{n^2} \right) = \frac{2A}{n^2 \pi} (\cos n\pi - 1) \quad (2)$$

We cannot evaluate the average $(1/2)/a_0$ from (2); we must use (1). Then, for $n = 0$,

$$\frac{1}{2}a_0 = \frac{2A}{2\pi^2} \int_0^\pi t \, dt = \frac{A}{\pi^2} \cdot \frac{t^2}{2} \bigg|_0^\pi = \frac{A \cdot \pi^2}{2}$$

or

$$(1/2)/a_0 = A/2$$

We observe from (2) that for $n = \text{even}$, $a_n = 0$. Then,

$$a_1 = -\frac{4A}{\pi^2}, \quad a_3 = \frac{4A}{3^2 \pi}, \quad a_5 = -\frac{4A}{5^2 \pi}, \quad a_7 = \frac{4A}{7^2 \pi}$$

and so on.
Therefore,

\[f(t) = \frac{1}{2}a_0 - \frac{4A}{\pi} \left(\cos t + \frac{1}{9} \cos 3t + \frac{1}{25} \cos 5t + \frac{1}{49} \cos 7t + \ldots \right) = \frac{A}{2} - \frac{4A}{\pi} \sum_{n = odd}^{\infty} \frac{1}{n^2} \cos nt \]

2.

This is an even function; therefore, the series consists of cosine terms only. There is no half-wave symmetry and the average (DC component) is not zero.

\[\text{Average} = \frac{1}{2}a_0 = \frac{\text{Area}}{\text{Period}} = \frac{2 \times [(A/2) \cdot (\pi/2)] + A\pi}{2\pi} = \frac{3A \cdot (\pi/2)}{2\pi} = \frac{3A}{4} \]

\[a_n = \frac{2}{\pi} \int_0^{\pi/2} \frac{2A}{\pi} t \cos nt \, dt + \frac{2}{\pi} \int_{\pi/2}^{\pi} A \cos nt \, dt \quad (1) \]

and with

\[\int x \cos ax \, dx = \frac{1}{a^2} \cos ax + \frac{x}{a} \sin ax = \frac{1}{a^2} (\cos ax + ax \sin ax) \]

(1) simplifies to

\[a_n = \frac{4A}{n^2} \left[\frac{1}{n^2} (\cos n\pi + n\sin n\pi) \right]_{0}^{\pi/2} + \frac{2A}{n\pi} \sin n\pi \left[\right]_{\pi/2}^{\pi} \]

\[= \frac{4A}{n^2} \left(\cos \frac{n\pi}{2} + \frac{n\pi}{2} \sin \frac{n\pi}{2} - 1 - 0 \right) + \frac{2A}{n\pi} \left(\sin n\pi - \sin \frac{n\pi}{2} \right) \]

and since \(\sin n\pi = 0 \) for all integer \(n \),

\[a_n = \frac{4A}{n^2} \cos \frac{n\pi}{2} + \frac{2A}{n\pi} \sin \frac{n\pi}{2} - \frac{4A}{n^2} \cos \frac{n\pi}{2} - \frac{2A}{n\pi} \sin \frac{n\pi}{2} = \frac{4A}{n^2} \left(\cos \frac{n\pi}{2} - 1 \right) \]

for \(n = 1 \), \(a_1 = \frac{4A}{\pi^2} (0 - 1) = -\frac{4A}{\pi^2} \), for \(n = 2 \), \(a_2 = \frac{4A}{4\pi^2} (-1 - 1) = -\frac{2A}{\pi^2} \)

for \(n = 3 \), \(a_3 = \frac{4A}{9\pi^2} (0 - 1) = -\frac{4A}{9\pi^2} \), for \(n = 4 \), \(a_4 = \frac{4A}{7\pi^2} (1 - 1) = 0 \)

We observe that the fourth harmonic and all its multiples are zero. Therefore,
This is neither an even nor an odd function and has no half-wave symmetry; therefore, the series consists of both cosine and sine terms. The average (DC component) is not zero. Then,

\[C_n = \frac{1}{2\pi} \int_0^{2\pi} f(t)e^{-jn\omega t}d(\omega t) \]

and with \(\omega = 1 \)

\[C_n = \frac{1}{2\pi} \int_0^{2\pi} f(t)e^{-jn t}dt = \frac{1}{2\pi} \left[\int_0^\pi A e^{-jt} dt + \int_\pi^{2\pi} 0e^{-jt} dt \right] = \frac{A}{2\pi} \int_0^\pi e^{-jt} dt \]

The DC value is

\[C_0 = \frac{A}{2\pi} \int_0^\pi e^0 dt = \frac{A}{2\pi} \int_0^\pi dt = \frac{A}{2} \]

For \(n \neq 0 \)

\[C_n = \frac{A}{2\pi} \int_0^\pi e^{-jn t} dt = \frac{A}{-j2n\pi} e^{-jn t} \bigg|_0^\pi = \frac{A}{j2n\pi} (1 - e^{-jn\pi}) \]

Recalling that

\[e^{-jn\pi} = \cos(n\pi) - j\sin(n\pi) \]

for \(n = \text{even}, e^{-jn\pi} = 1 \) and for \(n = \text{odd}, e^{-jn\pi} = -1 \). Then,

\[C_{n=\text{even}} = \frac{A}{j2n\pi} (1 - 1) = 0 \]

and

\[C_{n=\text{odd}} = \frac{A}{j2n\pi} [1 - (-1)] = \frac{A}{jn\pi} \]

By substitution into the expression

\[f(t) = \cdots + C_{-2}e^{-j2\omega t} + C_{-1}e^{-j\omega t} + C_0 + C_1e^{j\omega t} + C_2e^{j2\omega t} + \cdots \]

we find that...
The minus (−) sign of the first two terms within the parentheses results from the fact that \(C_{-n} = C_n^* \). For instance, since \(C_1 = 2A/j\pi \), it follows that \(C_{-1} = C_1^* = -2A/j\pi \). We observe that \(f(t) \) is complex, as expected, since there is no symmetry.

4.

This is the same waveform as in Exercise 3 where the DC component has been removed. Then,

\[
f(t) = \frac{A}{j\pi} \left(-\frac{1}{3}e^{-j3\omega t} - e^{-j\omega t} + e^{j\omega t} + \frac{1}{3}e^{j3\omega t} + \ldots \right)
\]

It is also the same waveform as in Example 6.9 except that the amplitude is halved. This waveform is an odd function and thus the expression for \(f(t) \) is imaginary.

5.

This is the same waveform as in Exercise 3 where the vertical axis has been shifted to make the waveform an even function. Therefore, for this waveform \(C_n \) is real. Then,

\[
C_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)e^{-int} \, dt = \frac{A}{2\pi} \int_{-\pi/2}^{\pi/2} e^{-int} \, dt
\]

The DC value is

\[
C_0 = \frac{A}{2\pi} \left| \int_{-\pi/2}^{\pi/2} \right| = \frac{A}{2\pi} \left(\frac{\pi}{2} + \frac{\pi}{2} \right) = \frac{A}{2}
\]

For \(n \neq 0 \)
\[C_n = \frac{A}{2\pi} \int_{-\pi/2}^{\pi/2} e^{-jnt} \, dt = \frac{A}{-j2n\pi} e^{-jnt} \bigg|_{-\pi/2}^{\pi/2} = \frac{A}{-j2n\pi} (e^{-jn\pi/2} - e^{jn\pi/2}) \]

\[= \frac{A}{j2n\pi} (e^{jn\pi/2} - e^{-jn\pi/2}) = \frac{A}{jn\pi} \frac{e^{jn\pi/2} - e^{-jn\pi/2}}{2} = \frac{A}{jn\pi} \sin\frac{n\pi}{2} \]

and we observe that for \(n = \text{even} \), \(C_n = 0 \)

For \(n = \text{odd} \), \(C_n \) alternates in plus (+) and minus (−) signs, that is,

\[C_n = \frac{A}{n\pi} \quad \text{if} \quad n = 1, 5, 9, \ldots \]

\[C_n = -\frac{A}{n\pi} \quad \text{if} \quad n = 3, 7, 11, \ldots \]

Thus,

\[f(t) = \frac{A}{2} + \sum_{n = \text{odd}} (\pm \frac{A}{n\pi} e^{jn\omega t}) \]

where the plus (+) sign is used with \(n = 1, 5, 9, \ldots \) and the minus (−) sign is used with \(n = 3, 7, 11, \ldots \). We can express \(f(t) \) in a more compact form as

\[f(t) = \frac{A}{2} + \sum_{n = \text{odd}} (-1)^{(n-1)/2} \frac{A}{n\pi} e^{jn\omega t} \]

6.

\[f(t) \]

\[\begin{array}{c}
-\pi/2 & -\pi & 0 & \pi/2 & \pi & \omega t \\
A & & & & & 2A/\pi t - 1 \end{array} \]

We will find the exponential form coefficients \(C_n \) from

\[C_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) e^{-jnt} \, dt \]

From tables of integrals

\[\int xe^{ax} \, dx = \frac{e^{ax}}{a^2} (ax - 1) \]

Then,
\[C_n = \frac{1}{2\pi} \left[\int_{-\pi}^{0} \left(\frac{2A}{\pi} t - 1 \right) e^{-jnt} \, dt + \int_{0}^{\pi} \left(\frac{2A}{\pi} t - 1 \right) e^{-jnt} \, dt \right] \]

Integrating and rearranging terms we get

\[
C_n = \frac{I}{2\pi} \left[- \frac{4A}{n^2 \pi} + \frac{4A}{n^2 \pi} \left(n\pi \cdot \frac{e^{j\pi n} - e^{-j\pi n}}{j2} + \frac{e^{j\pi n} + e^{-j\pi n}}{2} \right) - \frac{2A}{n} \cdot \frac{e^{j\pi n} - e^{-j\pi n}}{j2} \right] = \frac{4A}{2n^2 \pi} (-1 + n\pi \sin n\pi + \cos n\pi - \frac{n\pi}{2} \sin n\pi)
\]

and since \(\sin n\pi = 0 \) for all integer \(n \),

\[C_n = \frac{2A}{n^2 \pi^2} (\cos n\pi - 1) \]

For \(n = \text{even} \), \(C_n = 0 \) and for \(n = \text{odd} \), \(\cos n\pi = -1 \), and \(C_n = -\frac{4A}{n^2 \pi^2} \)

Also, by inspection, the \(DC \) component \(C_0 = 0 \). Then,

\[f(t) = \frac{4A}{\pi^2} \left(\ldots + \frac{1}{9} e^{-j3\omega t} + e^{-j\omega t} + e^{j\omega t} + \frac{1}{9} e^{j3\omega t} + \ldots \right) \]

The coefficients of the terms \(e^{-j3\omega t} \) and \(e^{-j\omega t} \) are positive because all coefficients of \(C_n \) are real. This is to be expected since \(f(t) \) is an even function. It also has half-wave symmetry and thus \(C_n = 0 \) for \(n = \text{even} \) as we’ve found.

7.

\[f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!} x^2 + \ldots + \frac{f^{(n)}(0)}{n!} x^n \]

a. \(f(x) = e^{-x} \), \(f'(0) = 1 \), \(f'(x) = -e^{-x} \), \(f''(0) = -1 \), \(f''(x) = e^{-x} \), \(f'''(0) = 1 \), \(f'''(x) = -e^{-x} \), \(f^{(n)}(0) = -1 \), and so on. Therefore,

\[f_n(x) = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \ldots \]

MATLAB displays the same result.

\[x = \text{sym}('x'); \text{fn} = \text{taylor}(ext{exp}(-x)); \text{pretty}(ext{fn}) \]

\[
1 - x + \frac{x^2}{2} - \frac{x^3}{6} + \frac{x^4}{24} - \frac{x^5}{120} \]

Numerical Analysis Using MATLAB and Spreadsheets, Second Edition
Orchard Publications
b. \(f(x) = \sin x, \quad f(0) = 0, \quad f'(x) = \cos x, \quad f'(0) = 1, \quad f''(x) = -\sin x, \quad f''(0) = 0, \quad f'''(x) = -\cos x, \quad f'''(0) = -1, \) and so on. Therefore,

\[
f_n(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \ldots
\]

MATLAB displays the same result.

\[
x = \text{sym('x')}; \quad \text{fn = taylor(sin(x)); pretty(fn)}
\]

\[
\begin{align*}
\text{3} & + 1/6 \cdot \text{x} + 1/120 \cdot \text{x} \\
\text{5}
\end{align*}
\]

c. \(f(x) = \sinh x, \quad f(0) = 0, \quad f'(x) = \cosh x, \quad f'(0) = 1, \quad f''(x) = \sinh x, \quad f''(0) = 0, \quad f'''(x) = \cosh x, \quad f'''(0) = 1, \) and so on. Therefore,

\[
f_n(x) = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \ldots
\]

MATLAB displays the same result.

\[
x = \text{sym('x')}; \quad \text{fn = taylor(sinh(x)); pretty(fn)}
\]

\[
\begin{align*}
\text{3} & + 1/6 \cdot \text{x} + 1/120 \cdot \text{x} \\
\text{5}
\end{align*}
\]

8.

\[
f_n(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \ldots
\]

a. \(f(x) = 1/x, \quad f(a) = f(-1) = -1, \quad f'(x) = -1/x^2, \quad f'(a) = f'(-1) = -1, \quad f''(x) = 2/x^3, \quad f''(a) = f''(-1) = -2, \quad f'''(x) = -6/x^4, \quad f'''(a) = f'''(-1) = -6, \) and so on. Therefore,

\[
f_n(x) = -1 - (x + 1) - (x + 1)^2 - (x + 1)^3 + \ldots
\]

or

\[
f_n(x) = -2 - x - (x + 1)^2 - (x + 1)^3 + \ldots
\]

MATLAB displays the same result.

\[
x = \text{sym('x')}; \quad y = 1/x; \quad z = \text{taylor(y,4,-1)}; \quad \text{pretty(z)}
\]

\[
\begin{align*}
2 & - 2 - \text{x} - (\text{x + 1}) - (\text{x + 1}) \\
3
\end{align*}
\]
b. \(f(x) = \sin x, \quad f(a) = f(-\pi/4) = -\sqrt{2}/2, \quad f'(x) = \cos x, \quad f'(a) = f'(-\pi/4) = \sqrt{2}/2, \quad f''(x) = -\sin x, \quad f''(a) = f''(-\pi/4) = \sqrt{2}/2, \quad f'''(x) = -\cos x, \quad f'''(a) = f'''(-\pi/4) = -\sqrt{2}/2, \) and so on. Therefore,

\[
f_n(x) = -\sqrt{2}/2 + (\sqrt{2}/2)(x + \pi/4) + (\sqrt{2}/4)(x + \pi/4)^2 \right) - (\sqrt{2}/12)(x + \pi/4)^3 + \ldots
\]

MATLAB displays the same result.

\[
x = \text{sym}(x); \quad y = \sin(x); \quad z = \text{taylor}(y, 4, -\pi/4); \quad \text{pretty}(z)
\]

\[
\frac{1}{2} + \frac{1}{2} (x + \pi/4) + \frac{1}{4} (x + \pi/4)
\]

9.

\[
i(v) = k \left(1 + \frac{v}{V}\right)^{1.5}
\]

The Taylor series for this relation is

\[
i(v) = i(v_0) + i'(v_0)(v - v_0) + \frac{i''(v_0)}{2!}(v - v_0)^2 + \frac{i'''(v_0)}{3!}(v - v_0)^3 + \ldots
\]

Since the voltage \(v \) is small, and varies about \(v = 0 \), we expand this relation about \(v = 0 \) and the series reduces to the Maclaurin series below.

\[
i(v) = i(0) + i'(0)v + \frac{i''(0)}{2!} v^2 + \ldots \quad (1)
\]

By substitution of \(v = 0 \) into the given relation we get

\[
i(0) = k
\]

The first and second derivatives of \(i \) are

\[
i'(v) = \frac{3k}{2V} \left(1 + \frac{v}{V}\right)^{1/2} \quad i'(0) = \frac{3k}{2V}
\]

\[
i''(v) = \frac{3k}{4V^2} \left(1 + \frac{v}{V}\right)^{-1/2} \quad i''(0) = \frac{3k}{4V^2}
\]

and by substitution into (1)

\[
i(v) = k + \frac{3k}{2V} v + \frac{3k}{8V^2} v^2 + \ldots = k \left(1 + \frac{3}{2V} v + \frac{3}{8V^2} v^2 + \ldots\right)
\]
MATLAB displays the same result.

\[x = \text{sym}('x'); \ i = \text{sym}('i'); \ v = \text{sym}('v'); \ k = \text{sym}('k'); \ V = \text{sym}('V'); \ldots \]
\[i = k^*(1 + v/V)^{1.5}; \ z = \text{taylor}(i, 4, 0); \ \text{pretty}(z) \]

\[
\begin{align*}
\frac{k v}{2} & + \frac{3}{2} \frac{k v}{V} & - \frac{1}{16} \frac{k v}{V^3} \\
& & - \frac{3}{8} \frac{k v}{V^2}
\end{align*}
\]
Chapter 7

Finite Differences and Interpolation

This chapter begins with finite differences and interpolation which is one of its most important applications. Finite Differences form the basis of numerical analysis as applied to other numerical methods such as curve fitting, data smoothing, numerical differentiation, and numerical integration. We will discuss these applications in this and the next three chapters.

7.1 Divided Differences

Consider the continuous function \(y = f(x) \) and let \(x_0, x_1, x_2, \ldots, x_{n-1}, x_n \) be some values of \(x \) in the interval \(x_0 \leq x \leq x_n \). It is customary to show the independent variable \(x \), and its corresponding values of \(y = f(x) \) in tabular form as in Table 7.1.

<table>
<thead>
<tr>
<th>(x \mid f(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_0 \mid f(x_0))</td>
</tr>
<tr>
<td>(x_1 \mid f(x_1))</td>
</tr>
<tr>
<td>(x_2 \mid f(x_2))</td>
</tr>
<tr>
<td>(\ldots \mid \ldots)</td>
</tr>
<tr>
<td>(x_{n-1} \mid f(x_{n-1}))</td>
</tr>
<tr>
<td>(x_n \mid f(x_n))</td>
</tr>
</tbody>
</table>

Let \(x_i \) and \(x_j \) be any two, not necessarily consecutive values of \(x \), within this interval. Then, the first divided difference is defined as:

\[
f(x_i, x_j) = \frac{f(x_i) - f(x_j)}{x_i - x_j} \tag{7.1}
\]

Likewise, the second divided difference is defined as:

\[
f(x_i, x_j, x_k) = \frac{f(x_i, x_j) - f(x_j, x_k)}{x_i - x_k} \tag{7.2}
\]
The third, fourth, and so on divided differences, are defined similarly.

The divided differences are indicated in a difference table where each difference is placed between the values of the column immediately to the left of it as shown in Table 7.2.

Example 7.1

Form a difference table showing the values of \(x \) given as 0, 1, 2, 3, 4, 7, and 9, the values of \(f(x) \) corresponding to \(y = f(x) = x^3 \), and the first through the fourth divided differences.

Solution:

We construct Table 7.3 with six columns. The first column contains the given values of \(x \), the second the values of \(f(x) \), and the third through the sixth contain the values of the first through the fourth divided differences. These differences are computed from (7.1), (7.2), and other relations for higher order divided differences. For instance, the second value on the first divided difference is found from (7.1) as

\[
\frac{1 - 27}{1 - 3} = 13
\]

and third value on the second divided difference is found from (7.2) as

\[
\frac{37 - 93}{3 - 7} = 14
\]

Likewise, for the third divided difference we have

Table 7.2 Conventional presentation of divided differences

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_0)</td>
<td>(f(x_0))</td>
</tr>
<tr>
<td></td>
<td>(f(x_0, x_1))</td>
</tr>
<tr>
<td>(x_1)</td>
<td>(f(x_1))</td>
</tr>
<tr>
<td></td>
<td>(f(x_0, x_1, x_2))</td>
</tr>
<tr>
<td>(x_2)</td>
<td>(f(x_2))</td>
</tr>
<tr>
<td></td>
<td>(f(x_1, x_2, x_3))</td>
</tr>
<tr>
<td>(x_3)</td>
<td>(f(x_3))</td>
</tr>
</tbody>
</table>
Divided Differences

TABLE 7.3 Divided differences for Example 7.1

<table>
<thead>
<tr>
<th>Function</th>
<th>Divided Differences</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(x) = x^3$</td>
<td>First</td>
</tr>
<tr>
<td>x</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>27</td>
</tr>
<tr>
<td>3</td>
<td>64</td>
</tr>
<tr>
<td>4</td>
<td>343</td>
</tr>
<tr>
<td>5</td>
<td>729</td>
</tr>
</tbody>
</table>

We observe that, if the values of the nth divided difference are the same, as in the fifth column (third divided differences for this example), all subsequent differences will be equal to zero.

In most cases, the values of x in a table are equally spaced. In this case, the differences are sets of consecutive values. Moreover, the denominators are all the same; therefore, they can be omitted. These values are referred to as just the differences of the function.

If the constant difference between successive values of x is h, the typical value of x_k is

$$x_k = x_0 + kh \quad \text{for} \quad k = \ldots, -2, -1, 0, 1, 2, \ldots$$ \hspace{1cm} (7.3)

We can now express the first differences in terms of the difference operator Δ as

$$\Delta f_k = f_{k+1} - f_k$$ \hspace{1cm} (7.4)

Likewise, the second differences are

$$\Delta^2 f_k = \Delta(\Delta f_k) = \Delta f_{k+1} - \Delta f_k$$ \hspace{1cm} (7.5)

and, in general, for positive integer values of n
\[\Delta^n f_k = \Delta(\Delta^{n-1} f_k) = \Delta^{n-1} f_{k+1} - \Delta^{n-1} f_k \]

(7.6)

The difference operator \(\Delta \) obeys the law of exponents, that is,

\[\Delta^m (\Delta^n f_k) = \Delta^{m+n} f_k \]

(7.7)

We construct the difference table in terms of the difference operator \(\Delta \) as shown in Table 7.4.

<table>
<thead>
<tr>
<th>Function</th>
<th>Differences</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>(f)</td>
</tr>
<tr>
<td>(x_0)</td>
<td>(f_0)</td>
</tr>
<tr>
<td>(x_1)</td>
<td>(f_1)</td>
</tr>
<tr>
<td>(x_2)</td>
<td>(f_2)</td>
</tr>
<tr>
<td>(x_3)</td>
<td>(f_3)</td>
</tr>
<tr>
<td>(x_4)</td>
<td>(f_4)</td>
</tr>
<tr>
<td>…</td>
<td></td>
</tr>
<tr>
<td>(x_n)</td>
<td>(f_n)</td>
</tr>
</tbody>
</table>

Example 7.2

Construct a difference table showing the values of \(x \) given as 1, 2, 3, 4, 5, 6, 7, and 8, the values of \(f(x) \) corresponding to \(y = f(x) = x^3 \), and the first through the fourth differences.

Solution:

Following the same procedure as in the previous example, we construct Table 7.5.
We observe that the fourth differences $\Delta^4 f_k$ are zero, as expected.

Using the binomial expansion

$$
\binom{n}{j} = \frac{n!}{j!(n-j)!}
$$

we can show that

$$
\Delta^n f_k = f_k + n f_{k+n} - n f_{k+n-1} + \frac{n(n-1)}{2!} f_{k+n-2} + \ldots + (-1)^{n-1} n f_{k+1} + (-1)^n f_k
$$

For $k = 0$, $n = 1, 2, 3$ and 4, relation (7.9) reduces to

$$
\begin{align*}
\Delta f_0 &= f_2 - f_1 \\
\Delta^2 f_0 &= f_2 - 2f_1 + f_0 \\
\Delta^3 f_0 &= f_3 - 3f_2 + 3f_1 - f_0 \\
\Delta^4 f_0 &= f_4 - 4f_3 + 6f_2 - 4f_1 + f_0
\end{align*}
$$

It is interesting to observe that the first difference in (7.10), is the difference quotient whose limit defines the derivative of a continuous function that is defined as

TABLE 7.5 Difference table for Example 7.2

<table>
<thead>
<tr>
<th>k</th>
<th>x_k</th>
<th>f_k</th>
<th>Δf_k</th>
<th>$\Delta^2 f_k$</th>
<th>$\Delta^3 f_k$</th>
<th>$\Delta^4 f_k$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>8</td>
<td>12</td>
<td>19</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>27</td>
<td>18</td>
<td>37</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>64</td>
<td>24</td>
<td>61</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>125</td>
<td>30</td>
<td>91</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>216</td>
<td>36</td>
<td>127</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>343</td>
<td>42</td>
<td>169</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>512</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
As with derivatives, the nth differences of a polynomial of degree n are constant.

7.2 Factorial Polynomials

The factorial polynomials are defined as

\[(x)^{(n)} = x(x-1)(x-2)\ldots(x-n+1) \] \hspace{1cm} (7.12)

and

\[(x)^{-(n)} = \frac{1}{(x-1)(x-2)\ldots(x+n)} \] \hspace{1cm} (7.13)

These expressions resemble the power functions x^n and x^{-n} in elementary algebra.

Using the difference operator Δ with (7.12) and (7.13) we get

\[\Delta (x)^{(n)} = n(x)^{(n-1)} \] \hspace{1cm} (7.14)

and

\[\Delta (x)^{-(n)} = -n(x)^{-(n-1)} \] \hspace{1cm} (7.15)

We observe that (7.14) and (7.15) are very similar to differentiation of x^n and x^{-n}.

Occasionally, it is desirable to express a polynomial $p_n(x)$ as a factorial polynomial. Then, in analogy with Maclaurin power series, we can express that polynomial as

\[p_n(x) = a_0 a_1 x a_2 x^2 \ldots + a_n (x)^{(n)} \] \hspace{1cm} (7.16)

and now our task is to compute the coefficients a_k.

For $x = 0$, relation (7.16) reduces to

\[a_0 = p_n(0) \] \hspace{1cm} (7.17)

To compute the coefficient a_1, we take the first difference of $p_n(x)$ in (7.16). Using (7.14) we get

\[\Delta p_n(x) = 1x^0 a_1 + 2a_2(x)^{(1)} + 3a_3(x)^{(2)} + \ldots + na_n (x)^{(n-1)} \] \hspace{1cm} (7.18)

and letting $x = 0$, we find that

\[a_1 = \Delta p_n(0) \] \hspace{1cm} (7.19)

Differencing again we get

\[\Delta^2 p_n(x) = 2 \cdot 1 a_2 + 3 \cdot 2 a_3(x)^{(1)} + \ldots + n(n - 1) a_n(x)^{(n-2)} \]

(7.20)

and for \(x = 0 \),

\[a_2 = \frac{\Delta^2 p_n(0)}{2 \cdot 1} = \frac{\Delta^2 p_n(0)}{2!} \]

(7.21)

In general,

\[a_j = \frac{\Delta^j p_n(0)}{j!} \text{ for } j = 0, 1, 2, \ldots, n \]

(7.22)

Factorial polynomials provide an easier method of constructing a difference table. With this method we perform the following steps:

1. We divide \(p_n(x) \) in (7.16) by \(x \) to get a quotient \(q_0(x) \) and a remainder \(r_0 \) which turns out to be the constant term \(a_0 \). Then, we express (7.16) as

\[p_n(x) = r_0 + xq_0(x) \]

(7.23)

2. We divide \(q_0(x) \) in (7.23) by \((x - 1) \) to get a quotient \(q_1(x) \) and a remainder \(r_1 \) which turns out to be the constant term \(a_1 \). Then,

\[q_0(x) = r_1 + (x - 1)q_1(x) \]

(7.24)

By substitution of (7.24) into (7.23), and using the form of relation (7.16), we get

\[p_n(x) = r_0 + x[r_1 + (x - 1)q_1(x)] = r_0 + r_1(x)^{(1)} + x(x - 1)q_1(x) \]

(7.25)

3. We divide \(q_1(x) \) in (7.25) by \((x - 2) \) to get a quotient \(q_2(x) \) and a remainder \(r_2 \) which turns out to be the constant term \(a_2 \), and thus

\[q_1(x) = r_2 + (x - 2)q_2(x) \]

(7.26)

By substitution of (7.26) into (7.25), we get

\[p_n(x) = r_0 + r_1(x)^{(1)} + x(x - 1)[r_2 + (x - 2)q_2(x)] \]

(7.27)

\[= r_0 + r_1(x)^{(1)} + r_2(x)^{(2)} + x(x - 1)(x - 2)q_2(x) \]

Continuing with the above procedure, we get a new quotient whose degree is one less than preceding quotient and therefore, the process of finding new quotients and remainders terminates after \((n + 1) \) steps.

The general form of a factorial polynomial is
(7.28) and from (7.16) and (7.22),

\[r_j = a_j = \frac{\Delta^j p_n(0)}{j!} \] \hspace{1cm} (7.29)

or

\[\Delta^j p_n(0) = j! r_j \] \hspace{1cm} (7.30)

Example 7.3

Express the algebraic polynomial

\[p(x) = x^4 - 5x^3 + 3x + 4 \] \hspace{1cm} (7.31)

as a factorial polynomial. Then, construct the difference table with \(h = 1 \).

Solution:

Since the highest power of the given polynomial \(p(x) \) is 4, we must evaluate the remainders \(r_0, r_1, r_2, r_3 \) and \(r_4 \); then, we will use (7.28) to determine \(p_n(x) \). We can compute the remainders by long division, but for convenience, we will use the MATLAB `deconv(p,q)` function which divides the polynomial \(p \) by \(q \).

The MATLAB code is as follows:

```matlab
px=[1 -5 0 3 4]; % Coefficients of given polynomial
d0=[1 0]; % Coefficients of first divisor, i.e, x
[q0,r0]=deconv(px,d0) % Computation of first quotient and remainder
d1=[1 -1]; % Coefficients of second divisor, i.e, x-1
[q1,r1]=deconv(q0,d1) % Computation of second quotient and remainder
d2=[1 -2]; % Coefficients of third divisor, i.e, x-2
[q2,r2]=deconv(q1,d2) % Computation of third quotient and remainder
d3=[1 -3]; % Coefficients of fourth divisor, i.e, x-3
[q3,r3]=deconv(q2,d3) % Computation of fourth quotient and remainder
d4=[1 -4]; % Coefficients of fifth (last) divisor, i.e, x-4
[q4,r4]=deconv(q3,d4) % Computation of fifth (last) quotient and remainder
q0 =
  1  -5   0   3
r0 =
  0   0   0   0   4
q1 =
  1  -4  -4
r1 =
```

\[p_n(x) = r_0 + r_1(x) + r_2(x)^2 + \ldots + r_{n-1}(x)^{n-1} + r_n(x)^n \] \hspace{1cm} (7.28)
Therefore, with reference to (7.28), the factorial polynomial is

$$p_n(x) = 4 - (x)^{(1)} - 8(x)^{(2)} + (x)^{(3)} + (x)^{(4)} \tag{7.32}$$

We can verify that (7.32) is the same polynomial as (7.31), by expansion of the factorials using (7.12). This can be easily done with the MATLAB `collect('s_expr')` function, where `s_expr` is a symbolic expression. For this example, the MATLAB code is

```matlab
syms x; px=collect((x*(x-1)*(x-2)*(x-3))+(x*(x-1)*(x-2))-(8*x*(x-1))-x+4)
```

```
x^4-5*x^3+3*x+4
```

We observe that this is the same algebraic polynomial as in (7.31).

We will now compute the leading entries for the difference table using (7.30) and (7.32). Then,

$$\begin{align*}
\Delta^0 p(0) &= 0! \cdot 4 = 4 \\
\Delta^1 p(0) &= 1! \cdot (-1) = -1 \\
\Delta^2 p(0) &= 2! \cdot (-8) = -16 \\
\Delta^3 p(0) &= 3! \cdot 1 = 6 \\
\Delta^4 p(0) &= 4! \cdot 1 = 24 \\
\Delta^5 p(0) &= 5! \cdot 0 = 0 \\
\end{align*} \tag{7.33}$$

1. We enter the values of (7.33) in the appropriate spaces as shown in Table 7.6.
2. We obtain the next set of values by crisscross addition as shown in Table 7.7.
3. The second crisscross addition extends the difference table as shown in Table 7.8.
TABLE 7.6 Leading entries of (7.33) in table form

<table>
<thead>
<tr>
<th>x</th>
<th>$p(x)$</th>
<th>Δ</th>
<th>Δ^2</th>
<th>Δ^3</th>
<th>Δ^4</th>
<th>Δ^5</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

TABLE 7.7 Crisscross addition to find second set of values

<table>
<thead>
<tr>
<th>x</th>
<th>$p(x)$</th>
<th>Δ</th>
<th>Δ^2</th>
<th>Δ^3</th>
<th>Δ^4</th>
<th>Δ^5</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 7.8 Second crisscross addition to find third set of values

<table>
<thead>
<tr>
<th>x</th>
<th>$p(x)$</th>
<th>Δ</th>
<th>Δ^2</th>
<th>Δ^3</th>
<th>Δ^4</th>
<th>Δ^5</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4. Continuation of this procedure produces the complete difference table. This is shown in Table 7.9.

TABLE 7.9 Complete difference table for Example 7.3

<table>
<thead>
<tr>
<th>x</th>
<th>p(x)</th>
<th>∆</th>
<th>∆²</th>
<th>∆³</th>
<th>∆⁴</th>
<th>∆⁵</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>−1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>−16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>−17</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>−14</td>
<td></td>
<td>−10</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>−27</td>
<td></td>
<td>30</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>−41</td>
<td></td>
<td>20</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>−48</td>
<td></td>
<td>74</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7.3 Antidifferences

We recall from elementary calculus that when we know the first derivative of a function, we can integrate or antidifferentiate to find the function. By a similar method, we can find the antidifference of a factorial polynomial. We denote the antidifference as $\Delta^{-1} p_n(x)$. It is computed from

$$
\Delta^{-1}(x)^{(n)} = \frac{(x)^{(n+1)}}{(n+1)}
$$

Example 7.4

Compute the antidifference of the algebraic polynomial

$$
p(x) = x^4 - 5x^3 + 3x + 4
$$

Solution:

This is the same algebraic polynomial as that of the previous example, where we found that the corresponding factorial polynomial is
Chapter 7 Finite Differences and Interpolation

\[p_n(x) = 4 - (x)^{(1)} - 8(x)^{(2)} + (x)^{(3)} + (x)^{(4)} \]
\[(7.36) \]

Then, by (7.34), its antidifference is

\[\Delta^{-1} p_n(x) = (x)^{(5)} \frac{5}{5} + (x)^{(4)} \frac{-8}{4} + (x)^{(3)} \frac{3}{3} + (x)^{(2)} \frac{2}{2} + 4(x)^{(1)} + C \]
\[(7.37) \]

where \(C \) is an arbitrary constant.

Antidifferences are very useful in finding sums of series. Before we present an example, we need to review the definite sum and the fundamental theorem of sum calculus. These are discussed below.

In analogy with definite integrals for continuous functions, in finite differences we have the definite sum \(\sum_{x = \alpha}^{\alpha + (n-1)h} p_n(x) \) which for the interval \(a \leq x \leq a + (n-1)h \) is denoted as

\[\sum_{x = \alpha}^{\alpha + (n-1)h} p_n(x) = p_n(\alpha) + p_n(\alpha + h) + p_n(\alpha + 2h) + \ldots + p_n[\alpha + (n-1)h] \]
\[(7.38) \]

Also, in analogy with the fundamental theorem of integral calculus which states that

\[\int_{a}^{b} f(x)dx = f(b) - f(a) \]
\[(7.39) \]

we have the fundamental theorem of sum calculus which states that

\[\sum_{x = \alpha}^{\alpha + (n-1)h} p_n(x) = \Delta^{-1} p_n(x)\bigg|_{\alpha}^{\alpha + nh} \]
\[(7.40) \]

Example 7.5

Derive a simple expression, in closed form, that computes the sum of the cubes of the first \(n \) odd integers.

Solution:

An odd number can be expressed as \(2m - 1 \), and thus its cube is \((2m - 1)^3 \). To use (7.40), we must express this term as a factorial polynomial. Recalling from (7.12) that

\[(x)^{(n)} = x(x - 1)(x - 2)\ldots(x - n + 1) \]
\[(7.41) \]

and using the MATLAB \texttt{expand(f)} function where \(f \) is a symbolic expression, we execute

\texttt{syms m; f = (2*m-1)^3; expand(f)}

and we get
ans =
8*m^3-12*m^2+6*m-1

Thus

\[p(m) = (2m - 1)^3 = 8m^3 - 12m^2 + 6m - 1 \] \hspace{1cm} (7.42)

Following the procedure of Example 7.3, we find \(p_n(m) \) with MATLAB as

\[
\begin{align*}
\text{pm} &= [8 \quad -12 \quad 6 \quad -1]; \\
\text{d0} &= [1 \quad 0]; \\
[q0, r0] &= \text{deconv(pm, d0)} \\
\text{d1} &= [1 \quad -1]; \\
[q1, r1] &= \text{deconv(q0, d1)} \\
\text{d2} &= [1 \quad -2]; \\
[q2, r2] &= \text{deconv(q1, d2)} \\
\text{d3} &= [1 \quad -3]; \\
[q3, r3] &= \text{deconv(q2, d3)}
\end{align*}
\]

\[
\begin{align*}
q0 &= 8 \quad -12 \quad 6 \\
r0 &= 0 \quad 0 \quad 0 \quad -1 \\
q1 &= 8 \quad -4 \\
r1 &= 0 \quad 0 \quad 2 \\
q2 &= 8 \\
r2 &= 0 \quad 12 \\
q3 &= 0 \\
r3 &= 8
\end{align*}
\]

Therefore,

\[p_n(m) = 8(m)^{(3)} + 12(m)^{(2)} + 2(m)^{(1)} - 1 \] \hspace{1cm} (7.43)

Taking the antidifference of (7.43) we get

\[
\Delta^{-1}p_n(m) = \frac{8(m)^{(4)}}{4} + \frac{12(m)^{(3)}}{3} + \frac{2(m)^{(2)}}{2} - (m)^{(1)} \] \hspace{1cm} (7.44)

\[= 2(m)^{(4)} + 4(m)^{(3)} + (m)^{(2)} - (m)^{(1)} \]
and with (7.40)

\[\sum \text{cubes} = 2(m^{(4)} + 4(m^{(3)} + (m)^{(2)} - (m)^{(1)})^{n+1}_{m=1} \]

\[= 2(n+1)n(n-1)(n-2) + 4(n+1)n(n-1) + (n+1)n - (n+1) + 1 \]

Since

\[(I)^{(4)} = 1(1-1)(1-2)(1-3) = 0 \]
\[(I)^{(3)} = 1(1-1)(1-2) = 0 \]
\[(I)^{(2)} = 1(1-1) = 0 \]
\[(I)^{(1)} = 1 \]

relation (7.45) reduces to

\[\sum \text{cubes} = 2(n+1)n(n-1)(n-2) + 4(n+1)n(n-1) + (n+1)n - (n+1) + 1 \]

and this can be simplified with the MATLAB \texttt{collect(f)} function as follows.

\begin{verbatim}
syms n; sum=collect(2*(n+1)*n*(n-1)*(n-2)+4*(n+1)*n*(n-1)+(n+1)*n-(n+1)+1)
sum = 2*n^4-n^2
that is,
\end{verbatim}

\[\sum \text{cubes} = 2n^4 - n^2 = n^2(2n^2 - 1) \]

We can verify that this is the correct expression by considering the first 4 odd integers 1, 3, 5, and 7. The sum of their cubes is

\[1 + 27 + 125 + 343 = 496 \]

This is verified with (7.48) since

\[n^2(2n^2 - 1) = 4^2(2 \cdot 4^2 - 1) = 16 \cdot 31 = 496 \]

One important application of finite differences is \textit{interpolation}. We will discuss the Newton’s divided-difference interpolation method, Lagrange’s interpolation method, Gregory-Newton forward, and Gregory-Newton backward interpolation methods. We will use spreadsheets to facilitate the computations. We will also discuss interpolation using MATLAB.
7.4 Newton’s Divided Difference Interpolation Method

This method, has the advantage that the values $x_0, x_1, x_2, \ldots, x_n$ need not be equally spaced, or taken in consecutive order. It uses the formula

$$f(x) = f(x_0) + (x-x_0)f(x_0, x_1) + (x-x_0)(x-x_1)f(x_0, x_1, x_2) + (x-x_0)(x-x_1)(x-x_2)f(x_0, x_1, x_2, x_3)$$

where $f(x_0, x_1)$, $f(x_0, x_1, x_2)$, and $f(x_0, x_1, x_2, x_3)$ are the first, second, and third divided differences respectively.

Example 7.6

Use Newton’s divided-difference method to compute $f(2)$ from the experimental data shown in Table 7.10.

<table>
<thead>
<tr>
<th>x</th>
<th>-1.0</th>
<th>0.0</th>
<th>0.5</th>
<th>1.0</th>
<th>2.5</th>
<th>3.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>$y = f(x)$</td>
<td>3.0</td>
<td>-2.0</td>
<td>-0.375</td>
<td>3.0</td>
<td>16.125</td>
<td>19.0</td>
</tr>
</tbody>
</table>

Solution:

We must compute the first, second, and third divided differences as required by (7.49).

The first divided differences are:

$$\frac{-2.000 - 3.000}{0 - (-1.0)} = -5.000$$
$$\frac{-0.375 - (-2.000)}{0.5 - 0.0} = 3.250$$
$$\frac{3.000 - (-0.375)}{1.0 - 0.5} = 6.750$$

(7.50)

$$\frac{16.125 - 3.000}{2.5 - 1.0} = 8.750$$

$$\frac{19.000 - 16.125}{3.0 - 2.5} = 5.750$$

The second divided differences are:
and the third divided differences are:

\[
\begin{align*}
\frac{3.500 - 5.500}{1.0 - (-1.0)} &= -1.000 \\
\frac{1.000 - 3.500}{2.5 - 0.0} &= -1.000 \\
\frac{-1.500 - 1.000}{3.0 - 0.5} &= -1.000
\end{align*}
\]

(7.52)

With these values, we construct the difference Table 7.11.

<table>
<thead>
<tr>
<th>x</th>
<th>f(x)</th>
<th>1st Divided Difference</th>
<th>2nd Divided Difference</th>
<th>3rd Divided Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>−1.0</td>
<td>3.00</td>
<td>−5.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0</td>
<td>−2.00</td>
<td>3.250</td>
<td>5.500</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>−0.375</td>
<td>6.750</td>
<td>3.500</td>
<td>−1.000</td>
</tr>
<tr>
<td>1.0</td>
<td>3.00</td>
<td>8.750</td>
<td>−1.500</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>16.125</td>
<td>5.750</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>19.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Now, we have all the data that we need to find \(f(2)\). We start with \(x_0 = 0.00\), * and for \(x\) in (7.49), we use \(x = 2\). Then,

* We chose this as our starting value so that \(f(2)\) will be between \(f(1)\) and \(f(2.5)\)
Newton’s Divided Difference Interpolation Method

\[f(2) = -2.0 + (2 - 0)(3.250) + (2 - 0)(2 - 0.5)(3.500) + (2 - 0)(2 - 0.5)(2 - 1)(-1.000) \]
\[= -2.0 + 6.5 + 10.5 - 3 \]
\[= 12 \]

This, and other interpolation problems, can also be solved with a spreadsheet. The Excel spreadsheet for this example is shown in Figure 7.1.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Interpolation with Newton’s Divided Difference Formula</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(f(x) = f(x_0) + (x-x_0)f(x_0,x_1) + (x-x_0)(x-x_1)f(x_0,x_1,x_2) + (x-x_0)(x-x_1)(x-x_2)f(x_0,x_1,x_2,x_3))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>In this example, we want to evaluate (f(x)) at (x = 2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>1st divided</td>
<td>2nd divided</td>
<td>3rd divided</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>difference</td>
<td>difference</td>
<td>difference</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>(x)</td>
<td>(f(x))</td>
<td>(f(x_0, x_1))</td>
<td>(f(x_0, x_1, x_2))</td>
<td>(f(x_0, x_1, x_2, x_3))</td>
</tr>
<tr>
<td>7</td>
<td>-1.00</td>
<td>3.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>-5.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.00</td>
<td>-2.000</td>
<td>5.500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>3.250</td>
<td></td>
<td>-1.000</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0.50</td>
<td>-0.375</td>
<td>3.500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>6.750</td>
<td></td>
<td>-1.000</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1.00</td>
<td>3.000</td>
<td>1.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>8.750</td>
<td></td>
<td>-1.000</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>2.50</td>
<td>16.125</td>
<td>-1.500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>5.750</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>3.00</td>
<td>19.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>We use the above formula with starting value (x_0 = 0.00)</td>
</tr>
<tr>
<td>19</td>
<td>(f(2) = B12 + (E3-E18)C13 + (E3-E18)(E3-A14)D14 + (E3-E18)(E3-A14)*(E3-A16)*E15)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>or (f(2) = 12.00)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>The plot below verifies that our answer is correct</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>-1.000</td>
<td>3.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>0.000</td>
<td>-2.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>0.500</td>
<td>-0.375</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1.000</td>
<td>3.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>2.500</td>
<td>16.125</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>3.000</td>
<td>19.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 7.1. Spreadsheet for Example 7.6
7.5 Lagrange’s Interpolation Method

This method uses the formula

\[
f(x) = \frac{(x - x_1)(x - x_2) \cdots (x - x_n)}{(x_0 - x_1)(x_0 - x_2) \cdots (x_0 - x_n)}f(x_0) + \frac{(x - x_0)(x - x_2) \cdots (x - x_n)}{(x_1 - x_0)(x_1 - x_2) \cdots (x_1 - x_n)}f(x_1) + \cdots + \frac{(x - x_0)(x - x_1) \cdots (x - x_{n-1})}{(x_n - x_0)(x_n - x_1) \cdots (x_n - x_{n-1})}f(x_n)
\]

(7.53)

and, like Newton’s divided difference method, has the advantage that the values \(x_0, x_1, x_2, \ldots, x_n\) need not be equally spaced or taken in consecutive order.

Example 7.7

Repeat Example 7.6 using Lagrange’s interpolation formula.

Solution:

All computations appear in the spreadsheet of Figure 7.2 where we have used relation (7.53).

![Figure 7.2. Spreadsheet for Example 7.7](image-url)
7.6 Gregory-Newton Forward Interpolation Method

This method uses the formula

\[f(x) = f_0 + r\Delta f_0 + \frac{r(r-1)}{2!}\Delta^2 f_0 + \frac{r(r-1)(r-2)}{3!}\Delta^3 f_0 + \ldots \]

(7.54)

where \(f_0 \) is the first value of the data set, \(\Delta f_0 \), \(\Delta^2 f_0 \), and \(\Delta^3 f_0 \) are the first, second, and third forward* differences respectively.

The variable \(r \) is the difference between an unknown point \(x \) and a known point \(x_i \) divided by the interval \(h \), that is,

\[r = \frac{x-x_i}{h} \]

(7.55)

The formula of (7.54) is valid only when the values \(x_0, x_1, x_2, \ldots, x_n \) are equally spaced with interval \(h \). It is used to interpolate values near the smaller values of \(x \), that is, the values near the beginning of the given data set. The formula that we will study on the next section, is used to interpolate values near the larger values of \(x \), that is, the values near the end of the given data set.

Example 7.8

Use the Gregory-Newton forward interpolation formula to compute \(f(1.03) \) from the following data.

<table>
<thead>
<tr>
<th>(x)</th>
<th>1.00</th>
<th>1.05</th>
<th>1.10</th>
<th>1.15</th>
<th>1.20</th>
<th>1.25</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y = f(x))</td>
<td>1.000000</td>
<td>1.257625</td>
<td>1.531000</td>
<td>1.820875</td>
<td>2.128000</td>
<td>2.453125</td>
</tr>
</tbody>
</table>

Solution:

We enter the given \(x \) and \(f(x) \) values in a difference table; then, we compute the first, second, and third differences. These are not divided differences and therefore, we simply subtract the second value of \(f(x) \) from the first, the third from the second, and so on, as shown in Table 7.13.

For this example,

* This is an expression to indicate that we use the differences in a forward sequence, that is, the first entries on the columns where the differences appear.
and with these values, using (7.54), we get

\[
f(1.03) = 1.000000 + (0.60) \cdot (0.257625) + \frac{(0.60) \cdot (0.60 - 1)}{2!} \cdot \frac{(0.000750)}{3!}
\]

(7.57)

The spreadsheet of Figure 7.3 shows the layout and computations for this example.

7.7 Gregory-Newton Backward Interpolation Method

This method uses the formula

\[
f(x) = f_0 + r \Delta f_{-1} + \frac{r(r + 1)}{2!} \Delta^2 f_{-2} + \frac{r(r + 1)(r + 2)}{3!} \Delta^3 f_{-3} + \ldots
\]

(7.58)

where \(f_0 \) is the first value of the data set, \(\Delta f_{-1}, \Delta^2 f_{-2}, \) and \(\Delta^3 f_{-3} \) are the first, second and third backward differences, and

\[
r = \frac{(x-x_I)}{h}
\]
Expression (7.58) is valid only when the values $x_0, x_1, x_2, \ldots, x_n$ are equally spaced with interval h. It is used to interpolate values near the end of the data set, that is, the larger values of x. Backward interpolation is an expression to indicate that we use the differences in a backward sequence, that is, the last entries on the columns where the differences appear.
Example 7.9

Use the Gregory-Newton backward interpolation formula to compute \(f(1.18) \) from the data set of Table 7.14.

\[
\begin{array}{|c|c|c|c|c|c|c|}
\hline
x & 1.00 & 1.05 & 1.10 & 1.15 & 1.20 & 1.25 \\
\hline
y = f(x) & 1.000000 & 1.257625 & 1.531000 & 1.820875 & 2.128000 & 2.453125 \\
\hline
\end{array}
\]

Solution:

We arbitrarily choose \(f_0 = 2.128000 \) as our starting point since \(f(1.18) \) lies between \(f(1.15) \) and \(f(1.20) \). Then,

\[
h = 1.20 - 1.15 = 0.05
\]

and

\[
r = (x - x_i)/h = (1.18 - 1.20)/0.05 = -0.4
\]

Now, by (7.58) we have:

\[
\begin{align*}
f(1.18) &= 2.128 + (-0.4)(0.307125) + \frac{(-0.4)(-0.4 + 1)}{2!}(0.01725) \\
&\quad + \frac{(-0.4)(-0.4 + 1)(-0.4 + 2)}{3!}(0.00075) \\
&= 2.003032
\end{align*}
\]

The computations were made with the spreadsheet of Figure 7.4.

If the increments in \(x \) values are small, we can use the Excel \texttt{VLOOKUP} function to perform interpolation. The syntax of this function is as follows.

\[
\text{VLOOKUP}(\text{lookup_value}, \text{table_array}, \text{col_index_num}, \text{range lookup})
\]

where:

- \text{lookup_value} is the value being searched in the first column of the lookup table
- \text{table_array} are the columns forming a rectangular range or array
- \text{col_index_num} is the column where the answer will be found
- \text{range lookup} is a logical value (\text{TRUE} or \text{FALSE}) that specifies whether we require \text{VLOOKUP} to find an exact or an approximate match. If \text{TRUE} is omitted, an approximate match is returned. In other words, if an exact match is not found, the next largest value that is less than the \text{lookup_value} is returned. If \text{FALSE} is specified, \text{VLOOKUP} will attempt to find an exact match, and if one is not found, the error value \texttt{#N/A} will be returned.

A sample spreadsheet is shown in Figure 7.5 where the values of \(x \) extend from \(-5\) to \(+5\) volts. Only a partial table is shown.
Interpolation with MATLAB

MATLAB has several functions that perform interpolation of data. We will study the following:

1.\(\text{interp1}(x,y,x_i) \) performs one dimensional interpolation where \(x \) and \(y \) are related as \(y = f(x) \) and \(x_i \) is some value for which we want to find \(y(x_i) \) by linear interpolation, i.e., “table lookup”. This command will search the \(x \) vector to find two consecutive entries between which the desired value falls. It then performs linear interpolation to find the corresponding value of \(y \). To obtain a correct result, the components of the \(x \) vector must be monotonic, that is, either in ascending or descending order.
2. \texttt{interp1(x,y,x,'method')} performs the same operation as \texttt{interp1(x,y,x')}. Where the string \texttt{method} allows us to specify one of the methods listed below.

- \texttt{nearest} – nearest neighbor interpolation
- \texttt{linear} – linear interpolation; this is the default interpolation
- \texttt{spline} – cubic spline interpolation; this does also extrapolation
- \texttt{cubic} – cubic interpolation; this requires equidistant values of \(x \)

3. \texttt{interp2(x,y,z,x',y')} is similar to \texttt{interp1(x,y,x')} but performs two-dimensional interpolation;

4. \texttt{interp2(x,y,z,x',y',method')} is similar to \texttt{interp1(x,y,x',method')} but performs two-dimensional interpolation. The default is \texttt{linear}. The \texttt{spline} method does not apply to two-dimensional interpolation.

We will illustrate the applications of these functions with the examples that follow.

Example 7.10

The \(i-v \) (current-voltage) relation of a non-linear electrical device is given by
Interpolation with MATLAB

\[i(t) = 0.1(e^{0.2v(t)} - 1) \]

(7.59)

where \(v \) is in volts and \(i \) in milliampères. Compute \(i \) for 30 data points of \(v \) within the interval \((-2 \leq v \leq 5)\), plot \(i \) versus \(v \) in this range, and using linear interpolation compute \(i \) when \(v = 1.265 \) volts.

Solution:

We are required to use 30 data points within the given range; accordingly, we will use the MATLAB `linspace(first_value, last_value, number_of_values)` command. The code below produces 30 values in volts, the corresponding values in milliampères, and plots the data for this range. Then, we use the `interp1(x,y,x_i)` command to interpolate at the desired value.

% This code is for Example_7_10.m
% It computes the values of current (in milliamps) vs. voltage (volts)
% for a diode whose v-i characteristics are \(i=0.1(\exp(0.2v)\,-\,1) \).
% We can use the MATLAB function 'interp1' to linearly interpolate
% the value of milliamps for any value of v within the specified interval.
%
% \(v \)=linspace(-2, 5, 30); % Specify 30 intervals in the -2<=v<=5 interval
% a=0.1.* (exp(0.2.*v)−1); % We use "a" for current instead of "i" to avoid conflict
% with imaginary numbers
% v_a=[v;a]'; % Define "v_a" as a two-column matrix to display volts
% and amperes side-by-side.

plot(v,a); grid;
title('volt-ampere characteristics for a junction diode');
xlabel('voltage (volts)');
ylabel('current (milliamps)');
fprintf(' volts milliamps
'); % Heading of the two-column matrix
fprintf('
');
disp(v_a); % Display values of volts and amps below the heading
ma=interp1(v,a,1.265); % Linear (default) interpolation
fprintf('current (in milliamps) @ v=1.265 is %2.4f
', ma)

The data and the value obtained by interpolation are shown below.

<table>
<thead>
<tr>
<th>volts</th>
<th>milliamps</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2.0000</td>
<td>-0.0330</td>
</tr>
<tr>
<td>-1.7586</td>
<td>-0.0297</td>
</tr>
<tr>
<td>-1.5172</td>
<td>-0.0262</td>
</tr>
<tr>
<td>-1.2759</td>
<td>-0.0225</td>
</tr>
<tr>
<td>-1.0345</td>
<td>-0.0187</td>
</tr>
<tr>
<td>-0.7931</td>
<td>-0.0147</td>
</tr>
<tr>
<td>-0.5517</td>
<td>-0.0104</td>
</tr>
</tbody>
</table>
current (in milliamps) @ v=1.265 is 0.0288

The plot for this example is shown in Figure 7.6.

Figure 7.6. Plot for Example 7.10
Example 7.11

Plot the function

\[y = f(x) = \cos^5 x \]

in the interval \(0 \leq x \leq 2\pi \) with 120 intermediate values. Then, use the MATLAB \texttt{interp1(x,y,x,'method')} function to interpolate at \(\pi/8 \), \(\pi/4 \), \(3\pi/5 \), and \(3\pi/7 \). Compare the values obtained with the \texttt{linear}, \texttt{cubic}, and \texttt{spline} methods, with the analytical values.

Solution:

The code below plots (7.60) and produces the values of analytical values, for comparison with the linear, cubic, and spline interpolation methods.

% This is the code for Example_7_11
%
% x=linspace(0,2*pi,120); % We need these two
y=(cos(x)).^5; % statements for the plot
%
analytic=(cos([pi/8 pi/4 3*pi/5 3*pi/7]').^5);
%
plot(x,y); grid; title('y=\cos^5(x)'); xlabel('x'); ylabel('y');
%
linear_int=interp1(x,y,[pi/8 pi/4 3*pi/5 3*pi/7]', 'linear');
% The label 'linear' on the right side of the above statement
% could be have been omitted since the default is linear
%
cubic_int=interp1(x,y,[pi/8 pi/4 3*pi/5 3*pi/7]', 'cubic');
%
spline_int=interp1(x,y,[pi/8 pi/4 3*pi/5 3*pi/7]', 'spline');
%
y=zeros(4,4);% Construct a 4 x 4 matrix of zeros
y(:,1)=analytic; % 1st column of matrix
y(:,2)=linear_int; % 2nd column of matrix
y(:,3)=cubic_int; % 3rd column of matrix
y(:,4)=spline_int; % 4th column of matrix
fprintf('
'); % Insert line
fprintf('Analytic 	 Linear Int 	 Cubic Int 	 Spline Int
')
fprintf('
');
fprintf('%8.5f	 %8.5f	 %8.5f	 %8.5f
',y')
fprintf('
');

% The statements below compute the percent error for the three
% interpolation methods as compared with the exact (analytic) values
%
error1 = (linear_int - analytic) * 100 / analytic;
error2 = (cubic_int - analytic) * 100 / analytic;
error3 = (spline_int - analytic) * 100 / analytic;

z = zeros(4,3); % Construct a 4 x 3 matrix of zeros
z(:,1) = error1; % 1st column of matrix
z(:,2) = error2; % 2nd column of matrix
z(:,3) = error3; % 3rd column of matrix

disp('The percent errors for each interpolation method are:')

fprintf(' Linear Int	 Cubic Int	 Spline Int
');
fprintf('%8.5f	 %8.5f	 %8.5f
', z');

The plot for the function of this example is shown in Figure 7.7.

The analytical and interpolated values are shown below for comparison.

<table>
<thead>
<tr>
<th>Analytic</th>
<th>Linear Int</th>
<th>Cubic Int</th>
<th>Spline Int</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.67310</td>
<td>0.67274</td>
<td>0.67311</td>
<td>0.67310</td>
</tr>
<tr>
<td>0.17678</td>
<td>0.17718</td>
<td>0.17678</td>
<td>0.17678</td>
</tr>
<tr>
<td>-0.00282</td>
<td>-0.00296</td>
<td>-0.00281</td>
<td>-0.00282</td>
</tr>
<tr>
<td>0.00055</td>
<td>0.00062</td>
<td>0.00054</td>
<td>0.00055</td>
</tr>
</tbody>
</table>

The percent errors for each interpolation method are:
Example 7.12

For the impedance example of Section 1.7 in Chapter 1 whose code and plot are shown below, use the spline method of interpolation to find the magnitude of the impedance at $\omega = 792 \text{ rad/s}$.

Solution:

```matlab
% The file is Example_7_12.m
% It calculates and plots the impedance $Z(\omega)$ versus radian frequency $\omega$.
% Use the following five statements to obtain $|Z|$ versus radian frequency $\omega$
w=300:100:3000;
z=zeros(28,2);
z(:,1)=w';
z(:,2)=(10+(10.^4-j.*10.^6./w)./(10+j.*(0.1.*w-10.^5./w)))';
fprintf('%2.0f	 %10.3f
',abs(z)')
%w=[300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500....
1600 1700 1800 1900 2000 2100 2200 2300....
2400 2500 2600 2700 2800 2900 3000];
z=[39.339 52.789 71.104 97.665 140.437 222.182 436.056 1014.938...
469.830 266.032 187.052 145.751 120.353...
103.111 90.603 81.088 73.588 67.513 62.481...
58.240 54.611 51.468 48.717 46.286 44.122...
42.182 40.432 38.845];
semilogx(w,z); grid;
title('Magnitude of Impedance vs. Radian Frequency');
xlabel('\omega in rads/sec'); ylabel('|Z| in Ohms');
%zi=interp1(w,z,792,'spline');
fprintf('Magnitude of Z at w=792 rad/s is %6.3f Ohms \n', zi)
```

The plot for the function of this example is shown in Figure 7.8.
MATLAB interpolates the impedance at $\omega = 792 \text{ rad/s}$ and displays the following message:

Magnitude of Z at $\omega=792 \text{ rad/s}$ is 217.034 Ohms

Two-dimensional plots were briefly discussed in Chapter 1. For convenience, we will review the following commands which can be used for two-dimensional interpolation.

1. **mesh(Z)** – Plots the values in the matrix Z as height values above a rectangular grid, and connects adjacent points to form a mesh surface.

2. **[X,Y]=meshgrid(x,y)** – Generates interpolation arrays which contain all combinations of the x and y points which we specify. X and Y comprise a pair of matrices representing a rectangular grid of points in the $x-y$ plane. Using these points, we can form a function $z = f(x,y)$ where z is a matrix.

Example 7.13

Generate the plot of the function

$$Z = \frac{\sin R}{R}$$

in three dimensions x, y, and z. This function is the equivalent of the function $y = \sin x/x$ in two dimensions. Here, R is a matrix that contains the distances from the origin to each point in the pair of $[X,Y]$ matrices that form a rectangular grid of points in the $x-y$ plane.
Solution:

The matrix R that contains the distances from the origin to each point in the pair of $[X, Y]$ matrices, is

$$R = \sqrt{X^2 + Y^2} \quad (7.62)$$

We let the origin be at $(x_0, y_0) = (0, 0)$, and the plot in the intervals $-2\pi \leq x \leq 2\pi$ and $-2\pi \leq y \leq 2\pi$. Then, we write and execute the following MATLAB code.

```matlab
% This is the code for Example_7_13
x=-2*pi:pi/24:2*pi; % Define interval in increments of pi/24
y=x; % y must have same number of points as x
[X,Y]=meshgrid(x,y); % Create X and Y matrices
R=sqrt(X .^ 2 + Y .^ 2); % Compute distances from origin (0,0) to x-y points
Z=sin(R) ./ (R+eps); % eps prevents division by zero
mesh(X,Y,Z); % Generate mesh plot for Z=sin(R)/R
xlabel('x'); ylabel('y'); zlabel('z');
title('Plot for the Three-dimensional sin(R) / R Function')
```

The plot for the function of this example is shown in Figure 7.9.

![Plot for the Three-dimensional sin(R) / R Function](image)

Figure 7.9. Plot for Example 7.13

Example 7.14

Generate the plot of the function

$$z = x^3 + y^3 - 3xy \quad (7.63)$$

in three dimensions x, y, and z. Use the cubic method to interpolate the value of z at $x = -1$ and $y = 2$.

Numerical Analysis Using MATLAB and Spreadsheets, Second Edition
Orchard Publications
Solution:

We let the origin be at \((x_0,y_0) = (0,0)\), and the plot in the intervals \(-10 \leq x \leq 10\) and \(-10 \leq y \leq 10\). Then, we write and execute the following code.

```matlab
% This is the code for Example_7_14
x=-10: 0.25: 10; % Define interval in increments of 0.25
y=x; % y must have same number of points as x
[X,Y]=meshgrid(x,y); % Create X and Y matrices
Z=X.^3+Y.^3-3.*X.*Y; % Create Z matrix
mesh(X,Y,Z); % Generate mesh plot
xlabel('x'); ylabel('y'); zlabel('z');
title('Plot for the Function of Example 7.14');
z_int=interp2(X,Y,Z, -1,2,'cubic');
fprintf(' 
')
fprintf('Interpolated Value of z at x = -1 and y = 2 is z = %4.2f 
',z_int)
fprintf(' 
')
The plot for the function of this example is shown in Figure 7.10.

![Figure 7.10. Plot for Example 7.14](image)

Interpolated Value of z at x = -1 and y = 2 is z = 13.00

Example 7.15

A land surveyor measured and recorded the data below for a rectangular undeveloped land which lies approximately 500 meters above sea level.

500.08  500.15  500.05  500.08  500.14  500.09  500.15
500.12  500.01  500.11  500.18  500.15  500.12  500.05  500.15
Interpolation with MATLAB

This rectangular land parcel is 175 meters wide and 275 meters deep. The measurements shown above were made at points 25 meters apart.

a. Denoting the width as the $x$–axis, the depth as the $y$–axis and the height as the $z$–axis, plot the given data to form a rectangular grid.

b. Interpolate the value of $z$ at $x = 108$ m, and $y = 177$ m.

c. Compute the maximum height and its location on the $x$–$y$ plane.

Solution:
The MATLAB code and plot are shown below and explanations are provided with comment statements.

```matlab
% This code is for Example_7_15

% x=0: 25: 175; % x-axis varies across the rows of z
y=0: 25: 275; % y-axis varies down the columns of z
z=[500.08 500.15 500.05 500.08 500.14 500.13 500.09 500.15; 500.12 500.01 500.11 500.18 500.17 500.15 500.05 500.15; 500.13 500.12 500.09 500.11 500.12 500.13 500.05 500.15; 500.09 500.17 500.17 500.14 500.16 500.09 500.02 500.11; 500.08 500.09 500.13 500.18 500.14 500.14 500.14 500.15; 500.15 500.10 500.11 500.11 500.12 500.13 500.14 500.12; 500.17 500.12 500.13 500.18 500.15 500.17 500.11 500.11; 500.13 500.14 500.13 500.09 500.14 500.16 500.17 500.14; 500.15 500.09 500.14 500.18 500.17 500.08 500.13 500.09; 500.12 500.15 500.14 500.01 500.16 500.12 500.11 500.10; 500.02 500.19 500.01 500.08 500.12 500.02 500.16 500.12; 500.19 500.21 500.17 500.03 500.17 500.09 500.14 500.17];

mesh(x,y,z); axis([0 175 0 275 500 502]); grid off; box off
xlabel('x-axis, m'); ylabel('y-axis, m'); zlabel('Height, meters above sea level'); title('Parcel map')
```

% The pause command below stops execution of the program for 10 seconds
% so that we can see the mesh plot
pause(10);
z_int=interp2(x,y,z,108,177,'cubic');
disp('Interpolated z is:'); z_int
[xx,yy]=meshgrid(x,y);
xi=0: 2.5: 175; % Make x-axis finer
% size(xi); % Returns a row vector containing the size of xi where the
% first element denotes the number of rows and the second is the number
% of columns. Here, size(xi) = 1 71
disp('size(xi)'); size(xi)
fyi=0: 2.5: 275; % Make y-axis finer
disp('size(fyi)'); size(fyi)
[xxi,yyi]=meshgrid(xi,yi); % Forms grid of all combinations of xi and yi
% size(xxi) = size(yyi) = size(zzi) = 111 71
disp('size(xxi)'); size(xxi); disp('size(yyi)'); size(yyi); disp('size(zzi)'); size(zzi)
zzi=interp2(x,y,z,xxi,yyi,'cubic'); % Cubic interpolation - interpolates
% all combinations of xxi and yyi and constructs the matrix zzi
mesh(xxi,yyi,zzi); % Plot smoothed data
hold on;
[xx,yy]=meshgrid(x,y); % Grid with original data
plot3(xx,yy,z,'*k'); axis([0 175 0 275 500 503]); grid off; box off
xlabel('x-axis, m'); ylabel('y-axis, m'); zlabel('Height, meters above sea level');
title('Map of Rectangular Land Parcel')
hold off;
% max(x) returns the largest element of vector x
% max(A) returns a row vector which contains the maxima of the columns
% in matrix A. Likewise max(zzi) returns a row vector which contains the
% maxima of the columns in zzi. Observe that size(max(zzi)) = 1 71
% and size(max(max(zzi))) = 1 1
zmax=max(max(zzi)) % Estimates the peak of the terrain
% The 'find' function returns the subscripts where a relational expression
% is true. For Example,
% A=[a11 a12 a13; a21 a22 a23; a31 a32 a33] or
% A=[-1 0 3; 2 -3 -4; -2 5 6];
% [i,j]=find(A>2)
% returns
% i =
% % 2
% % 3
% % 1
% % 3
% %
% j =
That is, the elements $a_{22}=3$, $a_{32}=5$, $a_{13}=3$ and $a_{33}=6$
\% satisfy the condition $A>2$
\% The $==$ operator compares two variables and returns ones when they
\% are equal, and zeros when they are not equal
\% 
\%  \[m,n\]=find(zmax==zzi)
\% \ m =
\% \%
\% \ 65 
\%
\% \ n =
\% \%
\% \ 36 
\%
\% that is, zmax is located at $zzi = Z(65)(36)$
\%
\% the x-coordinate is found from
\% $xmax=xi(n)$
\% $xmax =
\% \%
\% \ 1.7500 \ % Column 36; size($xi$) = 1 71
\% and the y-coordinate is found from
\% $ymax=yi(m)$
\% $ymax =
\% \%
\% \ 3.2000 \ % Row 65; size($yi$) = 1 111
\% Remember that $i$ is the row index, $j$ is the column index, and $x$-axis
\% varies across the rows of $z$ and $y$-axis varies down the columns of $z$

Interpolated $z$ is:
\% $z_{int} =$
\% \% $500.1492$
\%
\% $size(xi)$
\% \% \ans =
\% \% \ 1 71
\%
\% $size(yi)$
\% \% \ans =
size(xxi)
ans =
   111    71

size(yyi)
ans =
   111    71

zzi=interp2(x,y,z,xxi,yyi,'cubic'); % Cubic interpolation - interpolates all combinations of xxi and yyi and constructs the matrix zzi

size(zzi)
ans =
   111    71

zmax=max(max(zzi)) % Estimates the peak of the terrain
zmax =
   500.2108

m =
   111
n =
   9
xmax =
   20
ymax =
   275

These values indicate that $z_{max} = 500.21$ where the $x$ and $y$ coordinates are $x = 20$ and $y = 275$. The interpolated value of $z$ at $x = 108$ m and $y = 177$ m is $z = 500.192$. The plot is shown in Figure 7.11.
Summary

7.9 Summary

- The first divided difference is defined as:

\[ f(x_i, x_j) = \frac{f(x_i) - f(x_j)}{x_i - x_j} \]

where \( x_i \) and \( x_j \) are any two, not necessarily consecutive values of \( x \), within an interval.

- Likewise, the second divided difference is defined as:

\[ f(x_i, x_j, x_k) = \frac{f(x_i, x_j) - f(x_i, x_k)}{x_i - x_k} \]

and the third, fourth, and so on divided differences are defined similarly.

- If the values of \( x \) are equally spaced and the denominators are all the same, these values are referred to as the differences of the function.

- If the constant difference between successive values of \( x \) is \( h \), the typical value of \( x_k \) is

\[ x_k = x_0 + kh \text{ for } k = \ldots, -2, -1, 0, 1, 2, \ldots \]

- We can now express the first differences are usually expressed in terms of the difference operator \( \Delta \) as

\[ \Delta f_k = f_{k+1} - f_k \]
Likewise, the second differences are expressed as

\[ \Delta^2 f_k = \Delta(\Delta f_k) = \Delta f_{k+1} - \Delta f_k \]

and, in general, for positive integer values of \( n \)

\[ \Delta^n f_k = \Delta(\Delta^{n-1} f_k) = \Delta^{n-1} f_{k+1} - \Delta^{n-1} f_k \]

The difference operator \( \Delta \) obeys the law of exponents which states that

\[ \Delta^m(\Delta^n f_k) = \Delta^{m+n} f_k \]

The \( nth \) differences \( \Delta^n f_k \) are found from the relation

\[ \Delta^n f_k = f_{k+n} - nf_{k+n-1} + \frac{n(n-1)}{2!} f_{k+n-2} + \ldots + (-1)^{n-l} nf_{k+l} + (-1)^n f_k \]

For \( k = 0, n = 1, 2, 3 \) and \( 4 \), the above relation reduces to

\[ \begin{align*}
\Delta f_0 &= f_2 - f_1 \\
\Delta^2 f_0 &= f_2 - 2f_1 + f_0 \\
\Delta^3 f_0 &= f_3 - 3f_2 + 3f_1 - f_0 \\
\Delta^4 f_0 &= f_4 - 4f_3 + 6f_2 - 4f_1 + f_0
\end{align*} \]

As with derivatives, the \( nth \) differences of a polynomial of degree \( n \) are constant.

The factorial polynomials are defined as

\[ (x)^{(n)} = x(x-1)(x-2)\ldots(x-n+1) \]

and

\[ (x)^{-(n)} = \frac{1}{(x-1)(x-2)\ldots(x+n)} \]

Using the difference operator \( \Delta \) with the above relations we get

\[ \Delta(x)^{(n)} = n(x)^{(n-1)} \]

and

\[ \Delta(x)^{-(n)} = -n(x)^{-(n-1)} \]

These are very similar to differentiation of \( x^n \) and \( x^{-n} \).
Summary

• We can express any algebraic polynomial \( f_n(x) \) as a factorial polynomial \( p_n(x) \). Then, in analogy with Maclaurin power series, we can express that polynomial as

\[
p_n(x) = a_0 + a_1(x)^{(1)} + a_2(x)^{(2)} + \ldots + a_n(x)^{(n)}
\]

where

\[
a_j = \frac{\Delta^j p_n(0)}{j!} \quad \text{for} \quad j = 0, 1, 2, \ldots, n
\]

• Factorial polynomials provide an easier method of constructing a difference table. The procedure is as follows:

1. We divide \( p_n(x) \) by \( x \) to get a quotient \( q_0(x) \) and a remainder \( r_0 \) which turns out to be the constant term \( a_0 \). Then, the factorial polynomial reduces to

\[
p_n(x) = r_0 + xq_0(x)
\]

2. We divide \( q_0(x) \) by \( (x - 1) \), to get a quotient \( q_1(x) \) and a remainder \( r_1 \) which turns out to be the constant term \( a_1 \). Then,

\[
q_0(x) = r_1 + (x - 1)q_1(x)
\]

and by substitution we get

\[
p_n(x) = r_0 + x[r_1 + (x - 1)q_1(x)] = r_0 + r_1(x)^{(1)} + x(x - 1)q_1(x)
\]

3. We divide \( q_1(x) \) by \( (x - 2) \), to get a quotient \( q_2(x) \) and a remainder \( r_2 \) which turns out to be the constant term \( a_2 \), and thus

\[
q_1(x) = r_2 + (x - 2)q_2(x)
\]

and by substitution we get

\[
p_n(x) = r_0 + r_1(x)^{(1)} + x(x - 1)[r_2 + (x - 2)q_2(x)] = r_0 + r_1(x)^{(1)} + r_2(x)^{(2)} + x(x - 1)(x - 2)q_2(x)
\]

and in general,

\[
p_n(x) = r_0 + r_1(x)^{(1)} + r_2(x)^{(2)} + \ldots + r_{n-1}(x)^{(n-1)} + r_n(x)^{(n)}
\]

where

\[
r_j = a_j = \frac{\Delta^j p_n(0)}{j!}
\]
• The antidifference of a factorial polynomial is analogous to integration in elementary calculus. It is denoted as \( \Delta^{-1} p_n(x) \), and it is computed from
\[
\Delta^{-1} (x)^{(n)} = \frac{(x)^{(n+1)}}{(n+1)}
\]

• Antidifferences are very useful in finding sums of series.
• The definite sum of \( p_n(x) \) for the interval \( a \leq x \leq a + (n - 1)h \) is
\[
\sum_{x = a}^{\alpha + (n - 1)h} p_n(x) = p_n(\alpha) + p_n(\alpha + h) + p_n(\alpha + 2h) + \ldots + p_n[\alpha + (n - 1)h]
\]

• In analogy with the fundamental theorem of integral calculus which states that
\[
\int_a^b f(x)dx = f(b) - f(a)
\]
we have the fundamental theorem of sum calculus which states that
\[
\sum_{x = \alpha}^{\alpha + (n - 1)h} p_n(x) = \Delta^{-1} p_n(x)|_{\alpha}^{\alpha + nh}
\]

• One important application of finite differences is interpolation.
• Newton’s Divided Difference Interpolation Method uses the formula
\[
f(x) = f(x_0) + (x-x_0)f(x_0, x_1) + (x-x_0)(x-x_1)f(x_0, x_1, x_2) + (x-x_0)(x-x_1)(x-x_2)f(x_0, x_1, x_2, x_3)
\]
where \( f(x_0, x_1), f(x_0, x_1, x_2), \) and \( f(x_0, x_1, x_2, x_3) \) are the first, second, and third divided differences respectively. This method has the advantage that the values \( x_0, x_1, x_2, \ldots, x_n \) need not be equally spaced, or taken in consecutive order.

• Lagrange’s Interpolation Method uses the formula
\[
f(x) = \left(\frac{x-x_1}{x_0-x_1}(x-x_2)\ldots(x-x_n)\right)f(x_0) + \left(\frac{x-x_0}{x_1-x_0}(x-x_2)\ldots(x-x_n)\right)f(x_1) + \left(\frac{x-x_0}{x_n-x_0}(x-x_1)\ldots(x-x_{n-1})\right)f(x_n)
\]
and, like Newton’s divided difference method, has the advantage that the values \( x_0, x_1, x_2, \ldots, x_n \) need not be equally spaced or taken in consecutive order.
• The Gregory-Newton Forward Interpolation method uses the formula

\[ f(x) = f_0 + r\Delta f_0 + \frac{r(r-1)}{2!}\Delta^2 f_0 + \frac{r(r-1)(r-2)}{3!}\Delta^3 f_0 + \ldots \]

where \( f_0 \) is the first value of the data set, \( \Delta f_0 \), \( \Delta^2 f_0 \), and \( \Delta^3 f_0 \) are the first, second, and third forward differences respectively. The variable \( r \) is the difference between an unknown point \( x \) and a known point \( x_I \) divided by the interval \( h \), that is,

\[ r = \frac{x - x_I}{h} \]

This formula is valid only when the values \( x_0, x_I, x_2, \ldots, x_n \) are equally spaced with interval \( h \). It is used to interpolate values near the smaller values of \( x \), that is, the values near the beginning of the given data set, hence the name forward interpolation.

• The Gregory-Newton Backward Interpolation method uses the formula

\[ f(x) = f_0 + r\Delta f_{r-1} + \frac{r(r+1)}{2!}\Delta^2 f_{r-2} + \frac{r(r+1)(r+2)}{3!}\Delta^3 f_{r-3} + \ldots \]

where \( f_0 \) is the first value of the data set, \( \Delta f_{r-1} \), \( \Delta^2 f_{r-2} \), and \( \Delta^3 f_{r-3} \) are the first, second and third backward differences, and

\[ r = \frac{x - x_I}{h} \]

This formula is valid only when the values \( x_0, x_I, x_2, \ldots, x_n \) are equally spaced with interval \( h \). It is used to interpolate values near the end of the data set, that is, the larger values of \( x \). Backward interpolation is an expression to indicate that we use the differences in a backward sequence, that is, the last entries on the columns where the differences appear.

• If the increments in \( x \) values are small, we can use the Excel \texttt{VLOOKUP} function to perform interpolation.

• We can perform interpolation to verify our results with the MATLAB functions \texttt{interp1(x,y,x)}, \texttt{interp1(x,y,x,’method’)} where \texttt{method} allows us to specify \texttt{nearest} (nearest neighbor interpolation), \texttt{linear} (linear interpolation, the default interpolation), \texttt{spline} (cubic spline interpolation which does also extrapolation), \texttt{cubic} (cubic interpolation which requires equidistant values of \( x \)), and \texttt{interp2(x,y,z,x,y)} which is similar to \texttt{interp1(x,y,x)} but performs two dimensional interpolation;
7.10 Exercises

1. Express the given polynomial \( f(x) \) below as a factorial polynomial \( p(x) \), calculate the leading differences, and then construct the difference table with \( h = 1 \).

\[
f(x) = x^5 - 2x^4 + 4x^3 - x + 6
\]

2. Use the data of the table below and the appropriate (forward or backward) Gregory-Newton formula, to compute:

   a. \( \sqrt{50.2} \)
   
   b. \( \sqrt{55.9} \)

<table>
<thead>
<tr>
<th>x</th>
<th>50</th>
<th>51</th>
<th>52</th>
<th>53</th>
<th>54</th>
<th>55</th>
<th>56</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \sqrt{x} )</td>
<td>7.071</td>
<td>7.141</td>
<td>7.211</td>
<td>7.280</td>
<td>7.348</td>
<td>7.416</td>
<td>7.483</td>
</tr>
</tbody>
</table>

3. Use the data of the table below and Newton’s divided difference formula to compute:

   a. \( f(1.3) \)
   
   b. \( f(1.95) \)

<table>
<thead>
<tr>
<th>x</th>
<th>1.1</th>
<th>1.2</th>
<th>1.5</th>
<th>1.7</th>
<th>1.8</th>
<th>2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>( y = f(x) )</td>
<td>1.112</td>
<td>1.219</td>
<td>1.636</td>
<td>2.054</td>
<td>2.323</td>
<td>3.011</td>
</tr>
</tbody>
</table>
7.11 Solutions to Exercises

1.

\[ f(x) = x^5 - 2x^4 + 4x^3 - x + 6 \]

The highest power of the given polynomial \( f(x) \) is 5, we must evaluate the remainders \( r_0, r_1, r_2, r_3, r_4 \) and \( r_5 \); then, we will use (7.28), given below, to determine \( p_n(x) \).

\[ p_n(x) = r_0 + r_1(x)^{(1)} + r_2(x)^{(2)} + \ldots + r_{n-1}(x)^{(n-1)} + r_n(x)^{(n)} \]

We can compute the remainders by long division but, for convenience, we will use the MATLAB `deconv(p,q)` function which divides the polynomial \( p \) by \( q \).

The MATLAB code is as follows:

```matlab
px=[1 -2 4 0 -1 6]; % Coefficients of given polynomial
d0=[1 0]; % Coefficients of first divisor, i.e, x
[q0,r0]=deconv(px,d0) % Computation of first quotient and remainder
d1=[1 -1]; % Coefficients of second divisor, i.e, x-1
[q1,r1]=deconv(q0,d1) % Computation of second quotient and remainder
d2=[1 -2]; % Coefficients of third divisor, i.e, x-2
[q2,r2]=deconv(q1,d2) % Computation of third quotient and remainder
d3=[1 -3]; % Coefficients of fourth divisor, i.e, x-3
[q3,r3]=deconv(q2,d3) % Computation of fourth quotient and remainder
d4=[1 -4]; % Coefficients of fifth divisor, i.e, x-4
[q4,r4]=deconv(q3,d4) % Computation of fifth quotient and remainder
d5=[1 -5]; % Coefficients of sixth (last) divisor, i.e, x-5
[q5,r5]=deconv(q4,d5) % Computation of sixth (last) quotient and remainder
```

\[ q0 = \begin{bmatrix} 1 & -2 & 4 & 0 & -1 \end{bmatrix}, \quad r0 = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 6 \end{bmatrix} \]

\[ q1 = \begin{bmatrix} 1 & -1 & 3 & 3 \end{bmatrix}, \quad r1 = \begin{bmatrix} 0 & 0 & 0 & 0 & 2 \end{bmatrix} \]

\[ q2 = \begin{bmatrix} 1 & 1 & 5 \end{bmatrix}, \quad r2 = \begin{bmatrix} 0 & 0 & 0 & 13 \end{bmatrix} \]
Therefore, with reference to (7.28), the factorial polynomial is

\[ p_n(x) = 6 + 2(x)^{(1)} + 13(x)^{(2)} + 17(x)^{(3)} + 8(x)^{(4)} + (x)^{(5)} \]

We will verify that \( p_n(x) \) above is the same polynomial as the given \( f_n(x) \) by expansion of the factorials using (7.12), i.e.,

\[ (x)^{(n)} = x(x-1)(x-2)\ldots(x-n+1) \]

with the MATLAB `collect('s_expr')` function.

```matlab
syms x; px=collect((x*(x−1)*(x−2)*(x−3)*(x-4)+(8*x*(x−1)*(x−2)*(x-3))+(17*x*(x−1)*(x−2))+(13*x*(x−1))+2*x+6))
px = x^5-2*x^4+4*x^3-x+6
```

We observe that this is the same algebraic polynomial as \( f(x) \).

We will now compute the leading entries for the difference table using (7.30), i.e., \( \Delta^j p_n(0) = j!r_j \) and \( p_n(x) \) above

\[
\begin{align*}
\Delta^0 p(0) &= 0! \cdot 6 = 6 \\
\Delta^1 p(0) &= 1! \cdot 2 = 2 \\
\Delta^2 p(0) &= 2! \cdot 13 = 26 \\
\Delta^3 p(0) &= 3! \cdot 17 = 102 \\
\Delta^4 p(0) &= 4! \cdot 8 = 192 \\
\Delta^5 p(0) &= 5! \cdot 1 = 120 \\
\Delta^6 p(0) &= 6! \cdot 0 = 0
\end{align*}
\]

We enter these values in the appropriate spaces as shown on the table below.
We obtain the remaining set of values by crisscross addition as shown on the table below.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(p(x))</th>
<th>(\Delta)</th>
<th>(\Delta^2)</th>
<th>(\Delta^3)</th>
<th>(\Delta^4)</th>
<th>(\Delta^5)</th>
<th>(\Delta^6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>102</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>192</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.

<table>
<thead>
<tr>
<th>(x)</th>
<th>50</th>
<th>51</th>
<th>52</th>
<th>53</th>
<th>54</th>
<th>55</th>
<th>56</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sqrt{x})</td>
<td>7.071</td>
<td>7.141</td>
<td>7.211</td>
<td>7.280</td>
<td>7.348</td>
<td>7.416</td>
<td>7.483</td>
</tr>
</tbody>
</table>

a. We will use the differences in a forward sequence, that is, the first entries on the columns where the differences appear. This is because the value of \(\sqrt{50.2}\) should be in the interval \(50 \leq x \leq 51\). We enter the given \(x\) and \(f(x)\) values in a difference table; then, we compute the first, second, and third differences. These are not divided differences and therefore, we simply subtract the second value of \(f(x)\) from the first, the third from the second, and so on, as shown below.
and with these values, using (7.54), we get

\[
f(50.2) = f(50) + (0.20) \cdot (f(50) - f(49)) + \frac{(0.20) \cdot (0.20 - 1)}{2!} \cdot (f(49) - f(48)) + \frac{(0.20) \cdot (0.20 - 1) \cdot (0.20 - 2)}{3!} \cdot (f(48) - f(47))
\]

The spreadsheet below shows the layout and computations for Part (a).

Check with MATLAB:

```matlab
x = [50 51 52 53 54 55 56];
fx = [7.071 7.141 7.211 7.280 7.348 7.416 7.483];
spline_interp = interp1(x, fx, [50.2], 'spline');
fprintf('spline interpolation yields f(50.2) = 7.0849
');
```

spline interpolation yields \( f(50.2) = 7.0849 \)
b. Since the value of $\sqrt{55.9}$ is very close to the last value in the given range, we will use the backward interpolation formula

$$f(x) = f_0 + r\Delta f_{-1} + \frac{r(r+1)}{2!} \Delta^2 f_{-2} + \frac{r(r+1)(r+2)}{3!} \Delta^3 f_{-3} + \ldots$$

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A Gregory-Newton Forward Interpolation Method for Exercise 7.2(a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>See expressions (7.54) and (7.55)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Interpolate $f(x)$ at $x=50.2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>$x$</td>
<td>$f(x)$</td>
<td>$\Delta f$</td>
<td>$\Delta^2 f$</td>
<td>$\Delta^3 f$</td>
<td>$\Delta^4 f$</td>
<td>$\Delta^5 f$</td>
</tr>
<tr>
<td>8</td>
<td>50.0</td>
<td>7.071</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>0.070</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>51.0</td>
<td>7.141</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>0.070</td>
<td>-0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>52.0</td>
<td>7.211</td>
<td>-0.001</td>
<td>0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>0.069</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>53.0</td>
<td>7.280</td>
<td>-0.001</td>
<td>0.001</td>
<td>-0.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>0.068</td>
<td>0.001</td>
<td>-0.003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>54.0</td>
<td>7.348</td>
<td>0.000</td>
<td>-0.002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>0.068</td>
<td>-0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>55.0</td>
<td>7.416</td>
<td>-0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>0.067</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>56.0</td>
<td>7.483</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>$h=\frac{A_{10}-A_8}{C_{22}}=1.00$</td>
<td>$r=\frac{D_5-A_8}{C_22}=0.2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>$f(50.2)=$ round(B8+F22<em>C9+(F20</em>(F20-1)<em>D10)/FACT(2)+(F20</em>(F20-1)*(F20-2)*E11)/FACT(3),3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>7.085</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>50</td>
<td>7.071</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>51</td>
<td>7.141</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>52</td>
<td>7.211</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>53</td>
<td>7.280</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>54</td>
<td>7.348</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>55</td>
<td>7.416</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>56</td>
<td>7.483</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
where \( f_0 \) is the first value of the data set, \( \Delta f_{-1} \), \( \Delta^2 f_{-2} \), and \( \Delta^3 f_{-3} \) are the first, second and third backward differences, and

\[
r = \frac{(x-x_1)}{h}
\]

We arbitrarily choose \( f_0 = 7.483 \) as our starting point since \( f(55.9) \) lies between \( f(55) \) and \( f(56) \). Then,

\[
h = 56 - 55 = 1
\]

and

\[
r = \frac{(x-x_1)}{h} = \frac{(55.9 - 56.0)}{1} = -0.1
\]

Now, by (7.58) we have:

\[
f(55.9) = 7.483 + (-0.1)(0.070) + \frac{(-0.1)(-0.1 + 1)(0.000)}{2!} \quad + \frac{(-0.1)(-0.1 + 1)(-0.1 + 2)(-0.001)}{3!} = 7.476
\]

Check with MATLAB:

\[
x = [50 \ 51 \ 52 \ 53 \ 54 \ 55 \ 56];
fx=[7.071 \ 7.141 \ 7.211 \ 7.280 \ 7.348 \ 7.416 \ 7.483];
spline_interp=interp1(x,fx,[55.9]','spline'); fprintf('
');
fprintf('spline interpolation yields f(55.9) =
'); disp(spline_interp)
\]

spline interpolation yields \( f(55.9) = 7.4764 \)

3.

<table>
<thead>
<tr>
<th>( x )</th>
<th>1.1</th>
<th>1.2</th>
<th>1.5</th>
<th>1.7</th>
<th>1.8</th>
<th>2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>( y = f(x) )</td>
<td>1.112</td>
<td>1.219</td>
<td>1.636</td>
<td>2.054</td>
<td>2.323</td>
<td>3.011</td>
</tr>
</tbody>
</table>

a. The first divided differences are:

\[
\frac{1.219 - 1.112}{1.2 - 1.1} = 1.070 \quad \frac{1.636 - 1.219}{1.5 - 1.2} = 1.390 \quad \frac{2.054 - 1.636}{1.7 - 1.5} = 2.090
\]

\[
\frac{2.323 - 2.054}{1.8 - 1.7} = 2.690 \quad \frac{3.011 - 2.323}{2.0 - 1.8} = 3.440
\]

The second divided differences are:

\[
\frac{1.390 - 1.070}{1.5 - 1.1} = 0.800 \quad \frac{2.090 - 1.390}{1.7 - 1.2} = 1.400
\]

\[
\frac{2.690 - 2.090}{1.8 - 1.5} = 2.000 \quad \frac{3.440 - 2.690}{2.0 - 1.7} = 2.500
\]
and the third divided differences are:

\[
\frac{1.400 - 0.800}{1.7 - 1.1} = 1.000 \quad \frac{2.000 - 1.400}{1.8 - 1.2} = 1.000 \quad \frac{2.500 - 2.000}{2.0 - 1.5} = 1.000
\]

With these values, we construct the difference table below.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
<th>1st Divided Difference (f(x_0, x_1))</th>
<th>2nd Divided Difference (f(x_0, x_1, x_2))</th>
<th>3rd Divided Difference (f(x_0, x_1, x_2, x_3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>1.112</td>
<td>1.070</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>1.219</td>
<td>0.800</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>1.636</td>
<td>1.390</td>
<td>1.400</td>
<td>1.000</td>
</tr>
<tr>
<td>1.7</td>
<td>2.054</td>
<td>2.090</td>
<td>2.000</td>
<td>1.000</td>
</tr>
<tr>
<td>1.8</td>
<td>2.323</td>
<td>2.690</td>
<td>2.500</td>
<td>1.000</td>
</tr>
<tr>
<td>2.0</td>
<td>3.011</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To find \(f(1.3)\). We start with \(x_0 = 1.1\) and for \(x\) in (7.49), we use \(x = 1.3\). Then,

\[
f(x) = f(x_0) + (x - x_0)f(x_0, x_1) + (x - x_0)(x - x_1)f(x_0, x_1, x_2) + (x - x_0)(x - x_1)(x - x_2)f(x_0, x_1, x_2, x_3)
\]

\[
f(1.3) = 1.112 + (1.3 - 1.1)(1.07) + (1.3 - 1.1)(1.3 - 1.2)(1.4) + (1.3 - 1.1)(1.3 - 1.2)(1.3 - 1.5)(1)
\]

\[
= 1.112 + 0.214 + 0.028 - 0.004
\]

\[
= 1.350
\]

b. To find \(f(1.95)\) we start with \(x_0 = 2.0\) and for \(x\) in (7.49), we use \(x = 1.95\). Then,

\[
f(x) = f(x_0) + (x - x_0)f(x_0, x_1) + (x - x_0)(x - x_1)f(x_0, x_1, x_2) + (x - x_0)(x - x_1)(x - x_2)f(x_0, x_1, x_2, x_3)
\]

\[
f(1.95) = 3.011 + (1.95 - 2)(3.44) + (1.95 - 2)(1.95 - 1.8)(2.5) + (1.95 - 2)(1.95 - 1.8)(1.95 - 1.7)(1)
\]

\[
= 3.011 - 0.172 - 0.019 - 0.002
\]

\[
= 2.818
\]

The spreadsheet below verifies our calculated values.
Check with MATLAB:

\[
x=[1.1 \ 1.2 \ 1.5 \ 1.7 \ 1.8 \ 2.0];
fx=[1.112 \ 1.219 \ 1.636 \ 2.054 \ 2.323 \ 3.011];
spline_interp=interp1(x,fx,[1.3],',spline'); fprintf('spline interpolation value of f(1.3): 

'); disp(spline_interp)
\]
spline interpolation value of f(1.3):
1.3380

\[
spline_interp=interp1(x,fx,[1.95],',spline'); fprintf('spline interpolation value of f(1.95): 

'); disp(spline_interp)
\]
spline interpolation value of f(1.95):
2.8184
Chapter 8

Linear and Parabolic Regression

This chapter is an introduction to regression and procedures for finding the best curve to fit a set of data. We will discuss linear and parabolic regression, and regression with power series approximations. We will illustrate their application with several examples.

8.1 Curve Fitting

Curve fitting is the process of finding equations to approximate straight lines and curves that best fit given sets of data. For example, for the data of Figure 8.1, we can use the equation of a straight line, that is,

\[ y = mx + b \]  

Figure 8.1. Straight line approximation.

For Figure 8.2, we can use the equation for the quadratic or parabolic curve of the form

\[ y = ax^2 + bx + c \]  

Figure 8.2. Parabolic line approximation.

In finding the best line, we normally assume that the data, shown by the small circles in Figures 8.1 and 8.2, represent the independent variable \( x \), and our task is to find the dependent variable \( y \).
Regression can be linear (straight line) or curved (quadratic, cubic, etc.) and it is not restricted to engineering applications. Investment corporations use regression analysis to compare a portfolio’s past performance versus index figures. Financial analysts in large corporations use regression to forecast future costs, and the Census Bureau use it for population forecasting.

Obviously, we can find more than one straight line or curve to fit a set of given data, but we interested in finding the most suitable.

Let the distance of data point \( x_1 \) from the line be denoted as \( d_1 \), the distance of data point \( x_2 \) from the same line as \( d_2 \), and so on. The best fitting straight line or curve has the property that

\[
d_1^2 + d_2^2 + \ldots + d_n^2 = \text{minimum} \tag{8.3}
\]

and it is referred to as the least-squares curve. Thus, a straight line that satisfies (8.3) is called a least squares line. If it is a parabola, we call it a least-squares parabola.

### 8.2 Linear Regression

We perform linear regression with the method of least squares. With this method, we compute the coefficients \( m \) (slope) and \( b \) (y-intercept) of the straight line equation

\[
y = mx + b \tag{8.4}
\]

such that the sum of the squares of the errors will be minimum. We derive the values of \( m \) and \( b \), that will make the equation of the straight line to best fit the observed data, as follows:

Let \( x \) and \( y \) be two related variables, and assume that corresponding to the values \( x_1, x_2, x_3, \ldots, x_n \), we have observed the values \( y_1, y_2, y_3, \ldots, y_n \). Now, let us suppose that we have plotted the values of \( y \) versus the corresponding values of \( x \), and we have observed that the points \((x_1, y_1), (x_2, y_2), (x_3, y_3), \ldots, (x_n, y_n)\) approximate a straight line. We denote the straight line equations passing through these points as

\[
y_1 = mx_1 + b \\
y_2 = mx_2 + b \\
y_3 = mx_3 + b \\
\vdots \\
y_n = mx_n + b \tag{8.5}
\]

In (8.5), the slope \( m \) and y-intercept \( b \) are the same in all equations since we have assumed that all points lie close to one straight line. However, we need to determine the values of the unknowns
Linear Regression

$m$ and $b$ from all $n$ equations; we will not obtain valid values for all points if we solve just two equations with two unknowns.*

The error (difference) between the observed value $y_1$, and the value that lies on the straight line, is $y_1 - (mx_1 + b)$. This difference could be positive or negative, depending on the position of the observed value, and the value at the point on the straight line. Likewise, the error between the observed value $y_2$ and the value that lies on the straight line is $y_2 - (mx_2 + b)$ and so on. The straight line that we choose must be a straight line such that the distances between the observed values, and the corresponding values on the straight line, will be minimum. This will be achieved if we use the magnitudes (absolute values) of the distances; if we were to combine positive and negative values, some may cancel each other and give us an erroneous sum of the distances. Accordingly, we find the sum of the squared distances between observed points and the points on the straight line. For this reason, this method is referred to as the method of least squares.

Let the sum of the squares of the errors be

$$\sum_{\text{squares}} = [y_1 - (mx_1 + b)]^2 + [y_2 - (mx_2 + b)]^2 + \ldots + [y_n - (mx_n + b)]^2$$  \hspace{1cm} (8.6)

Since $\sum_{\text{squares}}$ is a function of two variables $m$ and $b$, to minimize (8.6) we must equate to zero its two partial derivatives with respect to $m$ and $b$. Then,

$$\frac{\partial}{\partial m} \sum_{\text{squares}} = -2x_1[y_1 - (mx_1 + b)] - 2x_2[y_2 - (mx_2 + b)] - \ldots - 2x_n[y_n - (mx_n + b)] = 0$$  \hspace{1cm} (8.7)

and

$$\frac{\partial}{\partial b} \sum_{\text{squares}} = -2[y_1 - (mx_1 + b)] - 2[y_2 - (mx_2 + b)] - \ldots - 2[y_n - (mx_n + b)] = 0$$  \hspace{1cm} (8.8)

The second derivatives of (8.7) and (8.8) are positive and thus $\sum_{\text{squares}}$ will have its minimum value.

Collecting like terms, and simplifying (8.7) and (8.8) we get

* A linear system of independent equations that has more equations than unknowns is said to be overdetermined and no exact solution exists. On the contrary, a system that has more unknowns than equations is said to be underdetermined and these systems have infinite solutions.
Chapter 8  Linear and Parabolic Regression

\[(\Sigma x^2)m + (\Sigma x)b = \Sigma xy \quad (8.9)\]
\[(\Sigma x)m + nb = \Sigma y\]

where
\[\Sigma x = \text{sum of the numbers } x\]
\[\Sigma y = \text{sum of the numbers } y\]
\[\Sigma xy = \text{sum of the numbers of the product } xy\]
\[\Sigma x^2 = \text{sum of the numbers } x \text{ squared}\]
\[n = \text{number of data } x\]

We can solve the equations of (8.9) simultaneously by Cramer’s rule, or with Excel, or with MATLAB using matrices.

With Cramer’s rule, \( m \) and \( b \) are computed from

\[m = \frac{D_1}{\Delta} \quad b = \frac{D_2}{\Delta}\]                      \hspace{1cm} (8.10)

where

\[
\Delta = \begin{vmatrix}
\Sigma x^2 & \Sigma x \\
\Sigma x & n \\
\end{vmatrix} \quad D_1 = \begin{vmatrix}
\Sigma xy & \Sigma x \\
\Sigma y & n \\
\end{vmatrix} \quad D_2 = \begin{vmatrix}
\Sigma x^2 & \Sigma xy \\
\Sigma x & \Sigma y \\
\end{vmatrix}
\] \hspace{1cm} (8.11)

Example 8.1

In a typical resistor, the resistance \( R \) in \( \Omega \) (denoted as \( y \) in the equations above) increases with an increase in temperature \( T \) in °C (denoted as \( x \)). The temperature increments and the observed resistance values are shown in Table 8-1. Compute the straight line equation that best fits the observed data.

<table>
<thead>
<tr>
<th>( T ) (°C)</th>
<th>( x )</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>( R ) (Ω)</td>
<td>( y )</td>
<td>27.6</td>
<td>31.0</td>
<td>34.0</td>
<td>37</td>
<td>40</td>
<td>42.6</td>
<td>45.5</td>
<td>48.3</td>
<td>51.1</td>
<td>54</td>
<td>56.7</td>
</tr>
</tbody>
</table>

Solution:

There are 11 sets of data and thus \( n = 11 \). For convenience, we use the spreadsheet of Figure 8.3 where we enter the given values and we perform the computations using spreadsheet formulas.
Accordingly, we enter the \( x \) (temperature) values in Column A, and \( y \) (the measured resistance corresponding to each temperature value) in Column B. Columns C and D show the \( x^2 \) and \( xy \) products. Then, we compute the sums so they can be used with (8.10) and (8.11). All work is shown on the spreadsheet of Figure 8.3. The values of \( m \) and \( b \) are shown in cells I20 and I24 respectively. Thus, the straight line equation that best fits the given data is

\[
y = mx + b = 0.288x + 28.123
\]

We can use Excel’s Add Trendline feature to produce quick answers to regression problems. We will illustrate the procedure with the following example.

**Example 8.2**

Repeat Example 8.1 using Excel’s Add Trendline feature.
Solution:

We first enter the given data in columns A and B as shown on the spreadsheet of Figure 8.4.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>x (°C)</td>
<td>y(Ω)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>27.6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>31.0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>34.0</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>37.0</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>40.0</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>42.6</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>45.5</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>48.3</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>51.1</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>54.0</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>56.7</td>
<td></td>
</tr>
</tbody>
</table>

To produce the plot of Figure 8.4, we perform the following steps:

1. We click on the Chart Wizard icon. The displayed chart types appear on the Standard Types tab. We click on XY (Scatter) Type. On the Chart sub-types options, we click on the top (scatter) sub-type. Then, we click on Next>Next>Next>Finish, and we observe that the plot appears next to the data. We click on the Series 1 block inside the Chart box, and we press the Delete key to delete it.

2. To change the plot area from gray to white, we choose Plot Area from the taskbar below the main taskbar, we click on the small (with the hand) box, on the Patterns tab we click on the white box (below the selected gray box), and we click on OK. We observe now that the plot area is white. Next, we click anywhere on the perimeter of the Chart area, and observe six square handles (small black squares) around it. We click on Chart on the main taskbar, and on the Gridlines tab. Under the Value (Y) axis, we click on the Major gridlines box to deselect it.

3. We click on the Titles tab, and on the Chart title box, we type Straight line for Example 8.2, on the Value X-axis, we type Temperature (degrees Celsius), and on the Value Y-axis, we type Resistance (Ohms). We click anywhere on the x-axis to select it, and we click on the small (with the hand) box. We click on the Scale tab, we change the maximum value from 150 to 100, and we click OK. We click anywhere on the y-axis to select it, and we click on the small (with the hand) box. We click on the Scale tab, we change the minimum value from 0 to 20, we change the Major Unit to 10, and we click on OK.

4. To make the plot more presentable, we click anywhere on the perimeter of the Chart area, and we observe the six handles around it. We place the cursor near the center handle of the upper
side of the graph, and when the two-directional arrow appears, we move it upwards by moving the mouse in that direction. We can also stretch (or shrink) the height of the Chart area by placing the cursor near the center handle of the lower side of the graph, and move it downwards with the mouse. Similarly, we can stretch or shrink the width of the plot to the left or to the right, by placing the cursor near the center handle of the left or right side of the Chart area.

5. We click anywhere on the perimeter of the Chart area to select it, and we click on Chart above the main taskbar. On the pull-down menu, we click on Add Trendline. On the Type tab, we click on the first (Linear), and we click on OK. We now observe that the points on the plot have been connected by a straight line.

We can also use Excel to compute and display the equation of the straight line. This feature will be illustrated in Example 8.4. The Data Analysis Toolpack in Excel includes the Regression Analysis tool which performs linear regression using the least squares method. It provides a wealth of information for statisticians, and contains several terms used in probability and statistics.

### 8.3 Parabolic Regression

We find the least-squares parabola that fits a set of sample points with

\[ y = ax^2 + b + c \tag{8.13} \]

where the coefficients \( a, b, \) and \( c \) are found from

\[
\begin{align*}
(\Sigma x^2)a + (\Sigma x)b + nc &= \Sigma y \\
(\Sigma x^3)a + (\Sigma x^2)b + (\Sigma x)c &= \Sigma xy \\
(\Sigma x^4)a + (\Sigma x^3)b + (\Sigma x^2)c &= \Sigma x^2y
\end{align*}
\tag{8.14}
\]

where \( n = \) number of data points.

#### Example 8.3

Find the least-squares parabola for the data shown in Table 8.2.

<table>
<thead>
<tr>
<th>( x )</th>
<th>1.2</th>
<th>1.5</th>
<th>1.8</th>
<th>2.6</th>
<th>3.1</th>
<th>4.3</th>
<th>4.9</th>
<th>5.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>( y )</td>
<td>4.5</td>
<td>5.1</td>
<td>5.8</td>
<td>6.7</td>
<td>7.0</td>
<td>7.3</td>
<td>7.6</td>
<td>7.4</td>
</tr>
<tr>
<td>( x )</td>
<td>5.7</td>
<td>6.4</td>
<td>7.1</td>
<td>7.6</td>
<td>8.6</td>
<td>9.2</td>
<td>9.8</td>
<td></td>
</tr>
<tr>
<td>( y )</td>
<td>7.2</td>
<td>6.9</td>
<td>6.6</td>
<td>5.1</td>
<td>4.5</td>
<td>3.4</td>
<td>2.7</td>
<td></td>
</tr>
</tbody>
</table>
Solution:

We construct the spreadsheet of Figure 8.5, and from the data of Columns A and B, we compute the values shown in Columns C through G. The sum values are shown in Row 18, and from these we form the coefficients of the unknown \( a \), \( b \), and \( c \).

\[
\begin{array}{cccccccc}
A & B & C & D & E & F & G \\
1 & x & y & x^2 & x^3 & x^4 & xy & x^2y \\
2 & 1.2 & 4.5 & 1.44 & 1.73 & 2.07 & 5.40 & 6.48 \\
3 & 1.5 & 5.1 & 2.25 & 3.38 & 5.06 & 7.65 & 11.48 \\
4 & 1.8 & 5.8 & 3.24 & 5.83 & 10.50 & 10.44 & 18.79 \\
5 & 2.6 & 6.7 & 6.76 & 17.58 & 45.70 & 17.42 & 45.29 \\
6 & 3.1 & 7.0 & 9.61 & 29.79 & 92.35 & 21.70 & 67.27 \\
7 & 4.3 & 7.3 & 18.49 & 79.51 & 341.88 & 31.39 & 134.98 \\
8 & 4.9 & 7.6 & 24.01 & 117.65 & 576.48 & 37.24 & 182.46 \\
9 & 5.3 & 7.4 & 28.09 & 148.88 & 789.05 & 39.22 & 207.87 \\
10 & 5.7 & 7.2 & 32.49 & 185.19 & 1055.60 & 41.04 & 233.93 \\
11 & 6.4 & 6.9 & 40.96 & 262.14 & 1677.72 & 44.16 & 282.62 \\
12 & 7.1 & 6.6 & 50.41 & 357.91 & 2541.17 & 46.86 & 332.71 \\
13 & 7.6 & 5.1 & 57.76 & 438.98 & 3336.22 & 38.76 & 294.58 \\
14 & 8.6 & 4.5 & 73.96 & 636.06 & 5470.08 & 38.70 & 332.82 \\
15 & 9.2 & 3.4 & 84.64 & 778.69 & 7163.93 & 31.28 & 287.78 \\
16 & 9.8 & 2.7 & 96.04 & 941.19 & 9223.68 & 26.46 & 259.31 \\
17 & & & & \Sigma x= & \Sigma y= & \Sigma x^2= & \Sigma x^3= & \Sigma x^4= \\
18 & 79.1 & 87.8 & 530.15 & 4004.50 & 32331.49 & 437.72 & 2698.37 \\
\end{array}
\]

By substitution into (8.14),

\[
530.15a + 79.1b + 15c = 87.8 \\
4004.50a + 530.15b + 79.1c = 437.72 \\
32331.49a + 4004.50b + 530.15c = 2698.37
\]

We solve the equations of (8.15) with matrix inversion and multiplication, as shown in Figure 8.6. The procedure was presented in Chapter 4.

\[
\begin{array}{cccccccc}
A & B & C & D & E & F & G \\
1 & Matrix Inversion and Matrix Multiplication for Example 8.3 \\
2 & & & & & & & \\
3 & 530.15 & 79.1 & 15.00 & \Sigma y= & 87.80 \\
4 & A= & 4004.50 & 530.15 & 79.10 & \Sigma xy= & 437.72 \\
5 & 32331.49 & 4004.50 & 530.15 & \Sigma x^2y= & 2698.37 \\
6 & & & & & & & \\
7 & 0.032 & -0.016 & 0.002 & a= & -0.20 \\
8 & A^{-1}= & -0.385 & 0.181 & -0.016 & b= & 1.94 \\
9 & 0.979 & -0.385 & 0.032 & c= & 2.78 \\
\end{array}
\]
Therefore, the least-squares parabola is

\[ y = -0.20x^2 + 1.94x + 2.78 \]

The plot for this parabola is shown in Figure 8.7.

Example 8.4

The voltages (volts) shown on Table 8.3 were applied across the terminal of a non-linear device and the current ma (milliamps) values were observed and recorded. Use Excel’s *Add Trendline* feature to derive a polynomial that best approximates the given data.

**Solution:**

We enter the given data on the spreadsheet of Figure 8.8 where, for brevity, only a partial list of the given data is shown. However, to obtain the plot, we need to enter all data in Columns A and B.

<table>
<thead>
<tr>
<th>Volts</th>
<th>0.00</th>
<th>0.25</th>
<th>0.50</th>
<th>0.75</th>
<th>1.00</th>
<th>1.25</th>
<th>1.50</th>
<th>1.75</th>
<th>2.00</th>
<th>2.25</th>
<th>2.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>ma</td>
<td>0.00</td>
<td>0.01</td>
<td>0.03</td>
<td>0.05</td>
<td>0.08</td>
<td>0.11</td>
<td>0.14</td>
<td>0.18</td>
<td>0.23</td>
<td>0.28</td>
<td>0.34</td>
</tr>
<tr>
<td>Volts</td>
<td>2.75</td>
<td>3.00</td>
<td>3.25</td>
<td>3.50</td>
<td>3.75</td>
<td>4.00</td>
<td>4.25</td>
<td>4.50</td>
<td>4.75</td>
<td>5.00</td>
<td></td>
</tr>
<tr>
<td>ma</td>
<td>0.42</td>
<td>0.50</td>
<td>0.60</td>
<td>0.72</td>
<td>0.85</td>
<td>1.00</td>
<td>1.18</td>
<td>1.39</td>
<td>1.63</td>
<td>1.91</td>
<td></td>
</tr>
</tbody>
</table>
Following the steps of Example 8.2, we create the plot shown next to the data. Here, the smooth curve was chosen from the Add trendline feature, but we clicked on the polynomial order 3 on the Add trendline Type tab. On the Options tab, we clicked on Display equation on chart, we clicked on Display R squared value on chart, and on OK. The quantity $R^2$ is a measure of the goodness of fit for a straight line or, as in this example, for parabolic regression. This is the Pearson correlation coefficient $R$; it is discussed in probability and statistics textbooks \*. The correlation coefficient can vary from 0 to 1. When $R^2 \approx 0$, there is no relationship between the dependent $y$ and independent $x$ variables. When $R^2 \approx 1$, there is a nearly perfect relationship between these variables. Thus, the result of Example 8.4 indicates that there is a strong relationship between the variables $x$ and $y$, that is, there is a nearly perfect fit between the cubic polynomial and the experimental data.

With MATLAB, regression is performed with the \texttt{polyfit(x,y,n)} command, where $x$ and $y$ are the coordinates of the data points, and $n$ is the degree of the polynomial. Thus, if $n = 1$, MATLAB computes the best straight line approximation, that is, linear regression, and returns the coefficients $m$ and $b$. If $n = 2$, it computes the best quadratic polynomial approximation and returns the coefficients of this polynomial. Likewise, if $n = 3$, it computes the best cubic polynomial approximation, and so on.

Let $p$ denote the polynomial (linear, quadratic, cubic, or higher order) approximation that is computed with the MATLAB \texttt{polyfit(x,y,n)} function. Suppose we want to evaluate the polynomial $p$

\* It is also discussed in Mathematics for Business, Science, and Technology, Orchard Publications
at one or more points. We can use the `polyval(p,x)` function to evaluate the polynomial. If \( x \) is a scalar, MATLAB returns the value of the polynomial at point \( x \). If \( x \) is a row vector, the polynomial is evaluated for all values of the vector \( x \).

**Example 8.5**

Repeat Example 8.1 using the MATLAB’s `polyfit(x,y,n)` function. Use \( n = 1 \) to compute the best straight line approximation. Plot resistance \( R \) versus temperature \( T \) in the range \(-10 \leq T \leq 110 \degree C\). Use also the `polyval(p,x)` command to evaluate the best line approximation \( p \) in the \( 0 \leq T \leq 100 \) range in ten degrees increments, and compute the percent error (difference between the given values and the polynomial values).

**Solution:**

The following MATLAB code will do the computations and plot the data.

```matlab
% This is the code for Example 8.5
T= [0 10 20 30 40 50 60 70 80 90 100]; % x-axis data
R=[27.6 31 34 37 40 42.6 45.5 48.3 51.1 54 56.7]; % y-axis data
axis([-10 110 20 60]); % Establishes desired x and y axes limits
plot(T,R,*b'); % Display experimental (given) points with asterisk and smoothed data with blue line
grid; title('R (Ohms) vs T (deg Celsius, n=1'); xlabel('T'); ylabel('R'); hold % Hold current plot so we can add other data
p=polyfit(T,R,1); % Fits a first degree polynomial (straight line since n =1) and returns the coefficients m and b of the straight line equation y = mx + b
a=0: 10: 100; % Define range to plot the polynomial
q=polyval(p,a); % Compute p for each value of a
plot(a,q) % Plot the polynomial
% Display the coefficients m and b
fprintf('
') % Insert line
disp('Coefficients m and b are:'); fprintf('
'); disp(p);
format bank % Two decimal place display will be sufficient
disp('Smoothed R values evaluated from straight line are:');
R_smoothed=polyval(p,T) % Compute and display the values of the fitted polynomial at same points as given
% (experimental) values of R
R_exper = R % Display the experimental values of R for comparison
% The statement below computes the percent error between % the fitted polynomial and the experimental data
disp('Percent Error at points of given values is:') % The percent error is computed with the following statement
e=error=(R_smoothed-R_exper).*100./R_exper
format short % Return to default format
```
The plot for the data of this example is shown in Figure 8.9.

MATLAB also displays the following data:

**Coefficients m and b are:**

```
0.2881 28.1227
```

**Smoothed R values evaluated from straight line are:**

```
R_smoothed =
 Columns 1 through 5
 28.12 31.00 33.88 36.77 39.65
 Columns 6 through 10
 42.53 45.41 48.29 51.17 54.05
 Column 11
 56.93

R_exper =
 Columns 1 through 5
 27.60 31.00 34.00 37.00 40.00
 Columns 6 through 10
 42.60 45.50 48.30 51.10 54.00
 Column 11
 56.70
```

% Error at points of given values is:
error =
Columns 1 through 5
  1.89   0.01  -0.34  -0.63  -0.88
Columns 6 through 10
 -0.17  -0.20  -0.02   0.14   0.09
Column 11
   0.41

We can make the displayed data more presentable by displaying the values in four columns. The following MATLAB code will do that and will display the error in absolute values.

```matlab
T= [0 10 20 30 40 50 60 70 80 90 100]; % x-axis data
R=[27.6 31.0 34.0 37.0 40.0 42.6 45.5 48.3 51.1 54.0 56.7]; % y-axis data
p=polyfit(T,R,1); R_smoothed=polyval(p,T); R_exper = R;
error=(R_smoothed-R_exper).*100./R_exper;
y=zeros(11,4); % Construct an 11 x 4 matrix of zeros
y(:,1)=T'; % 1st column of matrix
y(:,2)=R_exper'; % 2nd column of matrix
y(:,3)=R_smoothed'; % 3rd column of matrix
y(:,4)=abs(error)'; % 4th column of matrix
fprintf('Temp 	 Exper R	 Smoothed R 	 |Error|
');
fprintf('%3.0f	 %5.4f	 %5.4f	 %5.4f
',y');
```

When this code is executed, MATLAB displays the following where the error is in percent.

| Temp | Exper R | Smoothed R | |Error |
|------|---------|------------|----------------|
| 0    | 27.6000 | 28.1227    | 1.8939          |
| 10   | 31.0000 | 31.0036    | 0.0117          |
| 20   | 34.0000 | 33.8845    | 0.3396          |
| 30   | 37.0000 | 36.7655    | 0.6339          |
| 40   | 40.0000 | 39.6464    | 0.8841          |
| 50   | 42.6000 | 42.5273    | 0.1707          |
| 60   | 45.5000 | 45.4082    | 0.2018          |
| 70   | 48.3000 | 48.2891    | 0.0226          |
| 80   | 51.1000 | 51.1700    | 0.1370          |
| 90   | 54.0000 | 54.0509    | 0.0943          |
| 100  | 56.7000 | 56.9318    | 0.4089          |
8.4 Regression with Power Series Approximations

In cases where the observed data deviate significantly from the points of a straight line, we can draw a smooth curve and compute the coefficients of a power series by approximating the derivatives $di/dv$ with finite differences $\Delta i/\Delta v$. The following example illustrates the procedure.

Example 8.6

The voltages (volts) shown in Table 8.4, were applied across the terminal of a non-linear device, and the current ma (milliamps) values were observed and recorded. Use the power series method to derive a polynomial that best approximates the given data.

<table>
<thead>
<tr>
<th>Volts</th>
<th>0.00</th>
<th>0.25</th>
<th>0.50</th>
<th>0.75</th>
<th>1.00</th>
<th>1.25</th>
<th>1.50</th>
<th>1.75</th>
<th>2.00</th>
<th>2.25</th>
<th>2.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>ma</td>
<td>0.00</td>
<td>0.01</td>
<td>0.03</td>
<td>0.05</td>
<td>0.08</td>
<td>0.11</td>
<td>0.14</td>
<td>0.18</td>
<td>0.23</td>
<td>0.28</td>
<td>0.34</td>
</tr>
<tr>
<td>Volts</td>
<td>2.75</td>
<td>3.00</td>
<td>3.25</td>
<td>3.50</td>
<td>3.75</td>
<td>4.00</td>
<td>4.25</td>
<td>4.50</td>
<td>4.75</td>
<td>5.00</td>
<td></td>
</tr>
<tr>
<td>ma</td>
<td>0.42</td>
<td>0.50</td>
<td>0.60</td>
<td>0.72</td>
<td>0.85</td>
<td>1.00</td>
<td>1.18</td>
<td>1.39</td>
<td>1.63</td>
<td>1.91</td>
<td></td>
</tr>
</tbody>
</table>

Solution:

We start by plotting the given data and we draw a smooth curve as shown in Figure 8.10.

Using the plot of Figure 8.10 we read the voltmeter reading and the corresponding smoothed ma readings and enter the values in Table 8.5.

Next, we compute $\Delta i/\Delta v$ for $i = 1, 2, \ldots 20$

To facilitate the computations, we enter these values in the spreadsheet of Figure 8.11. In cell E4 we enter the formula $(B5-B4)/(A5-A4)$ and we copy it down to E5:E23.

Next, we plot the computed values of $\Delta i/\Delta v$ versus $v$ and again we smooth the data as shown in the spreadsheet of Figure 8.12.

The smoothed values of the plot of Figure 8.12 are shown in Figure 8.13, and from these we compute $\Delta^2 i/\Delta^2 v$. 


Finally, we plot $\Delta^2 i / \Delta^2 v$ versus volts and again we smooth the data as shown in Figure 8.14.
Figure 8.11. Spreadsheet for computation of $\Delta i / \Delta v$ in Example 8.6

Following the same procedure we can find higher order derivatives. However, for this example we will consider only the first three terms of the polynomial whose coefficients $i$, $\Delta i / \Delta v$ and $\Delta i^2 / \Delta v^2$, all three evaluated at $v = 0$ and are read from the plots. Therefore, the polynomial that best fits the given data is

$$i(v) = i(0) + i'(0) + \frac{1}{2!} i''(0) + \ldots = -0.02 + 0.12v + 0.5(-0.08)v^2$$

$$= -0.04v^2 + 0.12v - 0.02$$  \hspace{1cm} (8.16)
Example 8.7

Repeat Example 8.4 using the MATLAB `polyfit(x,y,n)` function. Use \( n = 3 \) to compute the best cubic polynomial approximation.

Solution:

With MATLAB, higher degree polynomial regression is also performed with the `polyfit(x,y,n)` function, where \( n \geq 2 \). In this example we will use \( n = 3 \) as we did with Excel. The MATLAB code below computes the smoothed line and produces the plot shown on Figure 8.15.

![Smoothed \( \Delta i / \Delta v \)](image_url)
### Figure 8.13. Spreadsheet for computation of $\Delta i^2 / \Delta v^2$ in Example 8.6

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volts</td>
<td>$\Delta i/\Delta v$</td>
<td>Smoothed Computed</td>
<td>$\Delta i^2 / \Delta v^2$</td>
<td></td>
</tr>
<tr>
<td>0.00</td>
<td>0.12</td>
<td>$\Delta i^2_1 / \Delta v^2_1 = (0.11-0.12)/(0.25-0.00) = -0.04$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td>0.11</td>
<td>$\Delta i^2_2 / \Delta v^2_2 = (0.10-0.01)/(0.25-0.00) = -0.04$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.50</td>
<td>0.10</td>
<td>...</td>
<td>...</td>
<td>0.00</td>
</tr>
<tr>
<td>0.75</td>
<td>0.10</td>
<td>...</td>
<td>...</td>
<td>0.04</td>
</tr>
<tr>
<td>1.00</td>
<td>0.11</td>
<td>...</td>
<td>...</td>
<td>0.04</td>
</tr>
<tr>
<td>1.25</td>
<td>0.12</td>
<td>...</td>
<td>...</td>
<td>0.08</td>
</tr>
<tr>
<td>1.50</td>
<td>0.14</td>
<td>...</td>
<td>...</td>
<td>0.12</td>
</tr>
<tr>
<td>1.75</td>
<td>0.17</td>
<td>...</td>
<td>...</td>
<td>0.12</td>
</tr>
<tr>
<td>2.00</td>
<td>0.20</td>
<td>...</td>
<td>...</td>
<td>0.16</td>
</tr>
<tr>
<td>2.25</td>
<td>0.24</td>
<td>...</td>
<td>...</td>
<td>0.20</td>
</tr>
<tr>
<td>2.50</td>
<td>0.29</td>
<td>...</td>
<td>...</td>
<td>0.24</td>
</tr>
<tr>
<td>2.75</td>
<td>0.35</td>
<td>...</td>
<td>...</td>
<td>0.24</td>
</tr>
<tr>
<td>3.00</td>
<td>0.41</td>
<td>...</td>
<td>...</td>
<td>0.28</td>
</tr>
<tr>
<td>3.25</td>
<td>0.48</td>
<td>...</td>
<td>...</td>
<td>0.32</td>
</tr>
<tr>
<td>3.50</td>
<td>0.56</td>
<td>...</td>
<td>...</td>
<td>0.32</td>
</tr>
<tr>
<td>3.75</td>
<td>0.64</td>
<td>...</td>
<td>...</td>
<td>0.36</td>
</tr>
<tr>
<td>4.00</td>
<td>0.73</td>
<td>...</td>
<td>...</td>
<td>0.36</td>
</tr>
<tr>
<td>4.25</td>
<td>0.82</td>
<td>...</td>
<td>...</td>
<td>0.40</td>
</tr>
<tr>
<td>4.50</td>
<td>0.92</td>
<td>...</td>
<td>...</td>
<td>0.44</td>
</tr>
<tr>
<td>4.75</td>
<td>1.03</td>
<td>$\Delta i^2_{20} / \Delta v^2_{20} = (1.03-0.92)/(0.25-0.00) = 0.44$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.00</td>
<td>1.03</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

v=[0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4 4.25 4.5 4.75 5]; % x-axis data
ma=[0 0.01 0.03 0.05 0.08 0.11 0.14 0.18 0.23 0.28 0.34 0.42 0.50 0.60 0.72 0.85 1.00 1.18 1.39 1.63 1.91]; % y-axis data
axis([-1 6 -1 2]); % Establishes desired x and y axes limits
plot(v,ma,'+r'); grid % Indicate data points with + and straight line in red
hold % hold current plot so we can add other data
disp('Polynomial coefficients in descending order are: ') %
p=polyfit(v,ma,3) % Fits a third degree polynomial to % the data and returns the coefficients % of the polynomial (cubic equation for % this example since n=3)
a=0:0.25:5; % Define range to plot the polynomial
q=polyval(p,a); % Calculate p at each value of a % continued on the next page
Regression with Power Series Approximations

% plot(a,q); title('milliamps vs volts, n=3');...
xlabel('v'); ylabel('ma')% Plot the polynomial
% Display actual, smoothed and % error values
ma_smooth=polyval(p,v); % Calculate the values of the fitted polynomial
ma_exper = ma;
% The following statement computes the percent error between the
% smoothed polynomial and the experimental (given) data
derror=(ma_smooth-ma_exper).*100./(ma_exper+eps);
%
y=zeros(21,4); % Construct a 21 x 4 matrix of zeros
y(:,1)=v'; % 1st column of matrix
y(:,2)=ma_exper'; % 2nd column of matrix
y(:,3)=ma_smooth'; % 3rd column of matrix
y(:,4)=abs(error)'; % 4th column of matrix
fprintf(' 
'); % Insert line
% continued on the next page

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Computed</td>
<td>Smoothed ∆i² / ∆v²</td>
</tr>
<tr>
<td>2</td>
<td>Volts</td>
<td>∆i² / ∆v²</td>
</tr>
<tr>
<td>3</td>
<td>0.00</td>
<td>-0.04</td>
</tr>
<tr>
<td>4</td>
<td>0.25</td>
<td>-0.04</td>
</tr>
<tr>
<td>5</td>
<td>0.50</td>
<td>0.00</td>
</tr>
<tr>
<td>6</td>
<td>0.75</td>
<td>0.04</td>
</tr>
<tr>
<td>7</td>
<td>1.00</td>
<td>0.04</td>
</tr>
<tr>
<td>8</td>
<td>1.25</td>
<td>0.08</td>
</tr>
<tr>
<td>9</td>
<td>1.50</td>
<td>0.12</td>
</tr>
<tr>
<td>10</td>
<td>1.75</td>
<td>0.12</td>
</tr>
<tr>
<td>11</td>
<td>2.00</td>
<td>0.16</td>
</tr>
<tr>
<td>12</td>
<td>2.25</td>
<td>0.20</td>
</tr>
<tr>
<td>13</td>
<td>2.50</td>
<td>0.24</td>
</tr>
<tr>
<td>14</td>
<td>2.75</td>
<td>0.24</td>
</tr>
<tr>
<td>15</td>
<td>3.00</td>
<td>0.28</td>
</tr>
<tr>
<td>16</td>
<td>3.25</td>
<td>0.32</td>
</tr>
<tr>
<td>17</td>
<td>3.50</td>
<td>0.32</td>
</tr>
<tr>
<td>18</td>
<td>3.75</td>
<td>0.36</td>
</tr>
<tr>
<td>19</td>
<td>4.00</td>
<td>0.36</td>
</tr>
<tr>
<td>20</td>
<td>4.25</td>
<td>0.40</td>
</tr>
<tr>
<td>21</td>
<td>4.50</td>
<td>0.44</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

From this plot, (∆i² / ∆v²) | v=0 = i''(0) = -0.08
MATLAB computes and displays the following data.

**Polynomial coefficients in descending order are:**

\[
p = 0.0182 \quad -0.0403 \quad 0.1275 \quad -0.0177
\]

| volts | Exper ma | Smoothed ma | |\%Error| |
|-------|----------|-------------|-----------------|
| 0.00  | 0.00000  | -0.01766    | 7955257388080461.00000 |
| 0.25  | 0.01000  | 0.01197     | 19.74402        |
| 0.50  | 0.03000  | 0.03828     | 27.61614        |
| 0.75  | 0.05000  | 0.06298     | 25.95052        |
| 1.00  | 0.08000  | 0.08775     | 9.69226         |
| 1.25  | 0.11000  | 0.11433     | 3.93513         |
| 1.50  | 0.14000  | 0.14441     | 3.14852         |
| 1.75  | 0.18000  | 0.17970     | 0.16677         |
| 2.00  | 0.23000  | 0.22191     | 3.51632         |
| 2.25  | 0.28000  | 0.27275     | 2.58785         |
| 2.50  | 0.34000  | 0.33393     | 1.78451         |
| 2.75  | 0.42000  | 0.40716     | 3.05797         |
| 3.00  | 0.50000  | 0.49413     | 1.17324         |
| 3.25  | 0.60000  | 0.59657     | 0.57123         |
Regression with Power Series Approximations

We will conclude this chapter with one more example to illustrate the uses of the MATLAB\texttt{polyfit(x,y,n)} and \texttt{polyval(p,x)} functions.

\textbf{Example 8.8}

Use MATLAB to
\begin{enumerate}
\item[a.] plot the function \( y = \frac{\sin x}{x} \) in the interval \( 0 \leq x \leq 16 \) radians.
\item[b.] compute \( y(0) , y(2) , y(4) , y(6) , y(8) , y(10) , y(12) , y(14) , y(16) \)
\item[c.] plot \( y \) versus \( x \) for these values and use the MATLAB \texttt{polyfit(x,y,n)} and \texttt{polyval(p,x)} functions to find a suitable polynomial that best fits the \( x \) and \( y \) data.
\end{enumerate}

\textbf{Solution:}
\begin{enumerate}
\item[a.] The \texttt{fplot} function below plots \( y = \frac{\sin x}{x} \). We added \texttt{eps} to avoid division by zero.
\begin{verbatim}
fplot('sin(x)./(x+eps)',[0 16 -0.5 2]); grid;...
title('(sinx)/x curve for x > 0')
\end{verbatim}
The plot for the function of (8.17) is shown in Figure 8.16.
\item[b.] We use the code below to evaluate \( y \) at the specified points.
\begin{verbatim}
x=0:2:16; y=sin(x)./(x+eps)
\end{verbatim}
\begin{verbatim}
Y =
0 0.4546 -0.1892 -0.0466 0.1237 -0.0544 -0.0447 0.0708 -0.0180
\end{verbatim}
\item[c.] The code for finding a suitable polynomial is listed below.
\begin{verbatim}
x=[0 2 4 6 8 10 12 14 16];
y=[1 0.4546 -0.1892 -0.0466 0.1237 -0.0544 -0.0447 0.0708 -0.0180];
p5=polyfit(x,y,5); % Fits the polynomial to the data
p7=polyfit(x,y,7);  % of x and y with fifth, seventh,
p9=polyfit(x,y,9); % and ninth degree polynomials
% continued on the next page
\end{verbatim}
x_span=0:0.1:16; % Specifies values for x-axis
p5_pol=polyval(p5,x_span); % Compute the polynomials for this range of x values.
p7_pol=polyval(p7,x_span); p9_pol=polyval(p9,x_span);
plot(x_span,p5_pol,'--',x_span,p7_pol,'-.',x_span,p9_pol,'-',x,y,'*');

% The following two statements establish coordinates for three legends
% in x and y directions to indicate degree of polynomials
x_ref=[2 5.3]; y_ref=[1.3,1.3];
hold on;

% The following are line legends for each curve
plot(x_ref,y_ref,'--',x_ref,y_ref-0.2,'-.',x_ref,y_ref-0.4,'-');
% The following are text legends for each curve
text(5.5,1.3,'5th degree polynomial');
text(5.5,1.1,'7th degree polynomial');
text(5.5,0.9,'9th degree polynomial'); grid;
hold off

format short e % Exponential short format
disp('The coefficients of 5th order polynomial in descending order are:')
p5_coef=polyfit(x,y,5)
disp('The coefficients of 7th order polynomial in descending order are:')
p7_coef=polyfit(x,y,7)
disp('The coefficients of 9th order polynomial in descending order are:')
p9_coef=polyfit(x,y,9)
format short % We could just type format only since it is the default

The 5th, 7th, and 9th order polynomials are shown in Figure 8.17.
The coefficients of the 5th, 7th, and 9th order polynomials are shown below.

The coefficients of 5th order polynomial in descending order are:

\[
p5\text{\_coef} =
\begin{bmatrix}
6.5865e-006 & -1.4318e-004 & -1.5825e-003 \\
6.0067e-002 & -4.6529e-001 & 1.0293e+000
\end{bmatrix}
\]

The coefficients of 7th order polynomial in descending order are:

\[
p7\text{\_coef} =
\begin{bmatrix}
2.6483e-006 & -1.6672e-004 & 4.1644e-003 \\
-5.2092e-002 & 3.3560e-001 & -9.9165e-001 \\
7.2508e-001 & 9.9965e-001
\end{bmatrix}
\]

The coefficients of 9th order polynomial in descending order are:

\[
p9\text{\_coef} =
\begin{bmatrix}
-1.0444e-008 & 1.1923e-006 & -4.8340e-005 \\
9.5032e-004 & -9.7650e-003 & 4.9437e-002 \\
-8.4572e-002 & -1.0057e-001 & 0 & 1.0000e+000
\end{bmatrix}
\]
8.5 Summary

- **Curve fitting** is the process of finding equations to approximate straight lines and curves that best fit given sets of data.

- **Regression** is the process of finding the dependent variable $y$ from some data of the independent variable $x$. Regression can be linear (straight line) or curved (quadratic, cubic, etc.)

- The best fitting straight line or curve has the property that $d_1^2 + d_2^2 + \ldots + d_j^2 = \text{minimum}$ and it is referred to as the least-squares curve. A straight line that satisfies this property is called a least squares line. If it is a parabola, we call it a least-squares parabola.

- We perform linear regression with the **method of least squares**. With this method, we compute the coefficients $m$ (slope) and $b$ (y-intercept) of the straight line equation $y = mx + b$ such that the sum of the squares of the errors will be minimum. The values of $m$ and $b$ can be found from the relations

\[
(\Sigma x^2)m + (\Sigma x)b = \Sigma xy \\
(\Sigma x)m + nb = \Sigma y
\]

where

$\Sigma x = \text{sum of the numbers } x$, $\Sigma y = \text{sum of the numbers } y$ \\
$\Sigma xy = \text{sum of the numbers of the product } xy$, $\Sigma x^2 = \text{sum of the numbers } x$ squared \\
$n = \text{number of data } x$

The values of $m$ and $b$ are computed from

\[
m = \frac{D_1}{\Delta} \quad b = \frac{D_2}{\Delta}
\]

where

\[
\Delta = \begin{vmatrix} \Sigma x^2 & \Sigma x \\ \Sigma x & n \end{vmatrix} \quad D_1 = \begin{vmatrix} \Sigma xy & \Sigma x \\ \Sigma y & n \end{vmatrix} \quad D_2 = \begin{vmatrix} \Sigma x^2 & \Sigma xy \\ \Sigma x & \Sigma y \end{vmatrix}
\]

- We find the **least-squares parabola** that fits a set of sample points with $y = ax^2 + b + c$ where the coefficients $a$, $b$, and $c$ are found from

\[
(\Sigma x^2)a + (\Sigma x)b + nc = \Sigma y \\
(\Sigma x^3)a + (\Sigma x^2)b + (\Sigma x)c = \Sigma xy \\
(\Sigma x^4)a + (\Sigma x^3)b + (\Sigma x^2)c = \Sigma x^2y
\]

where $n = \text{number of data points}$. 
• With MATLAB, regression is performed with the `polyfit(x,y,n)` command, where \( x \) and \( y \) are the coordinates of the data points, and \( n \) is the degree of the polynomial. Thus, if \( n = 1 \), MATLAB computes the best straight line approximation, that is, linear regression, and returns the coefficients \( m \) and \( b \). If \( n = 2 \), it computes the best quadratic polynomial approximation and returns the coefficients of this polynomial. Likewise, if \( n = 3 \), it computes the best cubic polynomial approximation, and so on.

• In cases where the observed data deviate significantly from the points of a straight line, we can draw a smooth curve and compute the coefficients of a power series by approximating the derivatives \( \frac{dy}{dx} \) with finite differences \( \Delta y / \Delta x \).
8.6 Exercises

1. Consider the system of equations below derived from some experimental data.

\[
\begin{align*}
2x + y &= -1 \\
x - 3y &= -4 \\
x + 4y &= 3 \\
3x - 2y &= -6 \\
-x + 2y &= 3 \\
x + 3y &= 2
\end{align*}
\]

Using the relations (8.10) and (8.11), find the values of \(x\) and \(y\) that best fit this system of equations.

2. In a non-linear device, measurements yielded the following sets of values:

<table>
<thead>
<tr>
<th>millivolts</th>
<th>100</th>
<th>120</th>
<th>140</th>
<th>160</th>
<th>180</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>milliamps</td>
<td>0.45</td>
<td>0.55</td>
<td>0.60</td>
<td>0.70</td>
<td>0.80</td>
<td>0.85</td>
</tr>
</tbody>
</table>

Use the procedure of Example 8.1 to compute the straight line equation that best fits the given data.

3. Repeat Exercise 8.2 using Excel’s Trendline feature.

4. Repeat Exercise 8.2 using the MATLAB’s `polyfit(x,y,n)` and `polyval(p,x)` functions.

5. A sales manager wishes to forecast sales for the next three years for a company that has been in business for the past 15 years. The sales during these years are shown on the next page.
Using Excel's Trendline feature, choose an appropriate polynomial to smooth the given data and using the polynomial found, compute the sales for the next three years. You may round the sales to the nearest thousand.

6. Repeat Exercise 8.5 using the MATLAB `polyfit(x,y,n)` and `polyval(p,x)` functions.
### 8.7 Solutions to Exercises

1. We construct the spreadsheet below by entering the given values and computing the values from the formulas given.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Spreadsheet for Exercise 8.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a²</td>
<td>ab</td>
<td>b²</td>
<td>ac</td>
<td>bc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
<td>-1</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>-2</td>
<td>-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>-3</td>
<td>-1</td>
<td>1</td>
<td>-3</td>
<td>9</td>
<td>-4</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>16</td>
<td>3</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>-2</td>
<td>-6</td>
<td>9</td>
<td>-6</td>
<td>4</td>
<td>-18</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>-1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>-2</td>
<td>4</td>
<td>-3</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>9</td>
<td>2</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Σ</td>
<td>7</td>
<td>5</td>
<td>-3</td>
<td>17</td>
<td>-2</td>
<td>43</td>
<td>-22</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Σa²</td>
<td>Σab</td>
<td>17</td>
<td>-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Δ</td>
<td>=</td>
<td>= 727</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Σab</td>
<td>Σb²</td>
<td>-2</td>
<td>43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Σac</td>
<td>Σab</td>
<td>-22</td>
<td>-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>D₁</td>
<td>=</td>
<td>= -852</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Σbc</td>
<td>Σb²</td>
<td>47</td>
<td>43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Σa²</td>
<td>Σac</td>
<td>17</td>
<td>-22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>D₂</td>
<td>=</td>
<td>= 755</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Σab</td>
<td>Σbc</td>
<td>-2</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Thus, \( x = -1.172 \) and \( y = 1.039 \)
2. We construct the spreadsheet below by entering the given values and computing the values from the formulas given.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Spreadsheet for Exercise 8.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>x (mV)</td>
<td>y(mA)</td>
<td>x²</td>
<td>xy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>0.45</td>
<td>10000</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>120</td>
<td>0.55</td>
<td>14400</td>
<td>66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>140</td>
<td>0.60</td>
<td>19600</td>
<td>84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>160</td>
<td>0.70</td>
<td>25600</td>
<td>112</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>180</td>
<td>0.80</td>
<td>32400</td>
<td>144</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>200</td>
<td>0.85</td>
<td>40000</td>
<td>170</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>900</td>
<td>3.95</td>
<td>142000</td>
<td>621</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Σx²</td>
<td>Σx</td>
<td>142000</td>
<td>900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Σx</td>
<td>n</td>
<td>900</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Σxy</td>
<td>Σx</td>
<td>621</td>
<td>900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Σy</td>
<td>n</td>
<td>4.0</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Σx²</td>
<td>Σxy</td>
<td>142000</td>
<td>621</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Σx</td>
<td>Σy</td>
<td>900</td>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Thus, \( y = mx + b = 0.004x + 0.0476 \)
3. Following the procedure of Example 12.2, we get the trendline shown below.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Trendline for Exercise 8.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>x (mV)</td>
<td>y(mA)</td>
<td>x²</td>
<td>xy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>0.45</td>
<td>10000</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>120</td>
<td>0.55</td>
<td>14400</td>
<td>66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>140</td>
<td>0.60</td>
<td>19600</td>
<td>84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>160</td>
<td>0.70</td>
<td>25600</td>
<td>112</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>180</td>
<td>0.80</td>
<td>32400</td>
<td>144</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>200</td>
<td>0.85</td>
<td>40000</td>
<td>170</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>900</td>
<td>3.95</td>
<td>142000</td>
<td>621</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>∑x²</td>
<td>∑x</td>
<td>142000</td>
<td>900</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>∑x</td>
<td>n</td>
<td>900</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>m = D₁ / Δ =</td>
<td>0.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>∑xy</td>
<td>∑x</td>
<td>621</td>
<td>900</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>∑y</td>
<td>n</td>
<td>4.0</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>b = D₂ / Δ =</td>
<td>0.04762</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>∑x²</td>
<td>∑xy</td>
<td>142000</td>
<td>621</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>∑x</td>
<td>∑y</td>
<td>900</td>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.

mv = [100 120 140 160 180 200]; % x-axis data
ma = [0.45 0.55 0.60 0.70 0.80 0.85]; % y-axis data
axis([100 200 0 1]); % Establishes desired x and y axes limits
plot(mv, ma, '*b'); % Display experimental (given) points with asterisk and smoothed data with blue line
grid;
title('ma (milliamps) vs mv (millivolts, n=1)'); % Insert title
xlabel('mv'); ylabel('ma'); % Label axes
hold % Hold current plot so we can add other data
p=polyfit(mv,ma,1); % Fits a first degree polynomial (straight line since n =1) and returns % the coefficients m and b of the straight line equation y = mx + b
a=0: 10: 200; % Define range to plot the polynomial
q=polyval(p,a); % Compute p for each value of a
plot(a,q); % Display the polynomial
% Display the coefficients m and b

Milliamps versus Millivolts

Milliamps

Millivolts

0.40
0.60
0.80
1.00

100 120 140 160 180 200

0.40
0.60
0.80
1.00
fprintf(‘
’) % Insert line
disp(‘Coefficients m and b are:’); fprintf(‘
’); disp(p);
format bank % Two decimal place display will be sufficient
ma_smoothed=polyval(p,mv); % Compute the values of the fitted polynomial at
% same points as given (experimental) values of ma
ma_exper = ma; % Display the experimental values of ma for comparison
% The statement below computes the percent error between
% the fitted polynomial and the experimental data
% disp(‘% Error at points of given values is:’);
% The percent error is computed with the following statement
error=(ma_smoothed-ma_exper).*100./ma_exper;
format short % Return to default format
y=zeros(6,4); % Construct an 6 x 4 matrix of zeros
y(:,1)=mv'; % 1st column of matrix
y(:,2)=ma_exper'; % 2nd column of matrix
y(:,3)=ma_smoothed'; % 3rd column of matrix
y(:,4)=abs(error)'; % 4th column of matrix
fprintf(‘
’); % Insert line
fprintf(‘mv Exper ma Smoothed ma |Error| percent
’)
fprintf(‘
’); % Insert line
fprintf(‘%3.0f %5.4f %5.4f %5.4f
’,y')
fprintf(‘
’); % Insert line

Coefficients m and b are:

0.0041 0.0476

mv Exper ma Smoothed ma |Error| percent
100 0.4500 0.4548 1.0582
120 0.5500 0.5362 2.5108
140 0.6000 0.6176 2.9365
160 0.7000 0.6990 0.1361
180 0.8000 0.7805 2.4405
200 0.8500 0.8619 1.4006
5. Following the procedure of Example 8.4, we choose Polynomial 4 and we get the trendline shown below.

The sales for the next 3 years are from the equation above produced by Excel.

\[
y_{16} = -17797x^4 + 436354x^3 - 2 \times 10^6x^2 + 10^7x - 2 \times 10^6 \bigg|_{x=16} = 266961792 \\
y_{17} = -17797x^4 + 436354x^3 - 2 \times 10^6x^2 + 10^7x - 2 \times 10^6 \bigg|_{x=17} = 247383965 \\
y_{18} = -17797x^4 + 436354x^3 - 2 \times 10^6x^2 + 10^7x - 2 \times 10^6 \bigg|_{x=18} = 206558656
\]

These results indicate that non-linear interpolation is, in most cases, unreliable. We will compare these values with the results of Exercise 6.
6.

```matlab
year=[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15]; % x-axis data
sales=[9149548 13048745 19147687 28873127 39163784 ... 54545369 72456782 89547216 112642574 130456321 ... 148678983 176453837 207547632 206147352 204456987]; % y-axis data

plot(year,sales,'*b'); % Display experimental (given) points with asterisk and smoothed data with blue line

hold % Hold current plot so we can add other data
grid; title('Yearly Sales vs Years, n=4'); xlabel('Years'); ylabel('Yearly Sales');

p=polyfit(year,sales,4); % Fits a first degree polynomial (n=4) and returns the coefficients of the polynomial

a=linspace(0, 15, 15); % Define range to plot the polynomial
q=polyval(p,a); % Compute p for each value of a

plot(a,q) % Plot the polynomial

fprintf('
') % Insert line
disp('Coefficients are:'); fprintf('
'); disp(p);

sales_smoothed=polyval(p,year); % Compute the values of the fitted polynomial at same points as given (experimental) values of ma

sales_exper = sales; % Display the experimental values of ma for comparison

% The statement below computes the percent error between % the fitted polynomial and the experimental data
% The percent error is computed with the following statement

error=(sales_smoothed-sales_exper).*100./sales_exper;

y=zeros(15,4); % Construct an 15 x 4 matrix of zeros
y(:,1)=year'; % 1st column of matrix
y(:,2)=sales_exper'; % 2nd column of matrix
y(:,3)=sales_smoothed'; % 3rd column of matrix
y(:,4)=abs(error)'; % 4th column of matrix

fprintf('
');
fprintf('| year | Exper sales | Smoothed sales | |Error| percent |
');
fprintf('
');
fprintf('%2.0f | %9.0f | %9.0f | %5.2f |
',y')

Coefficients are:

1.0e+007 *

-0.0018 0.0436 -0.2386 1.1641 -0.2415
```
From the coefficients produced by MATLAB, shown on the previous page, we form the polynomial

\[ y = -1.8 \times 10^4 x^4 + 4.36 \times 10^5 x^3 - 2.386 \times 10^6 x^2 + 1.1641 \times 10^7 x - 2.415 \times 10^6 \]

and from it we find the values of \( y \) (the yearly sales) as follows:

\[ x=16; \ y_{16}=\text{value} \]
\[ x=17; \ y_{17}=\text{value} \]
\[ x=18; \ y_{18}=\text{value} \]
y16, y17, y18

\[
\begin{align*}
y_{16} &= 1.7923 \times 10^8 \\
y_{17} &= 1.4462 \times 10^8 \\
y_{18} &= 8.7243 \times 10^7
\end{align*}
\]

These values vary significantly from those of Exercise 5. As stated above, non-linear interpolation especially for polynomials of fourth degree and higher give inaccurate results. We should remember that the equations produced by both Excel and MATLAB represent the equations that best fit the experimental values. For extrapolation, linear regression gives the best approximations.
Chapter 9
Solution of Differential Equations by Numerical Methods

This chapter is an introduction to several methods that can be used to obtain approximate solutions of differential equations. Such approximations are necessary when no exact solution can be found. The Taylor, Runge-Kutta, Adams’, and Milne’s methods are discussed.

9.1 Taylor Series Method

We recall from Chapter 6 that the Taylor series expansion about point \( a \) is

\[
y_n = f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \ldots + \frac{f^{(n)}(a)}{n!}(x-a)^n \tag{9.1}
\]

Now, if \( x_1 > a \) is a value close to \( a \), we can find the approximate value \( y_1 \) of \( f(x_1) \) by using the first \( k+1 \) terms in the Taylor expansion of \( f(x_1) \) about \( x = a \). Letting \( h_1 = x - a \) in (9.1), we get:

\[
y_1 = y_0 + y'_0 h_1 + \frac{1}{2!} y''_0 h_1^2 + \frac{1}{3!} y'''_0 h_1^3 + \frac{1}{4!} y^{(4)}_0 h_1^4 + \ldots \tag{9.2}
\]

Obviously, to minimize the error \( f(x_1) - y_1 \) we need to keep \( h_1 \) sufficiently small.

For another value \( x_2 > x_1 \), close to \( x_1 \), we repeat the procedure with \( h_2 = x_2 - x_1 \); then,

\[
y_2 = y_1 + y'_1 h_2 + \frac{1}{2!} y''_1 h_2^2 + \frac{1}{3!} y'''_1 h_2^3 + \frac{1}{4!} y^{(4)}_1 h_2^4 + \ldots \tag{9.3}
\]

In general,

\[
y_{i+1} = y_i + y'_i h_{i+1} + \frac{1}{2!} y''_i h_{i+1}^2 + \frac{1}{3!} y'''_i h_{i+1}^3 + \frac{1}{4!} y^{(4)}_i h_{i+1}^4 + \ldots \tag{9.4}
\]

Example 9.1

Use the Taylor series method to obtain a solution of

\[
y'' = -xy \tag{9.5}
\]

correct to four decimal places for values \( x_0 = 0.0, \ x_1 = 0.1, \ x_2 = 0.2, \ x_3 = 0.3, \ x_4 = 0.4, \) and \( x_5 = 0.5 \) with the initial condition \( y(0) = 1 \).
Solution:

For this example,

\[
h = x_i - x_0 = 0.1 - 0.0 = 0.1
\]

and by substitution into (9.4),

\[
y_{i+1} = y_i + 0.1y'_i + 0.005y''_i + 0.000167y'''_i + 0.000004y^{(4)}_i
\]

for \( i = 0, 1, 2, 3, \) and \( 4. \)

The first through the fourth derivatives of (9.5) are:

\[
\begin{align*}
y' &= -xy \\
y'' &= -xy' - y = x(-xy) - y = (x^2 - 1)y \\
y''' &= (x^2 - 1)y' + 2xy = (x^2 - 1)(-xy)2xy = (-x^3 + 3x)y \\
y^{(4)} &= (-x^3 + 3x)(-xy) + (-3x^2 + 3)y = (x^4 - 6x^2 + 3)y
\end{align*}
\]

We use the subscript \( i \) to express them as

\[
\begin{align*}
y'_i &= -x_i y'_i \\
y''_i &= (x_i^2 - 1)y'_i \\
y'''_i &= (-x_i^3 + 3x_i)y_i \\
y^{(4)}_i &= (x_i^4 - 6x_i^2 + 3)y_i
\end{align*}
\]

where \( x_i \) represents \( x_0 = 0.0, x_1 = 0.1, x_2 = 0.2, x_3 = 0.3, \) and \( x_4 = 0.4. \)

Using the values of the coefficients of \( y_i \) in (9.8), we construct the spreadsheet of Figure 9.1.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td><strong>Differential Equation is</strong> ( y' = -xy )</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td><strong>Numerical solution by Taylor method follows</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>( x_i )</td>
<td>( x_i^2 )</td>
<td>( x_i^3 )</td>
<td>( x_i^4 )</td>
<td>-( x_i )</td>
<td>( x_i^{2-1} )</td>
<td>-( x_i^3 + 3x_i )</td>
<td>( x_i^4 - 6x_i^2 + 3 )</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.0</td>
<td>0.00</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0</td>
<td>-1.00</td>
<td>0.000</td>
<td>3.0000</td>
</tr>
<tr>
<td>7</td>
<td>0.1</td>
<td>0.01</td>
<td>0.0010</td>
<td>0.0001</td>
<td>-0.1</td>
<td>-0.99</td>
<td>0.299</td>
<td>2.9401</td>
</tr>
<tr>
<td>8</td>
<td>0.2</td>
<td>0.04</td>
<td>0.0080</td>
<td>0.0016</td>
<td>-0.2</td>
<td>-0.96</td>
<td>0.592</td>
<td>2.7616</td>
</tr>
<tr>
<td>9</td>
<td>0.3</td>
<td>0.09</td>
<td>0.0270</td>
<td>0.0081</td>
<td>-0.3</td>
<td>-0.91</td>
<td>0.873</td>
<td>2.4681</td>
</tr>
<tr>
<td>10</td>
<td>0.4</td>
<td>0.16</td>
<td>0.0640</td>
<td>0.0256</td>
<td>-0.4</td>
<td>-0.84</td>
<td>1.136</td>
<td>2.0656</td>
</tr>
</tbody>
</table>

*Figure 9.1. Spreadsheet for Example 9.1*
The values in E6:E10, F6:F10, G6:G10, and H6:H10 of the spreadsheet of Figure 9.1, are now substituted into (9.8), and we obtain the following relations:

\[
\begin{align*}
y_0' &= -x_0 y_0 = -0 y_0 = 0 \\
y_1' &= -x_1 y_1 = -0.1 y_1 \\
y_2' &= -x_2 y_2 = -0.2 y_1 \\
y_3' &= -x_3 y_3 = -0.3 y_1 \\
y_4' &= -x_4 y_4 = -0.4 y_1 \\
y_0'' &= (x_0^2 - 1) y_0 = -y_0 \\
y_1'' &= (x_1^2 - 1) y_1 = -0.99 y_1 \\
y_2'' &= (x_2^2 - 1) y_2 = -0.96 y_2 \\
y_3'' &= (x_3^2 - 1) y_3 = -0.91 y_3 \\
y_4'' &= (x_4^2 - 1) y_4 = -0.84 y_1 \\
y_0''' &= (-x_0^3 + 3x_0) y_0 = 0 \\
y_1''' &= (-x_1^3 + 3x_1) y_1 = 0.299 y_1 \\
y_2''' &= (-x_2^3 + 3x_2) y_2 = 0.592 y_2 \\
y_3''' &= (-x_3^3 + 3x_3) y_3 = 0.873 y_3 \\
y_4''' &= (-x_4^3 + 3x_4) y_4 = 1.136 y_4 \\
y_0^{(4)} &= (x_0^4 - 6x_0^2 + 3) y_0 = 3 y_0 \\
y_1^{(4)} &= (x_1^4 - 6x_1^2 + 3) y_1 = 2.9401 y_1 \\
y_2^{(4)} &= (x_2^4 - 6x_2^2 + 3) y_2 = 2.7616 y_2 \\
y_3^{(4)} &= (x_3^4 - 6x_3^2 + 3) y_3 = 2.4681 y_3 \\
y_4^{(4)} &= (x_4^4 - 6x_4^2 + 3) y_4 = 2.0656 y_4 \\
\end{align*}
\]

By substitution of (9.9) through (9.12) into (9.6), and using the given initial condition \( y_0 = 1 \), we get:
The differential equation \( \frac{dy}{dx} = -xy \) of this example can be solved analytically as follows:

\[
\frac{dy}{y} = -xdx \quad \int \frac{dy}{y} = -\int xdx \quad \ln y = -\frac{1}{2}x^2 + C
\]

and with the initial condition \( y = 1 \) when \( x = 0 \),

\[
\ln 1 = -\frac{1}{2}(0) + C \quad C = 0 \quad \ln y = -\frac{1}{2}x^2
\]

or

\[
y = e^{-x/2}
\]
For $x_5 = 0.5$ (9.18) yields

$$y = e^{-0.125} = 0.8825$$

and we observe that this value is in close agreement with the value of (9.17).

We can verify the analytical solution of Example 9.1 with MATLAB’s `dsolve(s)` function using the following code:

```matlab
syms x y z
z = dsolve('Dy = -x*y', 'y(0)=1', 'x')
```

$$z = \exp(-1/2*x^2)$$

The procedure used in this example, can be extended to apply to a second order differential equation

$$y'' = f(x, y, y')$$  \hspace{1cm} (9.19)

In this case, we need to apply the additional formula

$$y'_{i+1} = y_i' + y_i''h + \frac{f}{2!}y_i''\ h^2 + \frac{f}{3!}y_i^{(4)}h^3 + \ldots$$  \hspace{1cm} (9.20)

### 9.2 Runge-Kutta Method

The Runge-Kutta method is the most widely used method of solving differential equations with numerical methods. It differs from the Taylor series method in that we use values of the first derivative of $f(x, y)$ at several points instead of the values of successive derivatives at a single point.

For a Runge-Kutta method of order 2, the following formulas are applicable.

$$
\begin{align*}
k_1 &= hf(x_n, y_n) \\
k_2 &= hf(x_n + h, y_n + h) \\
y_{n+1} &= y_n + \frac{1}{2}(k_1 + k_2)
\end{align*}
\hspace{1cm} (9.21)
$$

When higher accuracy is desired, we can use order 3 or order 4. The applicable formulas are as follows:
Example 9.2

Compute the approximate value of $y$ at $x = 0.2$ from the solution $y(x)$ of the differential equation

$$y' = x + y^2$$

(9.24)

given the initial condition $y(0) = 1$. Use order 2, 3, and 4 Runge-Kutta methods with $h = 0.2$.

Solution:

a. For order 2, we use (9.21). Since we are given that $y(0) = 1$, we start with $x = 0$, and $y = 1$.

Then,

$$k_1 = hf(x_n, y_n) = 0.2(0 + 1^2) = 0.2$$

$$k_2 = hf(x_n + h, y_n + h) = 0.2[0 + 0.2 + (1 + 0.2^2)] = 0.328$$

and

$$y_1 = y_0 + \frac{1}{2}(k_1 + k_2) = 1 + \frac{1}{2}(0.2 + 0.328) = 1.264$$

(9.25)
b. For order 3, we use (9.22). Then,

\[ l_1 = hf(x_n, y_n) = k_1 = 0.2 \]

\[ l_2 = hf\left(x_n + \frac{h}{2}, y_n + \frac{l_1}{2}\right) = 0.2\left[\left(0 + \frac{1}{2} \cdot 0.2\right) + \left(1 + \frac{1}{2} \cdot 0.2\right)^2\right] = 0.262 \] (9.26)

\[ l_3 = hf(x_n + h, y_n + 2l_2 - l_1) = 0.2\left[(0 + 0.2) + (1 + 2 \times 0.262 - 0.2)^2\right] = 0.391 \]

and

\[ y_1 = y_0 + \frac{l_1}{6} (l_1 + 4l_2 + l_3) = 1 + \frac{l_1}{6} (0.2 + 4 \times 0.262 + 0.391) = 1.273 \] (9.27)

c. For order 4, we use (9.23). Then,

\[ m_1 = hf(x_n, y_n) = l_1 = k_1 = 0.2 \]

\[ m_2 = hf\left(x_n + \frac{h}{2}, y_n + \frac{m_1}{2}\right) = l_2 = 0.262 \] (9.28)

\[ m_3 = hf\left(x_n + h, y_n + \frac{m_2}{2}\right) = 0.2\left[0 + \frac{0.2}{2} + \left(1 + \frac{0.262}{2}\right)^2\right] = 0.276 \]

\[ m_4 = hf(x_n + h, y_n + m_3) = 0.2[0 + 0.2 + (1 + 0.276)^2] = 0.366 \]

and

\[ y_1 = y_0 + \frac{m_1}{6} (m_1 + 2m_2 + 2m_3 + m_4) \]

\[ = 1 + \frac{m_1}{6} (0.2 + 2 \times 0.262 + 2 \times 0.276 + 0.366) = 1.274 \] (9.29)

The Runge-Kutta method can also be used for second order differential equations of the form

\[ y'' = f(x, y, y') \] (9.30)

For second order differential equations, the pair of 3rd-order formulas* are:

* Second and fourth order formulas can also be used, but these will not be discussed in this text. They can be found in differential equations and advanced mathematics texts.
Example 9.3

Given the 2nd order non-linear differential equation

\[ y'' - 2y^3 = 0 \]  

(9.32)

with the initial conditions \( y(0) = 1, \ y'(0) = -1 \), compute the approximate values of \( y \) and \( y' \) at \( x = 0.2 \). Use \( h = 0.2 \).

Solution:

We are given the values of \( x_0 = 0, \ y_0 = 0, \ y'_0 = -1 \) and we are seeking the values of \( y_1 \) and \( y'_1 \) at \( x_1 = 0.2 \). We will use \( h = x_1 - x_0 = 0.2 \).

We rewrite the given equation as

\[ y'' = 2y^3 = 0 \cdot x + 2y^3 \]  

(9.33)

and using (9.31) we get:
By substitution into the last two formulas of (9.31), we get:

\[
l_1 = hy'_0 = 0.2(-1) = -0.2
\]

\[
l'_1 = hf(x_0, y'_0, y'_0) = 0.2(0 + 2 \times 1^3 + 0) = 0.4
\]

\[
l_2 = h \left(y'_0 + \frac{l'_1}{2}\right) = 0.2 \left(-1 + \frac{0.4}{2}\right) = -0.16
\]

\[
l_2' = hf \left(x_0 + \frac{h}{2}, y_0 + \frac{l_1}{2}, y'_0 + \frac{l'_1}{2}\right) = 0.2 \left[0 + 2 \left(1 + \frac{-0.2}{2}\right)^3 + 0\right] = 0.2 \cdot 2(1 - 0.1) = 0.2 \cdot 1.458 = 0.2916
\]

\[
l_3 = h \left(y'_0 + 2l'_2 - l'_1\right) = 0.2 \left(-1 + 2 \times 0.2916 - 0.4\right) = -0.1634
\]

\[
l'_3 = hf \left(x_0 + h, y_0 + 2l_2 - l_1, y'_0 + 2l'_2 - l'_1\right) = 0.2 \cdot 0 + 2 \cdot 2(-0.16) - (-0.2)^3 + 0\}
\]

\[
= 0.2 \cdot 2(1 - 0.32 + 0.2)^3 = 0.2 \cdot 2(0.88)^3 = 0.2726
\]

By substitution into the last two formulas of (9.31), we get:

\[
y_1 = y_0 + \frac{l_1 + 4l_2 + l_3}{6} = 1 + \frac{l_1 + 4l_2 + l_3}{6}(-0.2 + 4(0.16) - 0.1634) = 0.8328
\]

\[
y'_1 = y'_0 + \frac{l'_1 + 4l'_2 + l'_3}{6} = -1 + \frac{l'_1 + 4l'_2 + l'_3}{6}(0.4 + 4(0.2916) + 0.2726) = -0.6935
\]

MATLAB has two functions for computing numerical solutions of Ordinary Differential Equations (ODE). The first, \texttt{ode23}, uses second and third-order Runge-Kutta methods. The second, \texttt{ode45}, uses fourth and fifth-order Runge-Kutta methods. Both have the same syntax; therefore, we will use the \texttt{ode23} function in our subsequent discussion.

The syntax for \texttt{ode23} is \texttt{ode23('f',tspan,y0)}. The first argument, \texttt{f}, in single quotation marks, is the name of the user defined MATLAB function. The second, \texttt{tspan}, defines the desired time span of the interval over which we want to evaluate the function \(y = f(x)\). The third argument, \texttt{y0}, represents the initial condition or boundary point that is needed to determine a unique solution. This function produces two outputs, a set of \(x\) values and the corresponding set of \(y\) values that represent points of the function \(y = f(x)\).

**Example 9.4**

Use the MATLAB \texttt{ode23} function to find the analytical solution of the second order nonlinear equation

\[
y'' - 2y^3 = 0
\]

\[
(9.36)
\]
with the initial conditions \( y(0) = 1 \) and \( y'(0) = -1 \). Then, plot the numerical solution using the function `ode23` for the `tspan` interval \( 0 \leq x \leq 1 \). Compare values with those of Example 9.3, at points \( y(0.2) \) and \( y'(0.2) \).

**Solution:**

If we attempt to find the analytical solution with the following MATLAB code

```matlab
syms x y
y=dsolve('D2y=2*y^3,y(0)=1,Dy(0)=-1','x')
```

MATLAB displays the following message:

`Warning: Explicit solution could not be found.`

This warning indicates that MATLAB could not find a closed-form solution for this non-linear differential equation. This is because, in general, non-linear differential equations cannot be solved analytically, although few methods are available for special cases. These can be found in differential equations textbooks.

The numerical solution for this non-linear differential equation is obtained and plotted with the following code, by first writing a user defined m-file which we denote as `fex9_4.m`. The code is shown below.

```matlab
function d2y=fex9_4(x,y);
d2y=[y(2);2*y(1)^3]; % Output must be a column
```

This file is saved as `fex9_4.m`. Next, we write and execute the code below to obtain the plots for \( y \) and \( y' \).

```matlab
tspan=[0 1]; % Interval over which we want to evaluate y=f(x)
y0=[1;-1]; % Given initial conditions
[x,y]=ode23('fex9_4', tspan, y0); % Use 2nd and 3rd Order Runge-Kutta
% Plot numeric values with the statements below
plot(x, y(:,1), '+r-', x, y(:,2), 'Ob--')
title('Numerical Solution for Differential Equation of Example 9.4'),...
xlabel('x'), ylabel('y (upper curve), yprime (lower curve)'), grid
```

The plots for \( y \) and \( y' \) are shown in Figure 9.2. We observe that the values at points \( y(0.2) \) and \( y'(0.2) \), compare favorably with those that we found in Example 9.3.
Example 9.5

Use MATLAB to find the analytical solution of

\[ x^2 y'' - xy' - 3y = x^2 \ln x \]  \hspace{1cm} (9.37)

with the initial conditions \( y(1) = -1 \) and \( y'(1) = 0 \). Then, compute and plot the numerical solution using the command \texttt{ode23} along with points of the analytical solution, to verify the accuracy of the numerical solution.

Solution:

The analytical solution of (9.37) with the given initial conditions is found with MATLAB as follows:

```matlab
syms x y
y = dsolve('x^2*D2y - x*Dy - 3*y = x^2*ln(x)', Dy(1) = 0, y(1) = -1, 'x')
```

\[
y = \frac{1}{9} \left( -\frac{3}{2} \ln x - 2x^3 - 7 \right) / x
\]

\[
y = \frac{(-1/3 \log (x) - 1/3) x^2 - 7/9}{x}
\]

```
pretty(y)
```

\[
\frac{x^2}{(- 1/3 \log (x) - 2/9) x - 7/9} 1/x
\]

and therefore, the analytical solution of (9.37) is
Next, we create and save a user defined m-file, `fex9_5`.

```matlab
function d2y = fex9_5(x, y); % Produces the derivatives of Example 9.5
% x^2*y'' - x*y' - 3*y = x^2*log(x) where y''=2nd der, y'=1st der, logx=lnx
% we let y(1) = y and y(2)=y', then y(1)'=y(2)
% and y(2)'=y(2)/x^2+3*y(1)/x^2+log(x)
% d2y=[y(2); y(2)/x^2+3*y(1)/x^2+log(x)]; % output must be a column
```

The following MATLAB code computes and plots the numerical solution values for the interval $1 \leq x \leq 4$ and compares these with the actual values obtained from the analytical solutions.

```matlab
tspan=[1 4]; % Interval over which we want to evaluate y=f(x)
y0=[-1;0]; % Given initial conditions
[x,y]=ode23('fex9_5', tspan, y0); % Use 2nd and 3rd Order Runge-Kutta

% analytic solution of the 2nd order differential equation of (9.38)
anal_y=((−1./3).*log(x)-2./9).*x.^2-7./(9.*x); % This is the...
% analytic solution of the 2nd order differential equation of (9.38)
anal_yprime=((−2./3).*log(x)-7./9).*x+7./(9.*x.^2); % This is the first derivative of (9.38)

% Plot numeric and analytic values with the statements below
plot(x, y(:,1), '+', x, anal_y, '-', x, y(:,2), 'O', x, anal_yprime, '-'),
 title('Numeric and Analytic Solutions of Differential Equation of Example 9.5'),
 xlabel('x'), ylabel('y (line with +), yprime (line with O)'), grid
```

The numeric and analytical solutions are shown in Figure 9.3.
9.3 Adams’ Method

In this method, the step from \( y_n \) to \( y_{n+1} \) is performed by a formula expressed in terms of differences of \( f(x, y) \).

Adams’ method uses the formula

\[
y_{n+1} = y_n + h \left[ f_n + \frac{1}{2} \Delta f_n + \frac{5}{12} \Delta^2 f_n + \frac{3}{8} \Delta^3 f_n + \ldots \right]
\]  (9.39)

where

\[
h = x_{n+1} - x_n \\
f_n = (x_n, y_n) \\
\Delta f_n = f_n - f_{n-1} \\
\Delta^2 f_n = \Delta f_n - \Delta f_{n-1}
\]

and so on.

Obviously, to form a table of differences, it is necessary to have several (4 or more) approximate values of \( y(x) \) in addition to the given initial condition \( y(0) \). These values can be found by other methods such as the Taylor series or Runge-Kutta methods.

Example 9.6

Given the differential equation

\[
y' = 2y + x
\]  (9.40)

with the initial condition \( y(0) = 1 \),

compute the approximate values of \( y \) for \( x = 0.1, 0.2, 0.3, 0.4 \) and \( 0.5 \) by the third-order Runge-Kutta method. Then, find the value of \( y \) corresponding to \( x = 0.6 \) correct to three decimal places using Adams’ method.

Solution:

The spreadsheet of Figure 9.4 shows the results of the computations of \( y_1, y_2, y_3, y_4, \) and \( y_5 \) using the third-order Runge-Kutta method as in Example 9.2.

Next, we compute the following values to be used in Adams’ formula of (9.39). These are shown below.
As with the other methods, Adams’ method can also be applied to second order differential equations of the form \( y'' = f(x, y, y') \) with initial conditions \( y(x_0) = y_0 \) and \( y'(x_0) = y'_0 \).
Adams' Method

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>Differential Equation ( y' = x + 2y )</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Numerical solution by Runge-Kutta method follows</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>( h )</td>
<td>( x(1)-x(0) )</td>
<td>0.1000</td>
<td>( x_0 )</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>( x(0) )</td>
<td>(given)</td>
<td>0.0000</td>
<td>( x_1 )</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>( y(0) )</td>
<td>Initial condition (given)</td>
<td>1.0000</td>
<td>( x_2 )</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>( L(1) )</td>
<td>( h'f(x_n,y_n) )</td>
<td>( h'(0+2^1) )</td>
<td>0.2000</td>
<td>( x_3 )</td>
<td>0.3</td>
</tr>
<tr>
<td>9</td>
<td>( L(2) )</td>
<td>( h'f(x_n+0.5h,y_n+0.5L(1)) )</td>
<td>( h'[0+0.5h]+2'(1+0.5L(1)) )</td>
<td>0.2250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>( L(3) )</td>
<td>( h'f(x_n+h,y_n+2'L(2)-L(1)) )</td>
<td>( h'[(0+h)+2'(1+2'L(2)-L(1))] )</td>
<td>0.2600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>( y(1) )</td>
<td>( y(0) + (L(1) + 4*L(2) + L(3))/6 )</td>
<td></td>
<td>1.2267</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>( h )</td>
<td>( x(2)-x(1) )</td>
<td>0.1000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>( x(0.1) )</td>
<td>Next value ( x(0) + h )</td>
<td>0.1000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>( y(1) )</td>
<td>From previous computation</td>
<td>1.2267</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>( L(1) )</td>
<td>( h'f(x_n,y_n) )</td>
<td>( h'(0+2^1.2267) )</td>
<td>0.2553</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>( L(2) )</td>
<td>( h'f(x_n+0.5h,y_n+0.5L(1)) )</td>
<td>( h'[0+0.5h]+2'(1+0.5L(1)) )</td>
<td>0.2859</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>( L(3) )</td>
<td>( h'f(x_n+h,y_n+2'L(2)-L(1)) )</td>
<td>( h'[(0+h)+2'(1+2'L(2)-L(1))] )</td>
<td>0.3286</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>( y(2) )</td>
<td>( y(1) + (L(1) + 4*L(2) + L(3))/6 )</td>
<td></td>
<td>1.5146</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>( h )</td>
<td>( x(2)-x(1) )</td>
<td>0.1000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>( x(0.2) )</td>
<td>Next value ( x(0) + 2^h )</td>
<td>0.2000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>( y(2) )</td>
<td>From previous computation</td>
<td>1.5146</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>( L(1) )</td>
<td>( h'f(x_n,y_n) )</td>
<td>( h'(0.2+2^1.5146) )</td>
<td>0.3229</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>( L(2) )</td>
<td>( h'f(x_n+0.5h,y_n+0.5L(1)) )</td>
<td>( h'[0+0.5h]+2'(1+0.5L(1)) )</td>
<td>0.3602</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>( L(3) )</td>
<td>( h'f(x_n+h,y_n+2'L(2)-L(1)) )</td>
<td>( h'[(0+h)+2'(1+2'L(2)-L(1))] )</td>
<td>0.4124</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>( y(3) )</td>
<td>( y(2) + (L(1) + 4*L(2) + L(3))/6 )</td>
<td></td>
<td>1.8773</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>( h )</td>
<td>( x(3)-x(2) )</td>
<td>0.1000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>( x(0.3) )</td>
<td>Next value ( x(0) + 3^h )</td>
<td>0.3000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>( y(3) )</td>
<td>From previous computation</td>
<td>1.8773</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>( L(1) )</td>
<td>( h'f(x_n,y_n) )</td>
<td>( h'(0.3+2^1.8773) )</td>
<td>0.4055</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>( L(2) )</td>
<td>( h'f(x_n+0.5h,y_n+0.5L(1)) )</td>
<td>( h'[0+0.5h]+2'(1+0.5L(1)) )</td>
<td>0.4510</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>( L(3) )</td>
<td>( h'f(x_n+h,y_n+2'L(2)-L(1)) )</td>
<td>( h'[(0+h)+2'(1+2'L(2)-L(1))] )</td>
<td>0.5148</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>( y(4) )</td>
<td>( y(2) + (L(1) + 4*L(2) + L(3))/6 )</td>
<td></td>
<td>2.3313</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>( h )</td>
<td>( x(4)-x(3) )</td>
<td>0.1000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>( x(0.4) )</td>
<td>Next value ( x(0) + 4^h )</td>
<td>0.4000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>( y(4) )</td>
<td>From previous computation</td>
<td>2.3313</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>( L(1) )</td>
<td>( h'f(x_n,y_n) )</td>
<td>( h'(0.3+2^1.8773) )</td>
<td>0.5063</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>( L(2) )</td>
<td>( h'f(x_n+0.5h,y_n+0.5L(1)) )</td>
<td>( h'[0+0.5h]+2'(1+0.5L(1)) )</td>
<td>0.5619</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>( L(3) )</td>
<td>( h'f(x_n+h,y_n+2'L(2)-L(1)) )</td>
<td>( h'[(0+h)+2'(1+2'L(2)-L(1))] )</td>
<td>0.6398</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>( y(5) )</td>
<td>( y(2) + (L(1) + 4*L(2) + L(3))/6 )</td>
<td></td>
<td>2.8969</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 9.4. Spreadsheet for Example 9.6
9.4 Milne’s Method

Milne’s method also requires prior knowledge of several values of \( y \). It uses the predictor-corrector pair

\[
y_{n+1} = y_{n-3} + \frac{4}{3}h[2f_n - f_{n-1} + 2f_{n-2}] \quad (9.42)
\]

and

\[
Y_{n+1} = y_{n-1} + \frac{1}{3}h[f_{n+1} + 4f_n + f_{n-1}] \quad (9.43)
\]

The corrector formula of (9.43) serves as a check for the value

\[
y_{n+1} = f(x_{n+1}, y_{n+1}) \quad (9.44)
\]

If \( y_{n+1} \) and \( Y_{n+1} \) in (9.42) and (9.43) respectively, do not differ considerably, we accept \( Y_{n+1} \) as the best approximation. If they differ significantly, we must reduce the interval \( h \).

Example 9.7

Use Milne’s method to find the value of \( y \) corresponding to \( x = 0.6 \) for the differential equation

\[
y' = 2y + x
\]

with the initial condition \( y(0) = 1 \).

Solution:

This is the same differential equation as in Example 9.6 where we found the following values:

<table>
<thead>
<tr>
<th>( n )</th>
<th>( x_n )</th>
<th>( y_n )</th>
<th>( f_n= x_n+2y_n )</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.2</td>
<td>1.5146</td>
<td>3.2292</td>
</tr>
<tr>
<td>3</td>
<td>0.3</td>
<td>1.8773</td>
<td>4.0546</td>
</tr>
<tr>
<td>4</td>
<td>0.4</td>
<td>2.3313</td>
<td>5.0626</td>
</tr>
<tr>
<td>5</td>
<td>0.5</td>
<td>2.8969</td>
<td>6.2938</td>
</tr>
</tbody>
</table>

and using the predictor formula we find

\[
y_6 = y_2 + \frac{4}{3}(0.1)[2f_3 - f_4 + 2f_3]
\]

\[
= 1.5146 + \frac{4}{3} \times 0.1(2 \times 6.2938 - 5.0626 + 2 \times 4.0546) = 3.599
\]
Before we use the corrector formula of (9.43), we must find the value of \( f_6 \); this is found from

\[
f_6 = x_6 + 2y_6
\]

where \( x_6 = 0.6 \), and from Example 9.5 \( y_6 = 3.599 \). Then,

\[
f_6 = x_6 + 2y_6 = 0.6 + 2 \times 3.599 = 7.7984
\]

and

\[
Y_6 = y_4 + \frac{1}{3}0.1(f_6 + 4f_5 + f_4)
\]

\[
= 2.3313 + \frac{1}{3} \times 0.1(7.7984 + 4 \times 6.2938 + 5.0626) = 3.599
\]

We see from (9.46) and (9.47) that the predictor-corrector pair is in very close agreement.

Milne’s method can also be extended to second order differential equations of the form

\[
y'' = f(x,y,y')
\]

with initial conditions \( y(x_0) = y_0 \) and \( y'(x_0) = y'_0 \).

9.5 Summary

- The Taylor series method uses values of successive derivatives at a single point. We can use this series method to obtain approximate solutions of differential equations with the relation

\[
y_{i+1} = y_i + y'_i h + \frac{1}{2!}y''_i h^2 + \frac{1}{3!}y'''_i h^3 + \frac{1}{4!}y^{(4)}_i h^4 + \ldots
\]

provided that \( h \) is sufficiently small such as \( h = 0.1 \).

- The Taylor series method can also be extended to apply to a second order differential equation

\[
y'' = f(x,y,y')
\]

using the relation

\[
y'_{i+1} = y'_i + y''_i h + \frac{1}{2!}y'''_i h^2 + \frac{1}{3!}y^{(4)}_i h^3 + \ldots
\]

- The Runge-Kutta method uses values of the first derivative of \( f(x,y) \) at several points. It is the most widely used method of solving differential equations using numerical methods.

- For a Runge-Kutta method of order 2 we use the relations

\[
k_1 = hf(x_n,y_n) \quad k_2 = hf(x_n + h, y_n + h) \quad y_{n+1} = y_n + \frac{1}{2}(k_1 + k_2)
\]

provided that \( h \) is sufficiently small such as \( h = 0.1 \).
For a Runge-Kutta method of order 3 we use the relations

\[ l_1 = hf(x_n, y_n) = k_1 \]
\[ l_2 = hf(x_n + \frac{h}{2}, y_n + \frac{l_1}{2}) \]
\[ l_3 = hf(x_n + h, y_n + 2l_2 - l_1) \]
\[ y_{n+1} = y_n + \frac{l_1}{6} (l_1 + 4l_2 + l_3) \]

For a Runge-Kutta method of order 4 we use the relations

\[ m_1 = hf(x_n, y_n) = l_1 = k_1 \]
\[ m_2 = hf(x_n + \frac{h}{2}, y_n + \frac{m_1}{2}) = l_2 \]
\[ m_3 = hf(x_n + \frac{h}{2}, y_n + \frac{m_2}{2}) \]
\[ m_4 = hf(x_n + h, y_n + m_3) \]
\[ y_{n+1} = y_n + \frac{l_1}{6} (m_1 + 2m_2 + 2m_3 + m_4) \]

The Runge-Kutta method can also be used for second order differential equations of the form

\[ y'' = f(x, y, y') \]

For second order differential equations, the pair of 3rd-order relations are:

\[ l_1 = hy'_n \]
\[ l'_1 = hf(x_n, y_n, y'_n) \]
\[ l_2 = h \left(y'_n + \frac{l'_1}{2}\right) \]
\[ l'_2 = hf(x_n + \frac{h}{2}, y_n + \frac{l_1}{2}, y'_n + \frac{l'_1}{2}) \]
\[ l_3 = h \left(y'_n + 2l'_2 - l'_1\right) \]
\[ l'_3 = hf(x_n + h, y_n + 2l_2 - l_1, y'_n + 2l'_2 - l'_1) \]
\[ y_{n+1} = y_n + \frac{l_1}{6} (l_1 + 4l_2 + l_3) \]
\[ y'_{n+1} = y'_n + \frac{l_1}{6} (l'_1 + 4l'_2 + l'_3) \]

Second and fourth order formulas can also be used but they were not be discussed in this text. They can be found in differential equations texts.

MATLAB has two functions for computing numerical solutions of Ordinary Differential Equations (ODE). The first, **ode23**, uses second and third-order Runge-Kutta methods. The second, **ode45**, uses fourth and fifth-order Runge-Kutta methods. Both have the same syntax; therefore, we will use the **ode23** function in our subsequent discussion.

The syntax for **ode23** is **ode23**(*f*,*tspan*,*y0**). The first argument, *f*, in single quotation marks, is the name of the user defined MATLAB function. The second, *tspan*, defines the desired time span of the interval over which we want to evaluate the function *y = f(x)*. The third argument, *y0*, represents the initial condition or boundary point that is needed to determine a unique solution. This function produces two outputs, a set of *x* values and the corresponding set of *y* values that represent points of the function *y = f(x)*.
Summary

- Adams’ method provides the transition from \( y_n \) to \( y_{n+1} \) is performed by a formula expressed in terms of differences of \( f(x,y) \). This method uses the formula

\[
y_{n+1} = y_n + h \left[ f_n + \frac{1}{2} \Delta f_n + \frac{5}{12} \Delta^2 f_n + \frac{2}{8} \Delta^3 f_n + \ldots \right]
\]

where

\[
h = x_{n+1} - x_n
\]

\[
f_n = (x_n,y_n)
\]

\[
\Delta f_n = f_n - f_{n-1}
\]

\[
\Delta^2 f_n = \Delta f_n - \Delta f_{n-1}
\]

and so on. To use this method, it is necessary to have several (4 or more) approximate values of \( y(x) \) in addition to the given initial condition \( y(0) \). These values can be found by other methods such as the Taylor series or Runge-Kutta methods.

- Milne’s method also requires prior knowledge of several values of \( y \). It uses the predictor-corrector pair

\[
y_{n+1} = y_{n-3} + \frac{4}{3} h \left[ 2f_n - f_{n-1} + 2f_{n-2} \right]
\]

and

\[
Y_{n+1} = y_{n-1} + \frac{1}{3} h \left[ f_{n+1} + 4f_n + f_{n-1} \right]
\]

where \( y_{n+1} \) is the predictor formula and \( Y_{n+1} \) is the corrector formula. The corrector formula serves as a check for the value

\[
y_{n+1} = f(x_{n+1},y_{n+1})
\]

If \( y_{n+1} \) and \( Y_{n+1} \) do not differ considerably, we accept \( Y_{n+1} \) as the best approximation. If they differ significantly, we must reduce the interval \( h \).

Milne’s method can also be extended to second order differential equations of the form \( y'' = f(x,y,y') \) with initial conditions \( y(x_0) = y_0 \) and \( y'(x_0) = y'_0 \). The procedure for this method was not discussed. It can be found in differential equations texts.
9.6 Exercises

1. Use the MATLAB ode23 function to verify the analytical solution of Example 9.1.

2. Construct a spreadsheet for the numerical solutions of Example 9.2.

3. Use MATLAB to find the analytical solution of

   \[ y' = f(x) = 3x^2 \]

   with the initial condition \( y(2) = 0.5 \). Then, compute and plot the numerical solution using the MATLAB function ode23 along with points of the analytical solution to verify the accuracy of the numerical solution for the interval \( 2 \leq x \leq 4 \).

4. Use MATLAB to plot the numerical solution of the non-linear differential equation

   \[ y' = -y^3 + 0.2 \sin x \]

   with the initial condition \( y(0) = 0.707 \) using the command ode23 for the interval \( 0 \leq x \leq 10 \).

5. Given the differential equation

   \[ y' = x^2 - y \]

   with the initial condition \( y(0) = 1 \) and \( x_0 = 0.0 \) find the values of \( y \) corresponding to the values of \( x_0 + 0.1 \) and \( x_0 + 0.2 \) correct to four decimal places using the third-order Runge-Kutta method. It is suggested that a spreadsheet is used to do all computations.

6. Given the differential equation

   \[ y'' + y' = xy \]

   compute the approximate values of \( y \) and \( y' \) at \( x_0 + 0.1 \) and \( x_0 + 0.2 \) given that \( y(0) = 1 \), \( y'(0) = -1 \), and \( x_0 = 0.0 \) correct to four decimal places, using the third-order Runge-Kutta method. It is suggested that a spreadsheet is used to do all computations.
9.7 Solutions to Exercises

1.

We write and save the following function file:

```matlab
function dy = func_exer9_1(x,y)
 dy = -x*y;
```

Next, we write and execute the MATLAB code below.

```matlab
tspan=[0 3]; % Interval over which we want to evaluate y=f(x)
y0=[1;−1]; % Given initial conditions
[x,y]=ode23('func_exer9_1', tspan, y0); % Use 2nd and 3rd Order Runge-Kutta
% Plot numeric values with the statements below
plot(x, y(:,1), '+r-', x, y(:,2), 'Ob--')
title('Numeric Solution of Differential Equation of Exercise 9.1'),...
xlabel('x'), ylabel('y (upper curve), yprime (lower curve)'), grid
```

The plot below shows the function $y = f(x)$ and its derivative $dy/dx$. 
2.

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Differential Equation $y' = x + y^2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Numerical solution by Runge-Kutta method follows</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>$h =$ (given)</td>
<td>0.2000</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>$x(0) =$ (given)</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>$y(0) =$ Initial condition (given)</td>
<td>1.0000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>$k(1) =$ $h^2 f(x_n, y_n)$</td>
<td>$h^2 (0+1^2)$</td>
<td>0.2000</td>
</tr>
<tr>
<td>7</td>
<td>$k(2) =$ $h^2 f(x_n+h, y_n+h)$</td>
<td>$h^2 (0+0.2*(1+0.2)^2)$</td>
<td>0.3280</td>
</tr>
<tr>
<td>8</td>
<td>$y(1) =$ $y(0)+0.5(k(1)+k(2))$</td>
<td>$y(0)+0.5*(D11+D12)$</td>
<td>1.2640</td>
</tr>
<tr>
<td>9</td>
<td>$L(1) =$ $h^2 f(x_n, y_n)$</td>
<td>$h^2 (0+1^2)$</td>
<td>0.2000</td>
</tr>
<tr>
<td>10</td>
<td>$L(2) =$ $h^2 f(x_n+0.5h, y_n+0.5*L(1))$</td>
<td>$h^2 (0+0.5h)+(1+0.5*L(1))^2$</td>
<td>0.2620</td>
</tr>
<tr>
<td>11</td>
<td>$L(3) =$ $h^2 f(x_n+h, y_n+2*L(2)-L(1))$</td>
<td>$h^2 (0+h)+(1+2*L(2)-L(1))^2$</td>
<td>0.3906</td>
</tr>
<tr>
<td>12</td>
<td>$y(1) =$ $y(0)<em>(L(1)+4</em>L(2)+L(3))/6$</td>
<td></td>
<td>1.2731</td>
</tr>
<tr>
<td>13</td>
<td>$m(1) =$ $h^2 f(x_n, y_n)$</td>
<td>$h^2 (0+1^2)$</td>
<td>0.2000</td>
</tr>
<tr>
<td>14</td>
<td>$m(2) =$ $h^2 f(x_n+0.5h, y_n+0.5*m(1))$</td>
<td>$h^2 (0+0.5h)+(1+0.5*m(1))^2$</td>
<td>0.2620</td>
</tr>
<tr>
<td>15</td>
<td>$m(3) =$ $h^2 f(x_n+h, y_n+2*m(2)-m(1))$</td>
<td>$h^2 (0+h)+(1+2*m(2)-m(1))^2$</td>
<td>0.2758</td>
</tr>
<tr>
<td>16</td>
<td>$m(4) =$ $h^2 f(x_n+h, y_n+m(3))$</td>
<td>$h^2 (0+h)+(1+m(3))^2$</td>
<td>0.3655</td>
</tr>
<tr>
<td>17</td>
<td>$y(1) =$ $y(0)+(1/6)<em>(m(1)+2</em>m(2)+2*m(3)+m(4))$</td>
<td></td>
<td>1.2735</td>
</tr>
</tbody>
</table>

3.

The analytical solution is found with

```matlab
syms x y
y = dsolve('Dy=3*x^2, y(2)=0.5', 'x')
```

and MATLAB displays

$$y = x^3 - 15/2$$

Next we write and save the following statements as function file `fexer9_3`

```matlab
function Dy=fexer9_3(x,y);
Dy=3*x^2;
```

The MATLAB code for the numerical solution is as follows:

```matlab
tsspan=[2 4]; % Interval over which we want to evaluate y=f(x)
y0=7.5; % Initial condition: Since y=x^3-15/2 and y(2) = 0.5, it follows that y(0) = 7.5
[y, t]=ode23('fexer9_3', tspan, y0); % Use 2nd and 3rd Order Runge-Kutta
plot(x, y, '+r-')
title('Numeric Solution of Differential Equation of Exercise 9.3'),
xlabel('x'), ylabel('y'), grid
```

9-22 Numerical Analysis Using MATLAB and Spreadsheets, Second Edition
Orchard Publications
4. We write and save the following statements as function file `fexer4`

```matlab
function Dy=fexer4(x,y);
Dy=-y^3+0.2*sin(x);
```

The MATLAB code and the plot for the numerical solution are as follows:

```matlab
ts=0:0.1:10; y0=0.707;
[t,y]=ode23('fexer4',t,y0); plot(t,y,'+', t,y, '-'),
title('Numeric solution of non-linear differential equation dy/dx=-x^3+0.2sin(x)'),...
xlabel('x'), ylabel('y=f(x)'), grid
```

5. The spreadsheet is shown on the following two pages.
Differential Equation is \( y' = x^2 - y \)

Numerical solution by Runge-Kutte method follows

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Differential Equation is ( y' = x^2 - y )</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Numerical solution by Runge-Kutte method follows</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>( h = )</td>
<td>( x(1) - x(0) = )</td>
<td>0.1000</td>
<td>( x_0 = )</td>
<td>0.0</td>
</tr>
<tr>
<td>5</td>
<td>( x(0) = )</td>
<td>(given)</td>
<td>0.0000</td>
<td>( x_1 = )</td>
<td>0.1</td>
</tr>
<tr>
<td>6</td>
<td>( y(0) = )</td>
<td>Initial condition (given)</td>
<td>1.0000</td>
<td>( x_2 = )</td>
<td>0.2</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>( L(1) = h \times f(x_n, y_n) )</td>
<td>( h \times (0-1) = )</td>
<td>-0.1000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>( L(2) = h \times f(x_n+0.5h, y_n+0.5L(1)) )</td>
<td>( h \times [(0+0.5h)^2-(1+0.5L(1))] = )</td>
<td>-0.0948</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>( L(3) = h \times f(x_n+h, y_n+2L(2)-L(1)) )</td>
<td>( h \times [(0+h)^2-(1+2L(2)-L(1))] = )</td>
<td>-0.0901</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>( y(1) = y(0) + (L(1) + 4L(2) + L(3))/6 )</td>
<td></td>
<td></td>
<td>0.9052</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>( h = )</td>
<td>( x(2) - x(1) = )</td>
<td>0.1000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>( x(0.1) = )</td>
<td>Next value ( x(0) + h )</td>
<td>0.1000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>( y(1) = )</td>
<td>From previous computation</td>
<td>0.9052</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>( L(1) = h \times f(x_n, y_n) )</td>
<td>( h \times (0.1^2-0.9052) = )</td>
<td>-0.0895</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>( L(2) = h \times f(x_n+0.5h, y_n+0.5L(1)) )</td>
<td>( h \times [(0+0.5h)^2-(0.9052+0.5L(1))] = )</td>
<td>-0.0838</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>( L(3) = h \times f(x_n+h, y_n+2L(2)-L(1)) )</td>
<td>( h \times [(0.1+h)^2-(0.9052+2L(2)-L(1))] = )</td>
<td>-0.0787</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>( y(2) = y(1) + (L(1) + 4L(2) + L(3))/6 )</td>
<td></td>
<td></td>
<td>0.8213</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>( h = )</td>
<td>( x(2) - x(1) = )</td>
<td>0.1000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>( x(0.2) = )</td>
<td>Next value ( x(0) + 2h )</td>
<td>0.2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>( y(2) = )</td>
<td>From previous computation</td>
<td>0.8213</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>( L(1) = h \times f(x_n, y_n) )</td>
<td>( h \times (0.2+2*1.5146) = )</td>
<td>0.1843</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>( L(2) = h \times f(x_n+0.5h, y_n+0.5L(1)) )</td>
<td>( h \times [(0+0.5h)^2+(1+0.5L(1))] = )</td>
<td>0.2077</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>( L(3) = h \times f(x_n+h, y_n+2L(2)-L(1)) )</td>
<td>( h \times [(0+h)^2+(1+2L(2)-L(1))] = )</td>
<td>0.2405</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>( y(3) = y(2) + (L(1) + 4L(2) + L(3))/6 )</td>
<td></td>
<td></td>
<td>1.0305</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>( h = )</td>
<td>( x(3) - x(2) = )</td>
<td>-0.2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>( x(0.3) = )</td>
<td>Next value ( x(0) + 3h )</td>
<td>-0.6000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>( y(3) = )</td>
<td>From previous computation</td>
<td>1.0305</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>( L(1) = h \times f(x_n, y_n) )</td>
<td>( h \times (0.3+2*1.8773) = )</td>
<td>-0.2922</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>( L(2) = h \times f(x_n+0.5h, y_n+0.5L(1)) )</td>
<td>( h \times [(0+0.5h)^2+(1+0.5L(1))] = )</td>
<td>-0.2138</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>( L(3) = h \times f(x_n+h, y_n+2L(2)-L(1)) )</td>
<td>( h \times [(0+h)^2+(1+2L(2)-L(1))] = )</td>
<td>-0.1981</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>( y(4) = y(2) + (L(1) + 4L(2) + L(3))/6 )</td>
<td></td>
<td></td>
<td>0.8063</td>
<td></td>
</tr>
</tbody>
</table>

continued on next page
Solutions to Exercises

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>h=</td>
<td>x(4)-x(3)=</td>
</tr>
<tr>
<td>46</td>
<td>x(0.4)=</td>
<td>Next value x(0) + 4*h</td>
</tr>
<tr>
<td>47</td>
<td>y(3)=</td>
<td>From previous computation</td>
</tr>
<tr>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>L(1)=</td>
<td>h*f(xn,yn)</td>
</tr>
<tr>
<td>50</td>
<td>L(2)=</td>
<td>h<em>f(xn+0.5</em>h,yn+0.5*L(1))</td>
</tr>
<tr>
<td>51</td>
<td>L(3)=</td>
<td>h<em>f(xn+h,yn+2</em>L(2)-L(1))</td>
</tr>
<tr>
<td>52</td>
<td>y(4)= y(2) +(L(1) + 4*L(2) + L(3))/6</td>
<td>0.8063</td>
</tr>
<tr>
<td>53</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Differential Equation is y''+y'=xy or y''=xy-y'</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Numerical solution by Runge-Kutte method follows</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>h=</td>
<td>x(1)-x(0)=</td>
</tr>
<tr>
<td>4</td>
<td>x(0)=</td>
<td>Initial condition (given)</td>
</tr>
<tr>
<td>5</td>
<td>y(0)=</td>
<td>Initial condition (given)</td>
</tr>
<tr>
<td>6</td>
<td>y'(0)=</td>
<td>Initial condition (given)</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>L(1)=</td>
<td>h*y'(0)=</td>
</tr>
<tr>
<td>9</td>
<td>L'(1)=</td>
<td>h*f(x(0), y(0), y'(0))=</td>
</tr>
<tr>
<td>10</td>
<td>L(2)=</td>
<td>h*(y'(0) + 0.5*L'(1))=</td>
</tr>
<tr>
<td>11</td>
<td>L'(2)=</td>
<td>h<em>f(x(0) + 0.5</em>h, y(0) + 0.5<em>L(1), y'(0) + 0.5</em>L(L(1)))=</td>
</tr>
<tr>
<td>12</td>
<td>L(3)=</td>
<td>h*(y'(0) + 2*L'(2) - L'(1))=</td>
</tr>
<tr>
<td>13</td>
<td>L'(3)=</td>
<td>h<em>f(x(0) + h, y(0) + 2</em>L(2) - L(1), y'(0) + 2*L'(2) - L'(1))=</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>y(1)=</td>
<td>y(0) +(L(1) + 4*L(2) + L(3))/6</td>
</tr>
<tr>
<td>16</td>
<td>y'(1)=</td>
<td>y'(0) +(L'(1) + 4*L'(2) + L'(3))/6</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>h=</td>
<td>x(1)-x(0)=</td>
</tr>
<tr>
<td>19</td>
<td>x(0.1)=</td>
<td>Next value x(0) + h</td>
</tr>
<tr>
<td>20</td>
<td>y(1)=</td>
<td>From previous computation</td>
</tr>
<tr>
<td>21</td>
<td>y'(1)=</td>
<td>From previous computation</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

continued on next page
Chapter 9  Solution of Differential Equations by Numerical Methods

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>L(1)= h*y'(1)=</td>
<td>-0.0900</td>
</tr>
<tr>
<td>25</td>
<td>L'(1)= h*f(x(1), y(1), y'(1))=</td>
<td>0.0991</td>
</tr>
<tr>
<td>26</td>
<td>L(2)= h*(y'(1) + 0.5*L'(1))=</td>
<td>-0.0851</td>
</tr>
<tr>
<td>27</td>
<td>L'(2)= h<em>f(x(1) + 0.5</em>h, y(1) + 0.5<em>L(1), y'(1) + 0.5</em>L'(1))=</td>
<td>0.0980</td>
</tr>
<tr>
<td>28</td>
<td>L(3)= h*(y'(1) + 2*L'(2) - L'(1))=</td>
<td>-0.0803</td>
</tr>
<tr>
<td>29</td>
<td>L'(3)= h<em>f(x(1) + h, y(1) + 2</em>L(2) - L(1), y'(1) + 2*L'(2) - L'(1))=</td>
<td>0.0968</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>y(2)= y(0) + (L(1) + 4*L(2) + L(3))/6</td>
<td><strong>0.8199</strong></td>
</tr>
<tr>
<td>32</td>
<td>y'(2)= y'(0) + (L'(1) + 4*L'(2) + L'(3))/6=</td>
<td><strong>-0.8023</strong></td>
</tr>
<tr>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>h= x(2) - x(1)=</td>
<td>0.1000</td>
</tr>
<tr>
<td>35</td>
<td>x(0.2)= Next value x(0) + 2*h</td>
<td>0.2000</td>
</tr>
<tr>
<td>36</td>
<td>y(2)= From previous computation</td>
<td>0.8199</td>
</tr>
<tr>
<td>37</td>
<td>y'(2)= From previous computation</td>
<td>-0.8023</td>
</tr>
<tr>
<td>38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>L(1)= h*y'(0)=</td>
<td>-0.0802</td>
</tr>
<tr>
<td>40</td>
<td>L'(1)= h*f(x(0), y(0), y'(0))=</td>
<td>0.0966</td>
</tr>
<tr>
<td>41</td>
<td>L(2)= h*(y'(0) + 0.5*L'(1))=</td>
<td>-0.0754</td>
</tr>
<tr>
<td>42</td>
<td>L'(2)= h<em>f(x(0) + 0.5</em>h, y(0) + 0.5<em>L(1), y'(0) + 0.5</em>L'(1))=</td>
<td>0.0949</td>
</tr>
<tr>
<td>43</td>
<td>L(3)= h*(y'(0) + 2*L'(2) - L'(1))=</td>
<td>-0.0709</td>
</tr>
<tr>
<td>44</td>
<td>L'(3)= h<em>f(x(0) + h, y(0) + 2</em>L(2) - L(1), y'(0) + 2*L'(2) - L'(1))=</td>
<td>0.0934</td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>y(3)= y(0) + (L(1) + 4*L(2) + L(3))/6</td>
<td><strong>0.7444</strong></td>
</tr>
<tr>
<td>47</td>
<td>y'(3)= y'(0) + (L'(1) + 4*L'(2) + L'(3))/6=</td>
<td><strong>-0.7074</strong></td>
</tr>
</tbody>
</table>
Chapter 10

Integration by Numerical Methods

This chapter is an introduction to numerical methods for integrating functions which are very difficult or impossible to integrate using analytical means. We will discuss the trapezoidal rule that computes a function $f(x)$ with a set of linear functions, and Simpson's rule that computes a function $f(x)$ with a set of quadratic functions.

10.1 The Trapezoidal Rule

Consider the function $y = f(x)$ for the interval $a \leq x \leq b$, shown in Figure 10.1.

![Figure 10.1. Integration by the trapezoidal rule](image)

To evaluate the definite integral $\int_{a}^{b} f(x)\,dx$, we divide the interval $a \leq x \leq b$ into $n$ subintervals each of length $\Delta x = \frac{b - a}{n}$. Then, the number of points between $x_0 = a$ and $x_n = b$ is $x_1 = a + \Delta x, x_2 = a + 2\Delta x, \ldots, x_{n-1} = a + (n-1)\Delta x$. Therefore, the integral from $a$ to $b$ is the sum of the integrals from $a$ to $x_1$, from $x_1$ to $x_2$, and so on, and finally from $x_{n-1}$ to $b$. The total area is

$$\int_{a}^{b} f(x)\,dx = \int_{a}^{x_1} f(x)\,dx + \int_{x_1}^{x_2} f(x)\,dx + \ldots + \int_{x_{n-1}}^{b} f(x)\,dx = \sum_{k=1}^{n} \int_{x_{k-1}}^{x_k} f(x)\,dx$$

The integral over the first subinterval, can now be approximated by the area of the trapezoid.
that is equal to \( \frac{1}{2}(y_0 + y_1)\Delta x \) plus the area of the trapezoid \( x_1P_1P_2x_2 \) that is equal to \( \frac{1}{2}(y_1 + y_2)\Delta x \), and so on. Then, the trapezoidal approximation becomes

\[
T = \frac{1}{2}(y_0 + y_1)\Delta x + \frac{1}{2}(y_1 + y_2)\Delta x + \ldots + \frac{1}{2}(y_{n-1} + y_n)\Delta x
\]

or

\[
T = \left( \frac{1}{2}y_0 + y_1 + y_2 + \ldots + y_{n-1} + \frac{1}{2}y_n \right)\Delta x
\]

(10.1) 

**Example 10.1**

Using the trapezoidal rule with \( n = 4 \), estimate the value of the definite integral

\[
\int_1^2 x^2 \, dx
\]

(10.2)

Compare with the exact value, and compute the percent error.

**Solution:**

The exact value of this integral is

\[
\int_1^2 x^2 \, dx = \left[ \frac{x^3}{3} \right]_1^2 = \frac{8}{3} - \frac{1}{3} = \frac{7}{3} = 2.33333
\]

(10.3)

For the trapezoidal rule approximation we have

\[
x_0 = a = 1
\]

\[
x_n = b = 2
\]

\[
n = 4
\]

\[
\Delta x = \frac{b - a}{n} = \frac{2 - 1}{4} = \frac{1}{4}
\]

\[
y = f(x) = x^2
\]

Then,
The Trapezoidal Rule

\[ x_0 = a = 1 \quad y_0 = f(x_0) = l^2 = \frac{16}{16} \]

\[ x_1 = a + \Delta x = \frac{5}{4} \quad y_1 = f(x_1) = \left( \frac{5}{4} \right)^2 = \frac{25}{16} \]

\[ x_2 = a + 2\Delta x = \frac{6}{4} \quad y_2 = f(x_2) = \left( \frac{6}{4} \right)^2 = \frac{36}{16} \]

\[ x_3 = a + 3\Delta x = \frac{7}{4} \quad y_3 = f(x_3) = \left( \frac{7}{4} \right)^2 = \frac{49}{16} \]

\[ x_4 = b = 2 \quad y_4 = f(x_4) = \left( \frac{8}{4} \right)^2 = \frac{64}{16} \]

and by substitution into (10.1),

\[ T = \left( \frac{1}{2} \times \frac{16}{16} + \frac{25}{16} + \frac{36}{16} + \frac{49}{16} + \frac{1}{2} \times \frac{64}{16} \right) \times \frac{1}{4} = \frac{150}{16} \times \frac{1}{4} = \frac{75}{32} = 2.34375 \]  \hspace{1cm} (10.4)

From (10.3) and (10.4), we find that the percent error is

\[ \% \text{ Error} = \frac{2.34375 - 2.33333}{2.33333} \times 100 = 0.45 \% \] \hspace{1cm} (10.5)

The MATLAB function \texttt{trapz(x,y,n)} where \( y \) is the integral with respect to \( x \), approximates the integral of a function \( y = f(x) \) using the trapezoidal rule, and \( n \) (optional) performs integration along dimension \( n \).

Example 10.2

Use the MATLAB function \texttt{trapz(x,y)} to approximate the value of the integral

\[ \int_{1}^{2} \frac{1}{x} \, dx \] \hspace{1cm} (10.6)

and by comparison with the exact value, compute the percent error when \( n = 5 \) and \( n = 10 \)

Solution:

The exact value is found from

\[ \int_{1}^{2} \frac{1}{x} \, dx = \ln x \bigg|_{1}^{2} = \ln 2 - \ln 1 = 0.6931 - 0.0000 = 0.6931 \]

For the approximation using the trapezoidal rule, we let \( x_5 \) represent the row vector with \( n = 5 \), and \( x_{10} \) the vector with \( n = 10 \), that is, \( \Delta x = 1/5 \) and \( \Delta x = 1/10 \) respectively. The corresponding values of \( y \) are denoted as \( y_5 \) and \( y_{10} \), and the areas under the curve as \( \text{area5} \) and
respectively. We use the following MATLAB code.

\begin{verbatim}
x5=linspace(1,2,5); x10=linspace(1,2,10);
y5=1./x5; y10=1./x10;
area5=trapz(x5,y5), area10=trapz(x10,y10)
\end{verbatim}

\begin{verbatim}
area5 =
0.6970
\end{verbatim}
\begin{verbatim}
area10 =
0.6939
\end{verbatim}

The percent error when $\Delta x = 1/5$ is used is

$$% Error = \frac{0.6970 - 0.6931}{0.6931} \times 100 = 0.56 \%$$

and the percent error when $\Delta x = 1/10$ is used is

$$% Error = \frac{0.6939 - 0.6931}{0.6931} \times 100 = 0.12 \%$$

**Example 10.3**

The integral

$$f(t) = \int_0^t e^{-\tau^2} d\tau$$

where $\tau$ is a dummy variable of integration, is called the *error function* and it is used extensively in communications theory. Use the MATLAB `trapz(x,y)` function to find the area under this integral with $n = 10$ when the upper limit of integration is $t = 2$.

**Solution:**

We use the same procedure as in the previous example. The MATLAB code for this example is

\begin{verbatim}
t=linspace(0,2,10); y=exp(-t.^2); area=trapz(t,y)
\end{verbatim}

MATLAB displays the following result.

\begin{verbatim}
area =
0.8818
\end{verbatim}

* The formal definition of the error function is $\text{erf}(u) = \frac{2}{\sqrt{\pi}} \int_0^u e^{-\tau^2} d\tau$
Example 10.4

The $i - v$ (current-voltage) relation of a non-linear electrical device is given by

$$i(t) = 0.1(e^{0.2v(t)} - 1)$$

where $v(t) = \sin 3t$.

By any means, find

a. The instantaneous power $p(t)$

b. The energy $W(t_0, t_1)$ dissipated in this device from $t_0 = 0$ to $t_1 = 10$ s.

Solution:

a. The instantaneous power is

$$p(t) = v(t)i(t) = 0.1\sin 3t(e^{0.2\sin 3t} - 1)$$

b. The energy is the integral of the instantaneous power, that is,

$$W(t_0, t_1) = \int_{t_0}^{t_1} p(t)dt = 0.1\int_0^{10} \sin 3t(e^{0.2\sin 3t} - 1)dt$$

An analytical solution of the last integral is possible using integration by parts, but it is not easy. We can try the MATLAB `int(f,a,b)` function where $f$ is a symbolic expression, and $a$ and $b$ are the lower and upper limits of integration respectively.

When MATLAB cannot find a solution, it returns a warning. For this example, MATLAB returns the following message when integration is attempted with the symbolic expression of (10.10).

```matlab
t=sym('t');
s=int(0.1*sin(3*t)*(exp(0.2*sin(3*t))-1),0,10)
```

When this code is executed, MATLAB displays the following message.

Warning: Explicit integral could not be found.

Next, we will find and sketch the power and energy by the trapezoidal rule using the MATLAB `trapz(x,y)` function. For this example, we choose $n = 100$, so that $\Delta x = 1/100$. The MATLAB code below will compute and plot the power.

```matlab
t=linspace(0,10,100);
\v=\sin(3.*t); i=0.1.*(exp(0.2.*v)-1); p=v.*i;
plot(t,p); grid; title('Power vs Time'); xlabel('seconds'); ylabel('watts')
```

The power varies in a uniform fashion as shown by the plot of Figure 10.2.
The plot of Figure 10.2 shows that the power is uniform for all time, and thus we expect the energy to be constant.

The MATLAB code below computes and plots the energy.

```
energy=trapz(t,p), plot(t,energy, '+'); grid; title('Energy vs Time');
xlabel('seconds'); ylabel('joules')
```

```
energy =
0.1013
```

Thus, the value of the energy is 0.1013 joule.

The energy is shown in Figure 10.3.

### 10.2 Simpson’s Rule

The trapezoidal and Simpson’s rules are special cases of the Newton-Cote rules which use higher degree functions for numerical integration.

Let the curve of Figure 10.4 be represented by the parabola

\[
y = ax^2 + bx + c
\]  

(10.11)
The area under this curve for the interval \(-h \leq x \leq h\) is

\[
\text{Area}_{-h}^{h} = \int_{-h}^{h} (\alpha x^2 + \beta x + \gamma) dx = \left[ \frac{\alpha x^3}{3} + \frac{\beta x^2}{2} + \gamma x \right]_{-h}^{h} \\
= \frac{\alpha h^3}{3} + \frac{\beta h^2}{2} + \gamma h - \left( \frac{\alpha h^3}{3} + \frac{\beta h^2}{2} - \gamma h \right) = \frac{2\alpha h^3}{3} + 2\gamma h \\
= \frac{1}{3} h(2\alpha h^3 + 6\gamma)
\]  

(10.12)

The curve passes through the three points \((-h, y_0)\), \((0, y_1)\), and \((h, y_2)\). Then, by (10.11) we have:
We can now evaluate the coefficients $a$, $b$, $c$, and $d$ and express (10.12) in terms of $h$, $y_0$, $y_1$, and $y_2$. This is done with the following procedure.

By substitution of (b) of (10.13) into (a) and (c) and rearranging we get

$$ah^2 - bh = y_0 - y_1$$  \hspace{1cm} (10.14)

$$ah^2 + bh = y_2 - y_1$$  \hspace{1cm} (10.15)

Addition of (10.14) with (10.15) yields

$$2ah^2 = y_0 - 2y_1 + y_2$$  \hspace{1cm} (10.16)

and by substitution into (10.12) we get

$$Area_{-h}^h = \frac{1}{3}h(2ah^3 + 6\gamma) = \frac{1}{3}h[(y_0 - 2y_1 + y_2) + 6\gamma]$$  \hspace{1cm} (10.17)

or

$$Area_{-h}^h = \frac{1}{3}h(y_0 + 4y_1 + y_2)$$  \hspace{1cm} (10.18)

Now, we can apply (10.18) to successive segments of any curve $y = f(x)$ in the interval $a \leq x \leq b$, as shown on the curve of Figure 10.5.

![Figure 10.5. Simpson’s rule of integration by successive segments](image)

From Figure 10.5, we see that each segment of width $2h$ of the curve can be approximated by a
parabola through its ends and its midpoint. Thus, the area under segment $AB$ is

$$Area_{AB} = \frac{1}{3}h(y_0 + 4y_1 + y_2)$$  \hspace{1cm} (10.19)$$

Likewise, the area under segment $BC$ is

$$Area_{BC} = \frac{1}{3}h(y_2 + 4y_3 + y_4)$$  \hspace{1cm} (10.20)$$

and so on. When the areas under each segment are added, we get

$$Area = \frac{1}{3}h(y_0 + 4y_1 + 2y_2 + 4y_3 + 2y_4 + \ldots + 2y_{n-2} + 4y_{n-1} + y_n)$$

\hspace{1cm} Simpson’s Rule of Numerical Integration  \hspace{1cm} (10.21)$$

Since each segment has width $2h$, to apply Simpson’s rule of numerical integration, the number $n$ of subdivisions must be even. This restriction does not apply to the trapezoidal rule of numerical integration. The value of $h$ for (10.21) is found from

$$h = \frac{b-a}{n} \quad n = \text{even}$$  \hspace{1cm} (10.22)$$

Example 10.5

Using Simpson’s rule with 4 subdivisions ($n = 4$), compute the approximate value of

$$\int_{1}^{2} \frac{1}{x} \, dx$$  \hspace{1cm} (10.23)$$

Solution:

This is the same integral as that of Example 10.2 where we found that the analytical value of this definite integral is $\ln = 0.6931$. We can also find the analytical value with MATLAB’s `int(f,a,b)` function where $f$ is a symbolic expression, and $a$ and $b$ are the lower and upper limits of integration respectively. For this example,

```
syms x
Area=int(1/x,1,2)
```

```
Area =
log(2)
```

We recall that `log(x)` in MATLAB is the natural logarithm.

To use Simpson’s rule, for convenience, we construct the following table using the spreadsheet of Figure 10.6.
By comparison of the numerical with the exact value, we observe that the error is very small when Simpson’s method is applied.

MATLAB has two quadrature functions for performing numerical integration, the `quad` and `quad8`. The description of these can be seen by typing `help quad` or `help quad8`. Both of these functions use adaptive quadrature methods; this means that these methods can handle irregularities such as singularities. When such irregularities occur, MATLAB displays a warning message but still provides an answer.

The `quad` function uses an adaptive form of Simpson’s rule, while the `quad8` function uses the so-called Newton-Cotes 8-panel rule. The `quad8` function detects and handles irregularities more efficiently.

Both functions have the same syntax, that is, `q=quad('f',a,b,tol)`, and integrate to a relative error `tol` which we must specify. If `tol` is omitted, it is understood to be the standard tolerance of $10^{-3}$. The string ‘f’ is the name of a user defined function, and `a` and `b` are the lower and upper limits of integration respectively.
Example 10.6

Given the definite integral

\[ y = f(x) = \int_{0}^{2} e^{-x^2} \, dx \]  \hspace{1cm} (10.24)

a. Use MATLAB’s symbolic \texttt{int} function to obtain the value of this integral

b. Obtain the value of this integral with the \texttt{q=quad('f',a,b)} function

c. Obtain the value of this integral with the \texttt{q=quad('f',a,b,tol)} function where \( tol = 10^{-10} \)

d. Obtain the value of this integral with the \texttt{q=quad8('f',a,b)} function

e. Obtain the value of this integral with the \texttt{q=quad8('f',a,b,tol)} function where \( tol = 10^{-10} \)

Solution:

a.  
\[
\text{syms x; y=int(exp(-x^2),0,2)} \quad \% \text{Define symbolic variable x and integrate}
\]

\[
y = \frac{1}{2} \text{erf}(2) \pi^{1/2}
\]

\[
\text{pretty(y)} \quad \frac{1}{2}  \\
\text{1/2 erf(2) pi}
\]

\text{erf} is an acronym for the error function and we can obtain its definition with \texttt{help erf}

b. First, we need to create and save a function m-file. We name it \texttt{errorfcn1.m} as shown below. We will use \texttt{format long} to display the values with 15 digits.

\[
\text{function y = errorfcn1(x)}
\]

\[
y = \exp(-x.^2);
\]

With this file saved as \texttt{errorfcn1.m}, we write and execute the following MATLAB code.

\[
\text{format long}
\]

\[
y_{\text{std}}=\text{quad('errorfcn1',0,2)}
\]

We obtain the answer in standard tolerance form as

\[
y_{\text{std}} = 0.88211275610253
\]

c. With the specified tolerance, the code and the answer are as follows:

\[
y_{\text{tol}}=\text{quad('errorfcn1',0,2,10^{-10})}
\]

\[
y_{\text{tol}} = 0.88208139076242
\]
Chapter 10  Integration by Numerical Methods

d. With the standard tolerance,

\[ y_{\text{std}_8} = \text{quad8('errorfcn1',0,2)} \]

\[ y_{\text{std}_8} = 0.88208139076194 \]

e. With the specified tolerance,

\[ y_{\text{tol}_8} = \text{quad8('errorfcn1',0,2,10^{-10})} \]

\[ y_{\text{tol}_8} = 0.88208139076242 \]

We observe that with the \(10^{-10}\) tolerance, both \texttt{quad} and \texttt{quad8} produce the same result.

Example 10.7

Using the \texttt{quad} and \texttt{quad8} functions with standard tolerance, evaluate the integral

\[ y = f(x) = \int_a^b \sqrt{x} \, dx \]  

(10.25)

at \(((a, b) = (0.2, 0.8), (1.4, 2.3)), \text{ and } (3, 8)\). Use the \texttt{fprintf} function to display first the analytical values, then, the numerical values produced by the \texttt{quad} and \texttt{quad8} functions for each set of data.

Solution:

Evaluating the given integral, we get

\[ y = \int_a^b x^{1/2} \, dx = \left. \frac{x^{3/2}}{3/2} \right|_a^b = \frac{2}{3} (b^{3/2} - a^{3/2}) \]  

(10.26)

where \(a\) and \(b\) are non-negative values. Substitution of the values of the given values of \(a\) and \(b\) will be included in the MATLAB code below.

The \texttt{sqrt} function in a built-in function and therefore, we need not write a user defined m-file. We will include the \texttt{input} function in the code. The code is then saved as \texttt{Example_10_7}.

% This code displays the approximations obtained with the quad and quad8 functions
% with the analytical results for the integration of the square root of x over the
% interval (a,b) where a and b are non-negative.
% fprintf('
'); % Insert line
a=input('Enter first point "a" (non-negative): ');
b=input('Enter second point "b" (non-negative): ');
k=2/3.*(b.^(3/2)-a.^(3/2));

Summary

kq=quad('sqrt',a,b);
kq8=quad8('sqrt',a,b);
fprintf('\n');... % Insert line
fprintf(' Analytical: %f 
 Numerical quad, quad8: %f  %f 
',k,kq,kq8);
fprintf(' 
'); fprintf(' 
') % Insert two lines

Now, we execute this saved file by typing its name, that is,

Example_10_7
Enter first point "a" (non-negative): 0.2
Enter second point "b" (non-negative): 0.8
Analytical: 0.417399
Numerical quad, quad8: 0.417396  0.417399

Example_10_7
Enter first point "a" (non-negative): 1.4
Enter second point "b" (non-negative): 2.3
Analytical: 1.221080
Numerical quad, quad8: 1.221080  1.221080

Example_10_7
Enter first point "a" (non-negative): 3
Enter second point "b" (non-negative): 8
Analytical: 11.620843
Numerical quad, quad8: 11.620825  11.620843

10.3 Summary

- We can evaluate a definite integral \( \int_{a}^{b} f(x) \, dx \) with the trapezoidal approximation

\[
T = \left( \frac{1}{2} y_0 + y_1 + y_2 + \ldots + y_{n-1} + \frac{1}{2} y_n \right) \Delta x
\]

by dividing interval \( a \leq x \leq b \) into \( n \) subintervals each of length \( \Delta x = \frac{b-a}{n} \). The number \( n \) of subdivisions can be even or odd.

- The MATLAB function \texttt{trapz(x,y,n)} where \( y \) is the integral with respect to \( x \), approximates the integral of a function \( y = f(x) \) using the trapezoidal rule, and \( n \) (optional) performs integration along dimension \( n \).
Chapter 10  Integration by Numerical Methods

- We can perform numerical integration with the MATLAB function \texttt{int(f,a,b)} function where \( f \) is a symbolic expression, and \( a \) and \( b \) are the lower and upper limits of integration respectively.

- We can evaluate a definite integral \( \int_a^b f(x)dx \) with Simpson’s rule of numerical integration using the expression

\[
Area = \frac{1}{3}h(y_0 + 4y_1 + 2y_2 + 4y_3 + 2y_4 + \ldots + 2y_{n-2} + 4y_{n-1} + y_n)
\]

where the number \( n \) of subdivisions must be even.

- The trapezoidal and Simpson’s rules are special cases of the Newton-Cote rules which use higher degree functions for numerical integration.

- MATLAB has two quadrature functions for performing numerical integration, the \texttt{quad} and \texttt{quad8}. Both of these functions use adaptive quadrature methods. The \texttt{quad} function uses an adaptive form of Simpson’s rule, while the \texttt{quad8} function uses the so-called Newton-Cotes 8-panel rule. The \texttt{quad8} function detects and handles irregularities more efficiently. Both functions have the same syntax, that is, \texttt{q=quad(’f’,a,b,tol)}, and integrate to a relative error \( tol \) which we must specify. If \( tol \) is omitted, it is understood to be the standard tolerance of \( 10^{-3} \). The string ‘\( f’ is the name of a user defined function, and \( a \) and \( b \) are the lower and upper limits of integration respectively.
10.4 Exercises

1. Use the trapezoidal approximation to compute the values the following definite integrals and compare your results with the analytical values. Verify your answers with the MATLAB \texttt{trapz(x,y,n)} function.

   a. \[ \int_{0}^{2} x \, dx \quad n = 4 \]

   b. \[ \int_{0}^{2} x^3 \, dx \quad n = 4 \]

   c. \[ \int_{0}^{2} x^4 \, dx \quad n = 4 \]

   d. \[ \int_{1}^{2} \frac{1}{x^2} \, dx \quad n = 4 \]

2. Use Simpson’s rule to approximate the following definite integrals and compare your results with the analytical values. Verify your answers with the MATLAB \texttt{quad('f',a,b)} function.

   a. \[ \int_{0}^{2} x^2 \, dx \quad n = 4 \]

   b. \[ \int_{0}^{\pi} \sin x \, dx \quad n = 4 \]

   c. \[ \int_{0}^{1} \frac{1}{x^2 + 1} \, dx \quad n = 4 \]
10.5 Solution to Exercises

1. 

\[ T = \left( \frac{1}{2}y_0 + y_1 + y_2 + \ldots + y_{n-1} + \frac{1}{2}y_n \right) \Delta x \]

a. The exact value is

\[ \int_{0}^{2} x^2 \, dx = \frac{x^3}{3}\bigg|_{0}^{2} = 2 \]

For the trapezoidal rule approximation we have

\[ x_0 = a = 0 \]
\[ x_n = b = 2 \]
\[ n = 4 \]
\[ \Delta x = \frac{b-a}{n} = \frac{2-0}{4} = \frac{1}{2} \]
\[ y = f(x) = x \]

\[ x_0 = a = 0 \quad y_0 = f(x_0) = 0 \]
\[ x_1 = a + \Delta x = \frac{1}{2} \quad y_1 = f(x_1) = \frac{1}{2} \]
\[ x_2 = a + 2\Delta x = 1 \quad y_2 = f(x_2) = 1 \]
\[ x_3 = a + 3\Delta x = \frac{3}{2} \quad y_3 = f(x_3) = \frac{3}{2} \]
\[ x_4 = b = 2 \quad y_4 = f(x_4) = 2 \]

\[ T = \left( \frac{1}{2} \times 0 + \frac{1}{2} + 1 + \frac{3}{2} + \frac{1}{2} \times 2 \right) \times \frac{1}{2} = 4 \times \frac{1}{2} = 2 \]

\( x=\text{linspace}(0,2,4); \, y=x; \, \text{area}=\text{trapz}(x,y) \)

\text{area} =

\[ 2 \]

b. The exact value is

\[ \int_{0}^{2} x^3 \, dx = \frac{x^4}{4}\bigg|_{0}^{2} = 4 \]

For the trapezoidal rule approximation we have
\[ x_0 = a = 0 \]
\[ x_n = b = 2 \]
\[ n = 4 \]
\[ \Delta x = \frac{b - a}{n} = \frac{2 - 0}{4} = \frac{1}{2} \]
\[ y = f(x) = x^3 \]

\[ x_0 = a = 0 \quad y_0 = f(x_0) = 0 \]
\[ x_1 = a + \Delta x = \frac{1}{2} \quad y_1 = f(x_1) = \frac{1}{8} \]
\[ x_2 = a + 2\Delta x = 1 \quad y_2 = f(x_2) = 1 \]
\[ x_3 = a + 3\Delta x = \frac{3}{2} \quad y_3 = f(x_3) = \frac{27}{8} \]
\[ x_4 = b = 2 \quad y_4 = f(x_4) = 8 \]

\[ T = \left( \frac{1}{2} \times 0 + \frac{1}{8} + 1 + \frac{27}{8} + \frac{1}{2} \times 8 \right) \times \frac{1}{2} = \left( 5 + \frac{7}{2} \right) \times \frac{1}{2} = 4.25 \]

\[ x = \text{linspace}(0,2,4); \quad y = x.^3; \quad \text{area} = \text{trapz}(x,y) \]

\[ \text{area} = 4.4444 \]

The deviations from the exact value are due to the small number of divisions \( n \) we chose.

c. The exact value is

\[ \int_{0}^{2} x^4 \, dx = \left. \frac{x^5}{5} \right|_{0}^{2} = \frac{32}{5} = 6.4 \]

For the trapezoidal rule approximation we have

\[ x_0 = a = 0 \]
\[ x_n = b = 2 \]
\[ n = 4 \]
\[ \Delta x = \frac{b - a}{n} = \frac{2 - 0}{4} = \frac{1}{2} \]
\[ y = f(x) = x^4 \]
Chapter 10  Integration by Numerical Methods

\[ x_0 = a = 0 \quad y_0 = f(x_0) = 0 \]
\[ x_1 = a + \Delta x = \frac{1}{2} \quad y_1 = f(x_1) = \frac{1}{16} \]
\[ x_2 = a + 2\Delta x = 1 \quad y_2 = f(x_2) = 1 \]
\[ x_3 = a + 3\Delta x = \frac{3}{2} \quad y_3 = f(x_3) = \frac{81}{8} \]
\[ x_4 = b = 2 \quad y_4 = f(x_4) = 16 \]

\[ T = \left( \frac{1}{2} \times 0 + \frac{1}{16} + 1 + \frac{81}{16} + \frac{1}{2} \times 16 \right) \times \frac{1}{2} = \left( 9 + \frac{41}{8} \right) \times \frac{1}{2} = 7.0625 \]

```
x=linspace(0,2,4); y=x.^4; area=trapz(x,y)
```

area = 7.5720

d. The exact value is

\[ \int_{1}^{2} \frac{1}{x^2} \, dx = \left. -\frac{1}{x} \right|_{1}^{2} = \frac{1}{2} \]

For the trapezoidal rule approximation we have

\[ x_0 = a = 1 \]
\[ x_n = b = 2 \]
\[ n = 4 \]
\[ \Delta x = \frac{b-a}{n} = \frac{2-1}{4} = \frac{1}{4} \]
\[ y = f(x) = \frac{1}{x^2} \]
\[ x_0 = a = 1 \quad y_0 = f(x_0) = 1 \]
\[ x_1 = a + \Delta x = \frac{5}{4} \quad y_1 = f(x_1) = \frac{16}{25} \]
\[ x_2 = a + 2\Delta x = \frac{3}{2} \quad y_2 = f(x_2) = \frac{4}{9} \]
\[ x_3 = a + 3\Delta x = \frac{7}{4} \quad y_3 = f(x_3) = \frac{16}{49} \]
\[ x_4 = b = 2 \quad y_4 = f(x_4) = \frac{1}{4} \]

\[ T = \left( \frac{1}{2} \times \frac{16}{25} + \frac{4}{9} + \frac{16}{49} + \frac{1}{2} \times \frac{1}{4} \right) \times \frac{1}{4} = \left( \frac{3905}{1918} \right) \times \frac{1}{4} = 0.5090 \]
x=linspace(1,2,4); y=1./x.^2; area=trapz(x,y)

area =
0.5158

2.

\[ Area = \frac{1}{3} h (y_0 + 4y_1 + 2y_2 + 4y_3 + 2y_4 + \ldots + 2y_{n-2} + 4y_{n-1} + y_n) \]

a. The exact value is

\[ \int_0^2 x^2 \, dx = \frac{x^3}{3} \bigg|_0^2 = \frac{8}{3} = 2.6667 \]

To use Simpson’s rule we construct the following table using a spreadsheet.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Exercise 10.2.a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>( \int x^2 , dx ) evaluated from ( a = 0 ) to ( b = 2 ) with ( n = 4 )</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Numerical integration by Simpson's method follows</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Given ( a = )</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>( b = )</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>( n = )</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Then, ( h = \frac{b-a}{n} = )</td>
<td></td>
<td>0.5000</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>Multiplier</td>
<td>Products</td>
</tr>
<tr>
<td>9</td>
<td>( x_0 = a = )</td>
<td></td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>( y_0 = x_0^2 = )</td>
<td></td>
<td>0.0000</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>( x_1 = a + h = )</td>
<td></td>
<td>0.5000</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>( y_1 = x_1^2 = )</td>
<td></td>
<td>0.2500</td>
<td>4</td>
</tr>
<tr>
<td>13</td>
<td>( x_2 = a + 2h = )</td>
<td></td>
<td>1.0000</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>( y_2 = x_2^2 = )</td>
<td></td>
<td>1.0000</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>( x_3 = a + 3h = )</td>
<td></td>
<td>1.5000</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>( y_3 = x_3^2 = )</td>
<td></td>
<td>2.2500</td>
<td>4</td>
</tr>
<tr>
<td>17</td>
<td>( x_4 = b = )</td>
<td></td>
<td>2.0000</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>( y_4 = x_4^2 = )</td>
<td></td>
<td>4.0000</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td>Sum of Products =</td>
<td>16.0000</td>
</tr>
<tr>
<td>20</td>
<td>Area = ( \frac{h}{3} ) * ( \text{Sum of Products} ) = ( \frac{1}{12} ) * 8.31905 =</td>
<td></td>
<td>2.6667</td>
<td></td>
</tr>
</tbody>
</table>

We create and save a function m-file. We name it `exer_10_2_a.m` as shown below.

```matlab
function y = exer_10_2_a(x)
 y = x.^2;
end
```

We write and execute the following MATLAB code:

```matlab
y_std=quad('exer_10_2_a',0,2)
```
y_std = 2.6667

b. The exact value is
\[ \int_{0}^{\pi} \sin x \, dx = -\cos x \bigg|_{0}^{\pi} = -(-1 - 1) = 2 \]

To use Simpson's rule we construct the following table using a spreadsheet.

We create and save a function m-file. We name it **exer_10_2_b.m** as shown below.

```matlab
function y = exer_10_2_b(x)
y = sin(x);
```

We write and execute the following MATLAB code:

```matlab
y_std=quad('exer_10_2_b',0,pi)
y_std = 2.0000
```

c. The exact value is
\[ \int_{0}^{\frac{1}{4}} \frac{1}{x^2 + 1} \, dx = \tan^{-1} x \bigg|_{0}^{\frac{\pi}{4}} = \frac{\pi}{4} = 0.7854 \]
To use Simpson’s rule we construct the following table using a spreadsheet.

We create and save a function m-file. We name it `exer_10_2_c.m` as shown below.

```matlab
function y = exer_10_2_c(x)
 y = 1./(x.^2+1);
end
```

We write and execute the following MATLAB code:

```matlab
y_std=quad('exer_10_2_c',0,1)
```

```matlab
y_std =
 0.7854
```
Chapter 11

Difference Equations

This chapter is an introduction to difference equations. The discussion is limited to linear difference equations with constant coefficients. The Fibonacci numbers are defined, and a practical example in electric circuit theory is given at the end of this chapter.

11.1 Definition, Solutions, and Applications

Difference equations are used in numerous applications such as engineering, mathematics, physics, and other sciences. A difference equation defines the relationship between the values $y_k$ of a function, and the discrete set of the independent variables $x_k$. For example, the relation

$$y(n) + b_{r-1}y(n-1) + b_{r-2}y(n-2) + \ldots + b_1y(n-1) = a_{r+1}x(n) + a_{r}x(n-1) + a_{r-1}x(n-2) + \ldots + a_1x(n-1)$$

is a linear difference equation with constant coefficients, and describes the relationship of a discrete input $x(n)$ and the corresponding discrete output $y(n)$ in a linear and time invariant* system, with constant coefficients $a_i$ and $b_i$.

In (11.1), the difference order $k$ was chosen to be the same on both sides. However, in most cases certain coefficients $a_i$ and $b_i$ are zero and thus, the order $k$ for the left and right sides will not always be the same.

The general form of a linear, constant coefficient difference equation has the form

$$(a_0E^r + a_1E^{r-1} + a_{r-1}E + a_r)y = \phi(x)$$

(11.2)

where $a_k$ represents a constant coefficient and $E$ is an operator similar to the $D$ operator in ordinary differential equations. The $E$ operator increases the argument of a function by one interval $h$, and $r$ is a positive integer that denotes the order of the difference equation.

In terms of the interval $h$, the difference operator $E$ is

$$Ef(x_k) = f(x_k + h) = f(x_k + h)$$

(11.3)

* A time invariant system is defined as one in which the input-output relationship does not change with time. That is, if an input $x$ produces an output $y = f(x)$ at some time $t_0$, the same input $x$ will produce the same output $y$ at any other time.

All systems in this text are assumed to be time invariant.
The interval $h$ is usually unity, i.e., $h = 1$, and the subscript $k$ is normally omitted. Thus, (11.3) is written as

$$Ef(x) = f(x + 1) = f_{x+1}$$  \hspace{1cm} (11.4)$$

If, in (11.4), we increase the argument of $f$ by another unit, we get the second order operator $E^2$, that is,

$$E^2f(x) = E[Ef(x)] = Ef(x + 1) = f(x + 2) = f_{x+2}$$  \hspace{1cm} (11.5)$$

and in general,

$$E^r f(x) = f(x + r) = f_{x+r}$$  \hspace{1cm} (11.6)$$

As with ordinary differential equations, the right side of (11.2) is a linear combination of terms such as $kx$, $\cos kx$, and $x^n$, where $k$ is a non-zero constant and $n$ is a non-negative integer. Moreover, if, in (11.2), $\phi(x) = 0$, the equation is referred to as a homogeneous difference equation, and if $\phi(x) \neq 0$, it is a non-homogeneous difference equation.

If, in (11.2), we let $r = 2$, we obtain the second order difference equation

$$(a_2E^2 + a_1E + a_0)y = \phi(x)$$  \hspace{1cm} (11.7)$$

and if the right side is zero, it reduces to

$$(a_2E^2 + a_1E + a_0)y = 0$$  \hspace{1cm} (11.8)$$

If $y_1(x)$ and $y_2(x)$ are any two solutions of (11.8), the linear combination $k_1y_1(x) + k_2y_2(x)$ is also a solution. Also, if the Casorati determinant, analogous to the Wronskian determinant in ordinary differential equations, is non-zero, that is, if

$$C[y_1(x), y_2(x)] = \begin{bmatrix} y_1(x) & y_2(x) \\ Ey_1(x) & Ey_2(x) \end{bmatrix} \neq 0$$  \hspace{1cm} (11.9)$$

then, any other solution of (11.8) can be expressed as

$$y_3(x) = k_1y_1(x) + k_2y_2(x)$$  \hspace{1cm} (11.10)$$

where $k_1$ and $k_2$ are constants.

For the non-homogeneous difference equation

$$(a_2E^2 + a_1E + a_0)y = \phi(x)$$  \hspace{1cm} (11.11)$$

where $\phi(x) \neq 0$, if $Y(x)$ is any solution of (11.11), then the complete solution is
As with ordinary differential equations, we first find the solution of the homogeneous difference equation; then, we add the particular solution \( Y(x) \) to it to obtain the total solution. We find \( Y(x) \) by the Method of Undetermined Coefficients.

We have assumed that the coefficients \( a_i \) in (11.11) are constants; then, in analogy with the solution of the differential equation of the form \( y = ke^{ax} \), for the homogeneous difference equation we assume a solution of the form

\[
y = M^x
\]

By substitution into (11.8), and recalling that \( Ef(x) = f(x + l) \), we get

\[
a_2M^{x+2} + a_1M^{x+1} + a_0M^x = 0
\]

and this is the characteristic equation of a second order difference equation.

As with algebraic quadratic equations, the roots of (11.14) can be real and unequal, real and equal, or complex conjugates depending on whether the discriminant \( a_1^2 - 4a_2a_0 \) is positive, zero, or negative. These cases are summarized in Table 11.1.

**TABLE 11.1 Roots of the characteristic equation in difference equations**

<table>
<thead>
<tr>
<th>Characteristic equation ( a_2M^2 + a_1M + a_0 = 0 ) of ((a_2E^2 + a_1E + a_0)y = 0 )</th>
<th>Discriminant</th>
<th>General Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real and Unequal ( M_1 \neq M_2 )</td>
<td>( a_1^2 - 4a_2a_0 &gt; 0 )</td>
<td>( y = k_1M_1^x + k_2M_2^x ) ( k_1 ) and ( k_2 ) constants</td>
</tr>
<tr>
<td>Real and Equal ( M_1 = M_2 )</td>
<td>( a_1^2 - 4a_2a_0 = 0 )</td>
<td>( y = k_1M_1^x + k_2M_2^x ) ( k_1 ) and ( k_2 ) constants</td>
</tr>
<tr>
<td>Complex Conjugates ( M_1 = \alpha + j\beta ) ( M_2 = \alpha - j\beta )</td>
<td>( a_1^2 - 4a_2a_0 &lt; 0 )</td>
<td>( y = r^x(C_1\cos\theta x + C_2\sin\theta x) ) ( r = \sqrt{\alpha^2 + \beta^2} ) ( \theta = \tan^{-1}\frac{\beta}{\alpha} )</td>
</tr>
</tbody>
</table>

**Example 11.1**

Find the solution of the difference equation

\[
(E^2 - 6E + 8)y = 0
\]
with initial conditions \( y_0 = y(0) = 3 \) and \( y_1 = y(1) = 2 \). Then, compute \( y_5 = y(5) \).

**Solution:**

The characteristic equation of (11.15) is

\[
M^2 - 6M + 8 = 0
\]

and its roots are \( M_1 = 2 \) and \( M_2 = 4 \). Therefore, with reference to Table 11.1, we get the solution

\[
y_x = y(x) = k_1 2^x + k_2 4^x
\]

To make use of the first initial condition, we let \( x = 0 \). Then, (11.17) becomes

\[
y_0 = 3 = k_1 2^0 + k_2 4^0
\]

or

\[
k_1 + k_2 = 3
\]

(11.18)

For the second initial condition, we let \( x = 1 \). Then, (11.17) becomes

\[
y_1 = 2 = k_1 2^1 + k_2 4^1
\]

or

\[
2k_1 + 4k_2 = 2
\]

(11.19)

Simultaneous solution of (11.18) and (11.19) yields \( k_1 = 5 \) and \( k_2 = -2 \). Thus, the solution is

\[
y_x = 5 \cdot 2^x - 2 \cdot 4^x
\]

(11.20)

For \( x = 5 \), we get

\[
y_5 = 5 \cdot 2^5 - 2 \cdot 4^5 = 5 \times 32 - 2 \times 1024 = -1888
\]

**Example 11.2**

Find the solution of the difference equation

\[
(E^2 + 2E + 4)y = 0
\]

(11.21)

**Solution:**

The characteristic equation of (11.21) is

\[
M^2 + 2M + 4 = 0
\]

(11.22)
and its roots are $M_1 = -1 + j\sqrt{3}$ and $M_2 = -1 - j\sqrt{3}$. From Table 11.1, $r = \sqrt{(-1)^2 + (\sqrt{3})^2} = 2$ and $\theta = \tan^{-1}(\sqrt{3}/(-1)) = 2\pi/3$. Therefore, the solution is

$$y = 2^x (C_1 \cos \frac{2\pi}{3} x + C_2 \sin \frac{2\pi}{3} x) \quad (11.23)$$

The constants $C_1$ and $C_2$ can be evaluated from the initial conditions.

For non-homogeneous difference equations of the form of (11.11), we combine the particular solution with the solution of the homogeneous equation shown in (11.12). For the particular solution, we start with a linear combination of all the terms of the right side, that is, $\phi(x)$, and we apply the operator $E$. If any of the terms in the initial choice duplicates a term in the solution of the homogeneous equation, this choice must be multiplied by $x$ until there is no duplication of terms.

Table 11.2 shows the form of the particular solution for different terms of $\phi(x)$.

<table>
<thead>
<tr>
<th>Non-homogeneous difference equation $(a_2E^2 + a_1E + a_0)y = \phi(x)$</th>
<th>Form of Particular Solution $Y(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha$ (constant)</td>
<td>$A$ (constant)</td>
</tr>
<tr>
<td>$\alpha x^k$ $(k = \text{positive integer})$</td>
<td>$A_kx^k + A_{k-1}x^{k-1} + \ldots + A_1x + A_0$</td>
</tr>
<tr>
<td>$\alpha k^x$</td>
<td>$Ak^x$</td>
</tr>
<tr>
<td>$\alpha \cos mx$ or $\alpha \sin mx$</td>
<td>$A_1 \cos mx + A_2 \sin mx$</td>
</tr>
<tr>
<td>$\alpha x^k \cos mx$ or $\alpha x^k \sin mx$</td>
<td>$(A_kx^k + A_{k-1}x^{k-1} + \ldots + A_1x + A_0)lx \cos mx$ + $(B_kx^k + B_{k-1}x^{k-1} + \ldots + B_1x + B_0)lx \sin mx$</td>
</tr>
</tbody>
</table>

Example 11.3

Find the solution of the difference equation

$$(E^2 - 5E + 6)y = x + 2^x \quad (11.24)$$

Solution:

The characteristic equation of (11.24) is
and its roots are $M_1 = 2$ and $M_2 = 3$

From Table 11.1, the solution $Y_H$ of the homogeneous difference equation is

$$Y_H = k_1 2^x + k_2 3^x$$ \quad (11.26)

For the particular solution we refer Table 11.2. For the first term $x$ of the right side of (11.24), we use the term $A_1 x + A_0$, or $Ax + B$. For the second term $2^x$, we get $A 2^x$ or $C 2^x$. And thus, the particular solution has the form

$$Y_P = Ax + B + C 2^x$$ \quad (11.27)

But the term $C 2^x$ in (11.27), is also a term in (11.26). Therefore, to eliminate the duplication, we multiply the term $C 2^x$ by $x$. Thus, the correct form of the particular solution is

$$Y_P = Ax + B + Cx 2^x$$ \quad (11.28)

To evaluate the constants $A$, $B$, and $C$, we substitute (11.28) into (11.24). Then, using (11.5) we get

$$[A(x + 2) + B + C(x + 2) \cdot 2^{x+2}] - 5[A(x + 1) + B + C(x + 1) \cdot 2^{x+1}] + 6[Ax + B + Cx 2^x] = x + 2^x$$ \quad (11.29)

Using the law of exponents $W^m \cdot W^n = W^{m+n}$, simplifying, and equating like terms, we get

$$2Ax + (-3A + 2B) - 2C 2^x = x + 2^x$$ \quad (11.30)

Relation (11.30) will be true if

$$2A = 1 \quad -3A + 2B = 0 \quad -2C = 1$$

or

$$A = 0.5 \quad B = 0.75 \quad C = -0.5$$

By substitution into (11.28), we obtain the particular solution

$$Y_P = 0.5x + 0.75 - 0.5x 2^x$$ \quad (11.31)

Therefore, the total solution is the sum of (11.26) and (11.31), that is,

$$y_{total} = Y_H + Y_P = k_1 2^x + k_2 3^x + 0.5x + 0.75 - 0.5x 2^x$$ \quad (11.32)
11.2 Fibonacci Numbers

The Fibonacci numbers are solutions of the difference equation

\[ y_{x+2} = y_{x+1} + y_x \]  

that is, in a series of numbers, each number after the second, is the sum of the two preceding numbers.

Example 11.4

Given that \( y_0 = 0 \) and \( y_1 = 1 \), compute the first 12 Fibonacci numbers.

Solution:

For \( x = 0, 1, 2, 3 \) and so on, we obtain the Fibonacci numbers

\[ 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, \ldots \]

We will conclude this chapter with an application to electric circuit analysis.

Example 11.5

For the electric network of Figure 11.1, derive an expression for the voltage \( V_x \) at each point \( P_x \) where \( x = 0, 1, 2, \ldots, n \), given that the voltage \( V_0 \) at point \( P_0 \) is known.

Solution:

We need to derive a difference equation that relates the unknown voltage \( V_x \) to the known voltage \( V_0 \). We start by drawing part of the circuit as shown in Figure 11.2, and we denote the voltages and currents as indicated.
By application of Kirchoff’s Current Law (KCL) at node $P_{x+1}$ of Figure 11.2, we get

$$\frac{V_{x+1} - V_x}{R} + \frac{V_{x+1}}{2R} + \frac{V_{x+1} - V_{x+2}}{R} = 0$$  \hspace{1cm} (11.34)$$

and after simplification,

$$\frac{2}{R}(V_{x+2} - 2.5V_{x+1} + V_x) = 0$$

Of course, the term $2/R$ cannot be zero. Therefore, we must have

$$V_{x+2} - 2.5V_{x+1} + V_x = 0$$  \hspace{1cm} (11.35)$$

Relation (11.35) is valid for all points except $P_1$ and $P_{n-1}$ as shown in Figure 11.1; therefore, we must find the current relations at these two points.

Also, by application of Kirchoff’s current law (KCL) at node $P_1$ of Figure 11.1, we get

$$\frac{V_1 - V_0}{R} + \frac{V_1}{2R} + \frac{V_1 - V_2}{R} = 0$$

and after simplification,

$$V_2 - 2.5V_1 + V_0 = 0$$  \hspace{1cm} (11.36)$$

Likewise, at node $P_{n-1}$ of Figure 11.1, we get

$$\frac{V_{n-1} - V_{n-2}}{R} + \frac{V_{n-1}}{2R} + \frac{V_{n-1} - V_n}{R} = 0$$

Observing that $V_n = 0$, and simplifying, we get

$$2.5V_{n-1} - V_{n-2} = 0$$  \hspace{1cm} (11.37)$$

* The voltages at nodes $P_0$ and $P_n$ are $V_0$ and $V_n$ respectively.
Relation (11.36) is a difference equation of the form

\[(E^2 - 2.5E + 1)y = 0\]

where \(y = V_x\). Its characteristic equation is

\[M^2 - 2.5M + 1 = 0\]  \hspace{1cm} (11.38)

The roots of the characteristic equation of (11.38) are \(M_1 = 0.5\) and \(M_2 = 2\). Thus, the solution is

\[y = V_x = k_1(0.5)^x + k_2(2)^x\]  \hspace{1cm} (11.39)

The constant coefficients \(k_1\) and \(k_2\) in (11.39), are found by substitution of this relation into (11.36) and (11.37). Thus, from (11.39) and (11.36), we get

\[k_1(0.5)^2 + k_2(2)^2 - 2.5(k_1(0.5)^l + k_2(2)^l) + V_0 = 0\]

or

\[0.25k_1 + 4k_2 - 1.25k_1 - 5k_2 + V_0 = 0\]

or

\[k_1 + k_2 = V_0\]  \hspace{1cm} (11.40)

Likewise, from (11.39) and (11.37) we get

\[2.5\left(k_1\left(\frac{1}{2}\right)^{n-l} + k_2(2)^{n-l}\right) - k_1\left(\frac{1}{2}\right)^{n-2} - k_2(2)^{n-2} = 0\]

or

\[\frac{2.5k_1}{2^{n-l}} + 2.5k_2(2)^{n-l} - \frac{k_1}{2^{n-2}} - k_2(2)^{n-2} = 0\]

or

\[\frac{2(2.5)k_1}{2^n} + \frac{2.5k_2(2)^n}{2} - \frac{4k_1}{2^n} - \frac{k_2(2)^n}{4} = 0\]

or

\[\frac{k_1}{2^n} + k_2(2)^n = 0\]  \hspace{1cm} (11.41)

Simultaneous solution of (11.40) and (11.41) yields

\[k_1 = \frac{2^{2n}}{2^{2n} - 1}V_0 \quad k_2 = \frac{-1}{2^{2n} - 1}V_0\]  \hspace{1cm} (11.42)
Finally, substitution of (11.42) into (11.39) yields a solution of the difference equation in terms of \( V_0 \), that is,

\[
y = V_x = \frac{2^{2n}}{2^{2n} - 1} V_0 \left( \frac{1}{2} \right)^x + \frac{-1}{2^{2n} - 1} V_0 (2)^x
\]
or

\[
y = V_x = \left( \frac{2^{2n}}{2^x - 2} \right) \frac{V_0}{2^{2n} - 1}
\]

(11.43)

We observe that when \( x = 0 \),

\[
y = V_x = \left( \frac{2^{2n}}{1 - 1} \right) \frac{V_0}{2^{2n} - 1} = V_0
\]

and when \( x = n \),

\[
y = V_x = \left( \frac{2^{2n} - 2^n}{2^n - 1} \right) \frac{V_0}{2^{2n} - 1} = (2^n - 2^n) \frac{V_0}{2^{2n} - 1} = 0
\]

11.3 Summary

- The general form of a linear, constant coefficient difference equation has the form
  \[
  (a_0 E^r + a_1 E^{r-1} + a_{r-1} E + a_r) y = \phi(x)
  \]

where \( a_k \) represents a constant coefficient and \( E \) is an operator similar to the \( D \) operator in ordinary differential equations. As with ordinary differential equations, the right side is a linear combination of terms such as \( k x, \cos k x, \) and \( x^n \), where \( k \) is a non-zero constant and \( n \) is a non-negative integer. If \( \phi(x) = 0 \), the equation is referred to as a homogeneous difference equation, and if \( \phi(x) \neq 0 \), it is a non-homogeneous difference equation.

- The difference operator \( E \) is
  \[
  Ef(x_k) = f(x_k + h) = f(x_k + h)
  \]

The interval \( h \) is usually unity, i.e., \( h = 1 \), and the subscript \( k \) is normally omitted. Thus, (11.3) is written as

\[
Ef(x) = f(x + 1) = f_{x+1}
\]

and in general,

\[
E^r f(x) = f(x + r) = f_{x+r}
\]
Summary

- If \( y_1(x) \) and \( y_2(x) \) are any two solutions of a homogeneous difference equation, the linear combination \( k_1 y_1(x) + k_2 y_2(x) \), where \( k_1 \) and \( k_2 \) are constants, is also a solution.

- If the Casorati determinant, analogous to the Wronskian determinant in ordinary differential equations, is non-zero, that is, if

\[
C[y_1(x), y_2(x)] = \begin{bmatrix} y_1(x) & y_2(x) \\ E y_1(x) & E y_2(x) \end{bmatrix} \neq 0
\]

then, any other solution of the homogeneous difference equation can be expressed as

\[
y_3(x) = k_1 y_1(x) + k_2 y_2(x)
\]

- For the non-homogeneous difference equation

\[
(a_2 E^2 + a_1 E + a_0)y = \phi(x)
\]

where \( \phi(x) \neq 0 \), if \( Y(x) \) is any solution of (11.11), then the complete solution is

\[
y = k_1 y_1(x) + k_2 y_2(x) + Y(x)
\]

As with ordinary differential equations, we first find the solution of the homogeneous difference equation; then, we add the particular solution \( Y(x) \) to it to obtain the total solution. We find \( Y(x) \) by the Method of Undetermined Coefficients.

- In analogy with the solution of the differential equation of the form \( y = ke^{ax} \), for the homogeneous difference equation, we assume a solution of the form

\[
y = M^x
\]

- Since \( Ef(x) = f(x + 1) \), the characteristic equation of a second order difference equation is

\[
a_2 M^x + a_1 M^{x+1} + a_0 M^x = 0
\]

and as with algebraic quadratic equations, the roots can be real and unequal, real and equal, or complex conjugates depending on whether the discriminant \( a_1^2 - 4a_2a_0 \) is positive, zero, or negative. These cases are summarized in Table 11.1.

- For non-homogeneous difference equations we combine the particular solution with the solution of the homogeneous equation. For the particular solution, we start with a linear combination of all the terms of the right side, that is, \( \phi(x) \), and we apply the operator \( E \). If any of the terms in the initial choice duplicates a term in the solution of the homogeneous equation, this choice must be multiplied by \( x \) until there is no duplication of terms. The form of the particu-
lar solution for different terms of $\phi(x)$ is shown in Table 11.2.

- The Fibonacci numbers are solutions of the difference equation

\[ y_{x+2} = y_{x+1} + y_x \]

that is, in a series of numbers, each number after the second, is the sum of the two preceding numbers.
11.4 Exercises

Find the total solution of the following difference equations.

1. \((E^2 + 7E + 12)y = 0\)

2. \((E^2 + 2E + 2)y = 0\)

3. \((E^2 - E - 6)y = x + 3^x\)

4. \((E^2 + 1)y = \sin x\)
11.5 Solutions to Exercises

1.

The characteristic equation is

\[(E^2 + 7E + 12)y = 0\]

and its roots are \(M_1 = -3\) and \(M_2 = -4\). Therefore, with reference to Table 11.1, we get the solution

\[y_x = y(x) = k_j(-3)^x + k_2(-4)^x \quad (1)\]

The constants \(k_j\) and \(k_2\) can be evaluated from the initial conditions. Since they were not given, let us assume that \(y_0 = y(0) = 1\) and \(y_1 = y(1) = 2\).

To make use of the first initial condition, we let \(x = 0\). Then, (1) becomes

\[y_0 = 1 = k_j(-3)^0 + k_2(-4)^0\]

or

\[k_j + k_2 = 1 \quad (2)\]

For the second initial condition, we let \(x = 1\). Then, (1) becomes

\[y_1 = 2 = k_j(-3)^1 + k_2(-4)^1\]

or

\[-3k_j - 4k_2 = 2 \quad (3)\]

Simultaneous solution of (2) and (3) yields \(k_j = 6\) and \(k_2 = -5\). Thus, the solution is

\[y_x = y(x) = 6 \times (-3)^x - 5 \times (-4)^x\]

2.

The characteristic equation is

\[(E^2 + 2E + 2)y = 0\]

and its roots are \(M_1 = -1 + j\) and \(M_2 = -1 - j\). From Table 11.1, \(r = \sqrt{(-1)^2 + (1)^2} = \sqrt{2}\) and \(\theta = \tan^{-1}1/(-1) = -\pi/4\). Therefore, the solution is

\[y = \sqrt{2}^x(C_1 \cos(-\pi/4)x + C_2 \sin(-\pi/4)x)\]
The constants $C_1$ and $C_2$ can be evaluated from the initial conditions. For this exercise, they were not given.

3. 

$$(E^2 - E - 6)y = x + 3^x$$

The characteristic equation is

$$M^2 - M - 6 = 0$$

and its roots are $M_1 = -2$ and $M_2 = 3$

From Table 11.1, the solution $Y_H$ of the homogeneous difference equation is

$$Y_H = k_1(-2)^x + k_23^x \ (1)$$

For the particular solution we refer Table 11.2. For the first term $x$ of the right side of the given equation we use the term $A_1x + A_0$, or $Ax + B$. For the second term $3^x$, we get $A3^x$ or $C3^x$, and thus, the particular solution has the form

$$Y_P = Ax + B + C3^x$$

But the term $C3^x$ is also a term in the given equation. Therefore, to eliminate the duplication, we multiply the term $C3^x$ by $x$. Thus, the correct form of the particular solution is

$$Y_P = Ax + B + Cx3^x \ (2)$$

To evaluate the constants $A$, $B$, and $C$, we substitute the last expression above into the given equation. Then,

$$[A(x + 2) + B + C(x + 2) \cdot 3^{x+2}] - [A(x + 1) + B + C(x + 1) \cdot 3^{x+1}] = -6(Ax + B + Cx3^x) = x + 3^x$$

Using the law of exponents $W^{m+n} = W^m \times W^n$, simplifying, and equating like terms, we get

$$-6Ax + (A-6B) + 15C3^x = x + 3^x$$

This relation will be true if

$$-6A = 1 \quad A-6B = 0 \quad 15C = 1$$

or

$$A = -1/6 \quad B = 1/36 \quad C = 1/15$$
By substitution into (2), we obtain the particular solution

\[ Y_p = (-1/6)x + 1/36 + (1/15)x^2 \]  

(3)

Therefore, the total solution is the sum of (1) and (3), that is,

\[ y_{total} = Y_H + Y_p = k_1(-2)^x + k_23^x + (-1/6)x + 1/36 + (1/15)x^2 \]

4.

\[(E^2 + 1)y = \sin x \]  

(1)

The characteristic equation is

\[ M^2 + 1 = 0 \]

and its roots are \( M_1 = j \) and \( M_2 = -j \)

From Table 11.1, \( r = \sqrt{(-1)^2} = 1 \) and \( \theta = \tan^{-1}1/0 = \pi/2 \). Therefore, the homogeneous part of the solution is

\[ Y_H = C_1 \cos(\pi/2)x + C_2 \sin(\pi/2)x \]  

(2)

For the particular solution we refer Table 11.2 where we find that the solution has the form \( A_1 \cos mx + A_2 \sin mx \), and for this exercise

\[ Y_p = A \cos x + B \sin x \]

Since the cosine and sine terms appear in the complimentary solution, we multiply the terms of the particular solution by \( x \) and we get

\[ Y_p = A x \cos x + B x \sin x \]  

(3)

To evaluate the constants \( A \), \( B \), and \( C \), we substitute the last expression above into (1) and we get

\[ A(x + 2) \cos(x + 2) + B(x + 2) \sin(x + 2) + A x \cos x + B x \sin x = \sin x \]

Using the trig identities

\[ \cos(a + b) = \cos a \cos b - \sin a \sin b \]

\[ \sin(a + b) = \sin a \cos b - \cos a \sin b \]

expanding, rearranging, equating like terms, and combining the complimentary and particular solutions we get

\[ y = C_1 \cos \frac{\pi}{2}x + C_2 \sin \frac{\pi}{2}x + \frac{\sin x + \sin(x - 2)}{2(1 + \cos 2)} \]
Chapter 12

Partial Fraction Expansion

This chapter is an introduction to partial fraction expansion methods. In elementary algebra we learned how to combine fractions over a common denominator. Partial fraction expansion is the reverse process and splits a rational expression into a sum of fractions having simpler denominators.

12.1 Partial Fraction Expansion

The partial fraction expansion method is used extensively in integration and in finding the inverses of the Laplace, Fourier, and Z transforms. This method allows us to decompose a rational polynomial into smaller rational polynomials with simpler denominators, from which we can easily recognize their integrals or inverse transformations. In the subsequent discussion we will discuss the partial fraction expansion method and we will illustrate with several examples. We will also use the MATLAB `residue(r,p,k)` function which returns the residues (coefficients) \( r \) of a partial fraction expansion, the poles \( p \) and the direct terms \( k \). There are no direct terms if the highest power of the numerator is less than that of the denominator.

Let

\[
F(s) = \frac{N(s)}{D(s)}
\]

where \( N(s) \) and \( D(s) \) are polynomials and thus (12.1) can be expressed as

\[
F(s) = \frac{N(s)}{D(s)} = \frac{b_m s^m + b_{m-1} s^{m-1} + \cdots + b_1 s + b_0}{a_n s^n + a_{n-1} s^{n-1} + \cdots + a_1 s + a_0}
\]

The coefficients \( a_k \) and \( b_k \) for \( k = 0, 1, 2, \ldots, n \) are real numbers and, for the present discussion, we have assumed that the highest power of \( N(s) \) is less than the highest power of \( D(s) \), i.e., \( m < n \). In this case, \( F(s) \) is a proper rational function. If \( m \geq n \), \( F(s) \) is an improper rational function.

It is very convenient to make the coefficient \( a_n \) of \( s^n \) in (12.2) unity; to do this, we rewrite it as

\[
F(s) = \frac{N(s)}{D(s)} = \frac{\frac{1}{a_n} (b_m s^m + b_{m-1} s^{m-1} + \cdots + b_1 s + b_0)}{s^n + \frac{a_{n-1}}{a_n} s^{n-1} + \frac{a_{n-2}}{a_n} s^{n-2} + \cdots + \frac{a_1}{a_n} s + \frac{a_0}{a_n}}
\]
Chapter 12  Partial Fraction Expansion

The roots of the numerator are called the zeros of $F(s)$, and are found by letting $N(s) = 0$ in (12.3). The roots of the denominator are called the poles of $F(s)$ and are found by letting $D(s) = 0$.

The zeros and poles of (12.3) can be real and distinct, or repeated, or complex conjugates, or combinations of real and complex conjugates. However, in most engineering applications we are interested in the nature of the poles. We will consider the nature of the poles for each case.

**Case I: Distinct Poles**

If all the poles $p_1$, $p_2$, $p_3$, ..., $p_n$ of $F(s)$ are distinct (different from each another), we can factor the denominator of $F(s)$ in the form

$$F(s) = \frac{N(s)}{(s-p_1) \cdot (s-p_2) \cdot (s-p_3) \cdot \ldots \cdot (s-p_n)} \quad (12.4)$$

where $p_k$ is distinct from all other poles. Then, the partial fraction expansion method allows us to express (12.4) as

$$F(s) = \frac{r_1}{(s-p_1)} + \frac{r_2}{(s-p_2)} + \frac{r_3}{(s-p_3)} + \ldots + \frac{r_n}{(s-p_n)} \quad (12.5)$$

where $r_1$, $r_2$, $r_3$, ..., $r_n$ are the residues of $F(s)$.

To evaluate the residue $r_k$, we multiply both sides of (12.5) by $(s-p_k)$; then, we let $s \to p_k$, that is,

$$r_k = \lim_{s \to p_k} (s-p_k)F(s) = (s-p_k)F(s)|_{s=p_k} \quad (12.6)$$

**Example 12.1**

Use partial fraction expansion to simplify $F_1(s)$ of (12.7) below.

$$F_1(s) = \frac{3s + 2}{s^2 + 3s + 2} \quad (12.7)$$

**Solution:**

$$F_1(s) = \frac{3s + 2}{s^2 + 3s + 2} = \frac{3s + 2}{(s + 1)(s + 2)} = \frac{r_1}{(s + 1)} + \frac{r_2}{(s + 2)} \quad (12.8)$$
Therefore, by substitution into (12.8), we get

\[ r_1 = \lim_{s \to -1} (s + 1)F(s) = \frac{3s + 2}{(s + 2)} \bigg|_{s = -1} = -1 \]

\[ r_2 = \lim_{s \to -2} (s + 2)F(s) = \frac{3s + 2}{(s + 1)} \bigg|_{s = -2} = 4 \]

Therefore, by substitution into (12.8), we get

\[ F_1(s) = \frac{3s + 2}{s^2 + 3s + 2} = -\frac{1}{(s + 1)} + \frac{4}{(s + 2)} \quad (12.9) \]

We can use the MATLAB \texttt{residue(r,p,k)} function to verify our answers with the following code:

\texttt{Ns = [3, 2]; Ds = [1, 3, 2]; [r, p, k] = residue(Ns, Ds)}

\[ r = \begin{cases} 4 \\ -1 \end{cases} \]

\[ p = \begin{cases} -2 \\ -1 \end{cases} \]

\[ k = [] \]

where we have denoted \texttt{Ns} and \texttt{Ds} as two vectors that contain the numerator and denominator coefficients of \( F_1(s) \). MATLAB displays the \texttt{r}, \texttt{p}, and \texttt{k} vectors; these represent the residues, poles, and direct terms respectively. The first value of the vector \texttt{r} is associated with the first value of the vector \texttt{p}, the second value of \texttt{r} is associated with the second value of \texttt{p}, and so on. The vector \texttt{k} is referred to as the \textit{direct term}, and it is always empty (has no value) whenever \( F(s) \) is a proper rational function. For this example, we observe that the highest power of the denominator is \( s^2 \) whereas the highest power of the numerator is \( s \) and therefore, the direct term \( k \) is empty.

**Example 12.2**

Use partial fraction expansion to simplify \( F_2(s) \) of (12.10) below.

\[ F_2(s) = \frac{3s^2 + 2s + 5}{s^3 + 12s^2 + 44s + 48} \quad (12.10) \]
Solution:

First, we will use the MATLAB function `factor(s)` to express the denominator polynomial of $F_2(s)$ in factored form. This function returns an expression that contains the prime factors of a polynomial. However, this function is used with symbolic expressions. These expressions are explained below.

The functions, like `roots(p)`, which we have used before, are display numeric expressions, that is, they produce numerical results. Symbolic expressions, on the other hand, can manipulate mathematical expressions without using actual numbers. Some examples of symbolic expressions are given below.

$$\sin^2 x \quad e^{-\alpha t} \quad y = \frac{d^2}{dt^2}(3t^3 - 4t^2 + 5t + 8) \quad u = \int \frac{1}{x} \, dx$$

MATLAB contains the so-called Symbolic Math Toolbox. This is a collection of tools (functions) which are used in solving symbolic expressions; they are discussed in detail in MATLAB User's Manual. For the present, our interest is in using the `factor(s)` to express the denominator of (12.10) as a product of simple factors.

Before using symbolic expressions, we must create a symbolic variable $x, y, s, t$ etc. This is done with the `sym` function. For example, $s = \text{sym}(\text{'s'})$ creates the symbolic variable $s$. Alternately, we can use the `syms` function to define one or more symbolic variables with a single statement. For example,

```matlab
syms x y z a1 k2
```

defines the symbolic variables $x, y, z, a1$ and $k2$.

Returning to Example 12.2 and using MATLAB we have:

```matlab
syms s; den=s^3+12*s^2+44*s+48; factor(den)
ans =
(s+4) * (s+2) * (s+6)
```

and thus,

$$F_2(s) = \frac{3s^2 + 2s + 5}{s^3 + 12s^2 + 44s + 48} = \frac{3s^2 + 2s + 5}{(s+2)(s+4)(s+6)} = \frac{r_1}{(s+2)} + \frac{r_2}{(s+4)} + \frac{r_3}{(s+6)}$$

Next, we find the residues $r_1, r_2, \text{ and } r_3$. These are

* Of course, we can use the `roots(p)` function. The `factor(s)` function is a good alternative.
Partial Fraction Expansion

\[ r_1 = \frac{3s^2 + 2s + 5}{(s + 4)(s + 6)} \bigg|_{s = -2} = \frac{9}{8} \]
\[ r_2 = \frac{3s^2 + 2s + 5}{(s + 2)(s + 6)} \bigg|_{s = -4} = \frac{-37}{4} \]
\[ r_3 = \frac{3s^2 + 2s + 5}{(s + 2)(s + 4)} \bigg|_{s = -6} = \frac{89}{8} \]

Therefore,

\[ F_2(s) = \frac{3s^2 + 2s + 5}{s^3 + 12s^2 + 44s + 48} = \frac{9/8}{s + 2} + \frac{-37/4}{s + 4} + \frac{89/8}{s + 6} \]

Case II: Complex Poles

Quite often, the poles of a proper rational function \( F(s) \) are complex, and since complex poles occur in complex conjugate pairs, the number of complex poles is even. Thus if \( p_k \) is a complex pole, then its complex conjugate \( p_k^* \) is also a pole. The partial fraction expansion method can also be used in this case, as illustrated by the following example.

Example 12.3

Use partial fraction expansion to simplify \( F_3(s) \) of (12.11) below.

\[ F_3(s) = \frac{s + 3}{s^3 + 5s^2 + 12s + 8} \] (12.11)

Solution:

As a first step, we express the denominator in factored form to identify the poles of \( F_3(s) \). Using the MATLAB code

\texttt{syms s; factor(s^3 + 5*s^2 + 12*s + 8)}

we get

\texttt{ans} =
\texttt{(s+1)*(s^2+4*s+8)}

Since the \texttt{factor(s)} function did not factor the quadratic term, we will use the \texttt{roots(p)} function to find its roots by treating it as a polynomial.

\texttt{p=[1 4 8]; roots_p=roots(p)}

\texttt{roots_p =}
\texttt{-2.0000+2.0000i}
\texttt{-2.0000-2.0000i}

* For some undocumented reason, the \texttt{factor(s)} function does not seem to work with complex numbers.
Then,

\[ F_3(s) = \frac{s + 3}{s^3 + 5s^2 + 12s + 8} = \frac{s + 3}{(s + 1)(s + 2 + j2)(s + 2 - j2)} \]  \( (12.12) \)

and the residues are

\[
\begin{align*}
\text{Case III: Multiple (Repeated) Poles} \\
\text{In this case, } F(s) \text{ has simple poles but one of the poles, say } p_i, \text{ has a multiplicity } m. \text{ Then},
\end{align*}
\]

\[
F(s) = \frac{N(s)}{(s - p_1)^m(s - p_2) \cdots (s - p_{n-1})(s - p_n)} \]  \( (12.15) \)
and denoting the \( m \) residues corresponding to multiple pole \( p_k \) as \( r_{11}, r_{12}, \ldots r_{1m} \), the partial fraction expansion of (12.15) can be expressed as

\[
F(s) = \frac{r_{11}}{(s - p_1)^m} + \frac{r_{12}}{(s - p_1)^{m-1}} + \frac{r_{13}}{(s - p_1)^{m-2}} + \cdots + \frac{r_{1m}}{(s - p_1)}
\]

\[
+ \frac{r_2}{(s - p_2)} + \frac{r_3}{(s - p_3)} + \cdots + \frac{r_n}{(s - p_n)}
\]

(12.16)

For the simple poles \( p_1, p_2, \ldots p_n \) we proceed as before, that is,

\[
r_k = \lim_{s \to p_k} (s - p_k)F(s) = (s - p_k)F(s) \bigg|_{s = p_k}
\]

To find the first residue \( r_{11} \) of the repeated pole, we multiply both sides of (12.16) by \((s - p_1)^m\). Then,

\[
(s - p_1)^mF(s) = r_{11} + (s - p_1)r_{12} + (s - p_1)^2r_{13} + \cdots + (s - p_1)^{m-1}r_{1m} + (s - p_1)^m \left( \frac{r_2}{(s - p_2)} + \frac{r_3}{(s - p_3)} + \cdots + \frac{r_n}{(s - p_n)} \right)
\]

(12.17)

Next, taking the limit as \( s \to p_1 \) on both sides of (12.17), we get

\[
\lim_{s \to p_1} (s - p_1)^mF(s)
\]

\[
= r_{11} + \lim_{s \to p_1} \left[ (s - p_1)r_{12} + (s - p_1)^2r_{13} + \cdots + (s - p_1)^{m-1}r_{1m} \right]
\]

\[
+ \lim_{s \to p_1} \left[ (s - p_1)^m \left( \frac{r_2}{(s - p_2)} + \frac{r_3}{(s - p_3)} + \cdots + \frac{r_n}{(s - p_n)} \right) \right]
\]

or

\[
r_{11} = \lim_{s \to p_1} (s - p_1)^mF(s)
\]

(12.19)

and thus (12.19) yields the residue of the first repeated pole.

To find the second residue \( r_{12} \) of the second repeated pole \( p_1 \), we first differentiate the relation of (12.18) with respect to \( s \); then, we let \( s \to p_1 \), that is,

\[
r_{12} = \lim_{s \to p_1} \frac{d}{ds} \left[ (s - p_1)^mF(s) \right]
\]

(12.20)

To find the third residue \( r_{13} \) of the repeated pole \( p_1 \), we differentiate (12.18) twice with respect
to \( s \); then, we let \( s \to p_1 \), that is,

\[
    r_{13} = \lim_{s \to p_1} \frac{d^2}{ds^2}[(s - p_1)^m F(s)]
\]

(12.21)

This process is continued until all residues of the repeated poles have been found.

In general, for repeated poles the residue \( r_{1k} \) can be derived from the relation

\[
(s - p_1)^m F(s) = r_{11} + r_{12}(s - p_1) + r_{13}(s - p_1)^2 + \ldots
\]

(12.22)

whose \((m - 1)th\) derivative of both sides is

\[
(k-1)!r_{1k} = \lim_{s \to p_1} \frac{d^{k-1}}{ds^{k-1}}[(s - p_1)^m F(s)]
\]

(12.23)

or

\[
r_{1k} = \lim_{s \to p_1} \frac{1}{(k-1)!} \frac{d^{k-1}}{ds^{k-1}}[(s - p_1)^m F(s)]
\]

(12.24)

**Example 12.4**

Use partial fraction expansion to simplify \( F_4(s) \) of (12.25) below.

\[
F_4(s) = \frac{s + 3}{(s + 2)(s + 1)^2}
\]

(12.25)

**Solution:**

We observe that there is a pole of multiplicity 2 at \( s = -1 \) and thus, (12.25) in partial fraction expansion form is

\[
F_4(s) = \frac{s + 3}{(s + 2)(s + 1)^2} = \frac{r_1}{(s + 2)} + \frac{r_{21}}{(s + 1)^2} + \frac{r_{22}}{(s + 1)}
\]

(12.26)

The residues are

\[
r_1 = \frac{s + 3}{(s + 1)^2} \bigg|_{s = -2} = 1
\]

\[
r_{21} = \frac{s + 3}{(s + 2)} \bigg|_{s = -1} = 2
\]

\[
r_{22} = \frac{d}{ds} \left( \frac{s + 3}{s + 2} \right) \bigg|_{s = -1} = \frac{(s + 2) - (s + 3)}{(s + 2)^2} \bigg|_{s = -1} = -1
\]
Then, by substitution into \((12.26)\),

\[
F_4(s) = \frac{s + 3}{(s + 2)(s + 1)^2} = \frac{1}{s + 2} + \frac{2}{(s + 1)^2} + \frac{-1}{s + 1}
\]

Instead of differentiation, the residue \(r_{22}\) could be found by substitution of the already known values of \(r_1\) and \(r_{21}\) into \((12.26)\), and letting \(s = 0\), that is,

\[
\frac{s + 3}{(s + 1)^2(s + 2)}\bigg|_{s = 0} = \frac{1}{s + 2}\bigg|_{s = 0} + \frac{2}{(s + 1)^2}\bigg|_{s = 0} + \frac{r_{22}}{(s + 1)}\bigg|_{s = 0}
\]

or \(3/2 = 1/2 + 2 + r_{22}\) from which \(r_{22} = -1\) as before.

To check our answers with MATLAB, we will use the `expand(s)` function. Like the `factor(s)` function, `expand(s)` is used with symbolic expressions. Its description can be displayed with the `help expand` command.

Check with MATLAB:

```matlab
syms s % Create symbolic variable s
expand((s + 1)^2) % Express it as a polynomial
ans =
s^2+2*s+1

Ns = [1 3]; % Coefficients of the numerator N(s)
d1 = [1 2 1]; % Coefficients of \((s + 1)^2 = s^2 + 2s + 1\) term in D(s)
d2 = [0 1 2]; % Coefficients of \((s + 2)\) term in D(s)
Ds=conv(d1,d2); % Multiplies polynomials d1 and d2 to express denominator D(s) as polynomial
[r,p,k]=residue(Ns,Ds)

r =
1.0000
-1.0000
2.0000

p =
-2.0000
-1.0000
-1.0000

k =
[]
```

* We must remember that \((2.45)\) is an identity, and as such, it is true for any value of \(s\).*

---

* Numerical Analysis Using MATLAB and Spreadsheets, Second Edition
  Orchard Publications*
Example 12.5

Use partial fraction expansion to simplify $F_5(s)$ of (12.27) below.

$$F_5(s) = \frac{s^2 + 3s + 1}{(s + 1)^3(s + 2)^2} \quad (12.27)$$

Solution:

We observe that there is a pole of multiplicity 3 at $s = -1$, and a pole of multiplicity 2 at $s = -2$. Then, in partial fraction expansion form

$$F_5(s) = \frac{r_{11}}{(s + 1)^3} + \frac{r_{12}}{(s + 1)^2} + \frac{r_{13}}{(s + 1)} + \frac{r_{21}}{(s + 2)^2} + \frac{r_{22}}{(s + 2)} \quad (12.28)$$

We find the residue $r_{11}$ by evaluating $F_5(s)$ at as $s = -1$

$$r_{11} = \left. \frac{s^2 + 3s + 1}{(s + 2)^2} \right|_{s = -1} = -1 \quad (12.29)$$

The residue $r_{12}$ is found by first taking the first derivative of $F_5(s)$, and evaluating it at $s = -1$.

Thus,

$$r_{12} = \left. \frac{d}{ds}\left(\frac{s^2 + 3s + 1}{(s + 2)^2}\right) \right|_{s = -1} \quad (12.30)$$

$$= \left. \frac{(s + 2)^2(2s + 3) - 2(s + 2)(s^2 + 3s + 1)}{(s + 2)^4} \right|_{s = -1} = \frac{s + 4}{(s + 2)^3} = 3$$

The residue $r_{13}$ is found by taking the second derivative of $F_5(s)$ and evaluating it at $s = -1$.

Then,

$$r_{13} = \left. \frac{1}{2!} \frac{d^2}{ds^2}\left(\frac{s^2 + 3s + 1}{(s + 2)^2}\right) \right|_{s = -1} = \left. \frac{1}{2} \frac{d}{ds}\left[\frac{d}{ds}\left(\frac{s^2 + 3s + 1}{(s + 2)^2}\right)\right] \right|_{s = -1} \quad (12.31)$$

$$= \left. \frac{1}{2} \frac{d}{ds}\left(\frac{s + 4}{(s + 2)^2}\right) \right|_{s = -1} = \left. \frac{1}{2} \frac{(s + 2)^3 - 3(s + 2)^2(s + 4)}{(s + 2)^6} \right|_{s = -1}$$

$$= \left. \frac{1}{2} \frac{(s + 2 - 3s - 12)}{(s + 2)^4} \right|_{s = -1} = \left. \frac{-s - 5}{(s + 2)^4} \right|_{s = -1} = -4$$
Similarly, the residue $r_{21}$ if found by evaluating $F_5(s)$ at $s = -2$, and the residue $r_{22}$ is found by first taking the first derivative of $F_5(s)$ and evaluating it at $s = -2$. Therefore,

$$r_{21} = \frac{s^2 + 3s + 1}{(s + 1)^3} \bigg|_{s = -2} = 1$$

$$r_{22} = \frac{d}{ds} \left( \frac{s^2 + 3s + 1}{(s + 1)^3} \right) \bigg|_{s = -2} = \frac{(s + 1)^3(2s + 3) - 3(s + 1)^2(s^2 + 3s + 1)}{(s + 1)^6} \bigg|_{s = -2} = -\frac{s^2 - 4s}{(s + 1)^4} \bigg|_{s = -2} = 4$$

By substitution of these residues into (12.28), we get $F_5(s)$ in partial fraction expansion as

$$F_5(s) = \frac{-1}{(s + 1)^3} + \frac{3}{(s + 1)^2} + \frac{4}{(s + 1)} + \frac{1}{(s + 2)^2} + \frac{4}{(s + 2)} \quad (12.32)$$

We will now verify the values of these residues with MATLAB. Before we do this, we introduce the \texttt{collect(s)} function that we can use to multiply two or more symbolic expressions to obtain the result in a polynomial form. Its description can be displayed with the \texttt{help collect} command. We must remember that the \texttt{conv(p,q)} function is used with numeric expressions, i.e., polynomial coefficients only.

The MATLAB code for this example is as follows.

```
syms s; % We must first define the variable s in symbolic form
% The function "collect" below multiplies (s+1)^3 by (s+2)^2
Ds=collect(((s+1)^3)*((s+2)^2))

Ds =
 s^5+7*s^4+19*s^3+25*s^2+16*s+4

% We now use this result to express the denominator D(s) as a
% polynomial so we can use its coefficients with the "residue" function
%
Ns=[1 3 1]; Ds=[1 7 19 25 16 4]; [r,p,k]=residue(Ns,Ds)

r =
 4.0000
 1.0000
-4.0000
```
Chapter 12  Partial Fraction Expansion

3.0000
-1.0000
\( p = \)
-2.0000
-2.0000
-1.0000
-1.0000
-1.0000
k =
[]

Case for \( m \geq n \)

Our discussion thus far, was based on the condition that \( F(s) \) is a proper rational function, that is, the highest power \( m \) of the numerator is less than the highest power \( n \) of the denominator, i.e., \( m < n \). If \( m \geq n \), \( F(s) \) is an improper rational function, and before we apply the partial fraction expansion, we must divide the numerator \( N(s) \) by the denominator \( D(s) \) to obtain an expression of the form

\[
F(s) = k_0 + k_1s + k_2s^2 + \ldots + k_{m-n}s^{m-n} + \frac{N(s)}{D(s)}
\]  \hspace{1cm} (12.33)

so that \( m < n \).

Example 12.6

Express \( F_6(s) \) of (12.34) below in partial expansion form.

\[
F_6(s) = \frac{s^2 + 2s + 2}{s + 1}
\]  \hspace{1cm} (12.34)

Solution:

In (12.34), \( m > n \) and thus we need to express \( F_6(s) \) in the form of (12.33). By long division,

\[
F_6(s) = \frac{s^2 + 2s + 2}{s + 1} = \frac{1}{s + 1} + s + 1
\]  \hspace{1cm} (12.35)

Check with MATLAB:

\text{Ns} = [1 2 2]; \text{Ds} = [1 1]; [r, p, k] = \text{residue(Ns, Ds)}

\( r = \)
1
\( p = \)
-1
\( k = \)
Alternate Method of Partial Fraction Expansion

The direct terms \( k = [1 \ 1] \) are the coefficients of the \( s \) term and the constant in (2.54).

12.2 Alternate Method of Partial Fraction Expansion

The partial fraction expansion method can also be performed by the *equating the numerators procedure* thereby making the denominators of both sides the same, and then equating the numerators. We assume that the degree on the numerator \( N(s) \) is less than the degree of the denominator. If not, we first perform a long division and then work with the quotient and the remainder as before.

We also assume that the denominator \( D(s) \) can be expressed as a product of real linear and quadratic factors. If these assumptions prevail, we let \( s - a \) be a linear factor of \( D(s) \) and we suppose that \((s - a)^m\) is the highest power of \( s - a \) that divides \( D(s) \). Then, we can express \( F(s) \) as

\[
F(s) = \frac{N(s)}{D(s)} = \frac{r_1}{s - a} + \frac{r_2}{(s - a)^2} + \cdots + \frac{r_m}{(s - a)^m} \tag{12.36}
\]

Next, let \( s^2 + \alpha s + \beta \) be a quadratic factor of \( D(s) \) and suppose that \((s^2 + \alpha s + \beta)^n\) is the highest power of this factor that divides \( F(s) \). Now, we perform the following steps:

1. To this factor, we assign the sum of \( n \) partial fractions as shown below.

\[
\frac{r_1 s + k_1}{s^2 + \alpha s + \beta} + \frac{r_2 s + k_2}{(s^2 + \alpha s + \beta)^2} + \cdots + \frac{r_n s + k_n}{(s^2 + \alpha s + \beta)^n} \tag{12.37}
\]

2. We repeat Step 1 for each of the distinct linear and quadratic factors of \( D(s) \).

3. We set the given \( F(s) \) equal to the sum of these partial fractions.

4. We multiply each term of the right side by the appropriate factor to make the denominators of both sides equal.

5. We arrange the terms of both sides in decreasing powers of \( s \).

6. We equate the coefficients of corresponding powers of \( s \).

7. We solve the resulting equations for the residues.

**Example 12.7**

Express \( F_7(s) \) of (12.38) below as a sum of partial fractions using the equating the numerators procedure.
Solution:

By Steps 1 through 3 above,

\[ F_7(s) = \frac{-2s + 4}{(s^2 + 1)(s - 1)^2} \]  \hspace{1cm} (12.38)

By Step 4,

\[ -2s + 4 = \frac{r_1 s + A}{s^2 + 1} + \frac{r_{21}}{(s - 1)^2} + \frac{r_{22}}{s - 1} \]  \hspace{1cm} (12.39)

and by Steps 5, 6, and 7,

\[ -2s + 4 = (r_1 s + A)(s - 1)^2 + r_{21}(s^2 + 1) + r_{22}(s - 1)(s^2 + 1) \]  \hspace{1cm} (12.40)

Relation (12.41) is an identity in \( s \); therefore, the coefficients of each power of \( s \) on the left and right sides are equal. Accordingly, by equating like powers of \( s \), we get

\[
\begin{align*}
0 &= r_1 + r_{22} \\
0 &= -2r_1 + A - r_{22} + r_{21} \\
-2 &= r_1 - 2A + r_{22} \\
4 &= A - r_{22} + r_{21}
\end{align*}
\]  \hspace{1cm} (12.42)

Subtracting the second equation from the fourth in (12.42), we get

\[ 4 = 2r_1 \text{ or } r_1 = 2 \]  \hspace{1cm} (12.43)

and by substitution into the first equation of (12.42), we get

\[ 0 = 2 + r_{22} \text{ or } r_{22} = -2 \]  \hspace{1cm} (12.44)

Next, substitution of (12.43) and (12.44) into the third equation of (12.42), yields

\[ -2 = 2 - 2A - 2 \text{ or } A = 1 \]  \hspace{1cm} (12.45)

and using the fourth equation of (12.42, we get:

\[ 4 = 1 + 2 + r_{21} \text{ or } r_{21} = 1 \]  \hspace{1cm} (12.46)

Therefore \( F_7(s) \) in partial fraction expansion form becomes
Alternate Method of Partial Fraction Expansion

\[ F_7(s) = \frac{-2s + 4}{(s^2 + 1)(s - 1)^2} = \frac{2s + 1}{(s^2 + 1)} + \frac{1}{(s - 1)^2} - \frac{2}{(s - 1)} \]

Example 12.8

Use the equating the numerators procedure to obtain the partial fraction expansion of \( F_8(s) \) in (12.47) below.

\[ F_8(s) = \frac{s + 3}{s^3 + 5s^2 + 12s + 8} \quad (12.47) \]

Solution:

This is the same rational function as that of Example 12.3, where we found that the denominator can be expressed in factored form of a linear and a quadratic factor, that is,

\[ F_7(s) = \frac{s + 3}{(s + 1)(s^2 + 4s + 8)} \quad (12.48) \]

and in partial fraction expansion form,

\[ F_7(s) = \frac{s + 3}{(s + 1)(s^2 + 4s + 8)} = \frac{r_1}{s + 1} + \frac{r_2s + r_3}{s^2 + 4s + 8} \quad (12.49) \]

As in Example 12.3, we first find the residue of the linear factor as

\[ r_1 = \left. \frac{s + 3}{s^2 + 4s + 8} \right|_{s = -1} = \frac{2}{5} \quad (12.50) \]

To compute \( r_2 \) and \( r_3 \), we use the equating the numerators procedure and we get

\[ (s + 3) = r_1(s^2 + 4s + 8) + (r_2s + r_3)(s + 1) \quad (12.51) \]

Since \( r_1 \) is already known, we only need two equations in \( r_2 \) and \( r_3 \). Equating the coefficient of \( s^2 \) on the left side, which is zero, with the coefficients of \( s^2 \) on the right side of (12.51), we get

\[ 0 = r_1 + r_2 \quad (12.52) \]

With \( r_1 = 2/5 \), (12.52) yields \( r_2 = -2/5 \). To find the third residue \( r_3 \), we equate the constant terms of (12.51), that is, \( 3 = 8r_1 + r_3 \), and with \( r_1 = 2/5 \), we get \( r_3 = -1/5 \). Then, by substitution into (12.49), we get

\[ F_7(s) = \frac{2/5}{s + 2} \cdot \frac{1}{5(s^2 + 4s + 8)} \]
as before. The remaining steps are the same as in Example 12.3.

We will conclude the partial fraction expansion topic with a few more examples, using the `residue(r,p,k)` function.

**Example 12.9**

Use the `residue(r,p,k)` function to compute the poles and residues of the function

\[
F_9(s) = \frac{8s + 2}{s^2 + 3s + 2}
\]  

(12.53)

**Solution:**

Let \( p_1 \) and \( p_2 \) be the poles (the denominator roots) and \( r_1 \) and \( r_2 \) be the residues. Then, \( F_9(s) \) can be written as

\[
F_9(s) = \frac{r_1}{s + p_1} + \frac{r_2}{s + p_2}
\]  

(12.54)

The MATLAB code for this example is as follows:

```matlab
num=[0 8 2]; % The semicolon suppress the display of the row vector typed % and zero is typed to make the numerator have same number % of elements as the denominator; not necessary, but recommended
den=[1 3 2]; [r,p,k]=residue(num,den)
r =
 14
 -6
p =
 -2
 -1
k =
 []
```

Therefore, \( F_9(s) \) in partial fraction expansion form is written as

\[
F_9(s) = \frac{r_1}{s + p_1} + \frac{r_2}{s + p_2} = \frac{14}{s + 2} + \frac{-6}{s + 1}
\]  

(12.55)

**Example 12.10**

Use the `residue(r,p,k)` function to compute the poles and residues of \( F_{10}(s) \) in (12.56) below.

\[
F_{10}(s) = \frac{s + 3}{(s + 1)(s^2 + 4s + 8)}
\]  

(12.56)
Alternate Method of Partial Fraction Expansion

Solution:

Let \( p_1, p_2, \) and \( p_3 \) be the poles (the denominator roots) and \( r_1, r_2, \) and \( r_3 \) be the residues of \( F_{10}(s) \). Then, it can be written as

\[
F_{10}(s) = \frac{r_1}{s + p_1} + \frac{r_2}{s + p_2} + \frac{r_3}{s + p_3} \quad (12.57)
\]

The poles and the residues can be found with the statement \( [r, p, k] = \text{residue}(\text{num, den}) \). Before we use this statement, we need to express the denominator as a polynomial. We will use the function \( \text{conv}(a, b) \) to multiply the two factors of the denominator of (12.56).

We recall that we can write two or more statements on one line if we separate them by commas or semicolons. We also recall that commas will display the results, whereas semicolons will suppress the display. Then,

\[
a = [1, 1]; \quad b = [1, 4, 8]; \quad c = \text{conv}(a, b); \quad \text{num} = [1, 3]; \quad \text{den} = c; \quad [r, p, k] = \text{residue}(\text{num, den})
\]

\[
c = \\
1 \quad 5 \quad 12 \quad 8
\]

\[
r = \\
-0.2000 - 0.1500i \\
-0.2000 + 0.1500i \\
0.4000
\]

\[
p = \\
-2.0000 + 2.0000i \\
-2.0000 - 2.0000i \\
-1.0000
\]

\[
k = []
\]

Therefore, \( F_{10}(s) \) in partial fraction expansion form is

\[
F_{10}(s) = \frac{r_1}{s + p_1} + \frac{r_2}{s + p_2} + \frac{r_3}{s + p_3} = -\frac{0.2 - 0.15j}{s + 2 - 2j} + \frac{0.2 + 0.15j}{s + 2 + 2j} + \frac{0.4}{s + 1} \quad (12.58)
\]

By repeated use of the \( \text{deconv}(\text{num, den}) \) function, we can reduce a rational polynomial to simple terms of a polynomial, where the last term is a rational polynomial whose order of the numerator is less than that of the denominator as illustrated by the following example.

Example 12.11

Use the \( \text{deconv}(\text{num, den}) \) function to express the following rational polynomial as a polynomial with four terms.
Chapter 12  Partial Fraction Expansion

\[ f_j(x) = \frac{x^3 + 2x^2 + 1}{0.5x - 1} \]  \hspace{1cm} (12.59)

Solution:
\[
\text{num}=[1 \ 2 \ 0 \ 1]; \ \text{den}=[0 \ 0 \ 0.5 \ -1]; \ [q,r]=\text{deconv}(\text{num},\text{den})
\]
\[
q = \begin{bmatrix} 2 & 8 & 16 \end{bmatrix}
\]
\[
r = \begin{bmatrix} 0 & 0 & 0 & 17 \end{bmatrix}
\]

Therefore, \( f_j(x) \) can now be written as
\[
f_j(x) = 2x^2 + 8x + 16 + \frac{17}{0.5x - 1} \]  \hspace{1cm} (12.60)

It is important to remember that the function \texttt{roots(p)} is used with polynomials only. If we want to find the zeros of any function, such as the function \( f_2(x) \) defined as
\[
f_2(x) = \frac{3x^3 + 7x^2 + 9}{(12x^6 + 2x^4 + 13x^2 + 25)} + \frac{0.5x^5 + 6.3x^2 + 4.35}{(23x^6 + 16x^3 + 7.5x)} + \frac{1}{4.11x + 2.75} \]  \hspace{1cm} (12.61)

we must use the function \texttt{fzero('function',x0)}, where \texttt{function} is a pre-defined string, and \( x_0 \) is a required initial value. We can approximate this value by first plotting \( f_2(x) \) to find out where it crosses the \( x \)-axis. This was discussed in Chapter 1.

12.3 Summary

- The function
  \[
  F(s) = \frac{N(s)}{D(s)} = \frac{b_m s^m + b_{m-1} s^{m-1} + b_{m-2} s^{m-2} + \ldots + b_1 s + b_0}{a_n s^n + a_{n-1} s^{n-1} + a_{n-2} s^{n-2} + \ldots + a_1 s + a_0}
  \]

  where the coefficients \( a_k \) and \( b_k \) for \( k = 0, 1, 2, \ldots, n \) are real numbers, is a proper rational function if the highest power of the numerator \( N(s) \) is less than the highest power of of the denominator \( D(s) \), i.e., \( m < n \). If \( m \geq n \), \( F(s) \) is an improper rational function.

- Partial fraction expansion applies only to proper rational functions. If \( F(s) \) is an improper rational function we divide the numerator \( N(s) \) by the denominator \( D(s) \) to obtain an expression of the form
  \[
  F(s) = k_0 + k_1 s + k_2 s^2 + \ldots + k_{m-n} s^{m-n} + \frac{N(s)}{D(s)}
  \]

  so that \( m < n \).
Summary

- If the function
  \[ F(s) = \frac{N(s)}{D(s)} = \frac{b_m s^m + b_{m-1} s^{m-1} + b_{m-2} s^{m-2} + \ldots + b_1 s + b_0}{a_n s^n + a_{n-1} s^{n-1} + a_{n-2} s^{n-2} + \ldots + a_1 s + a_0} \]
  is a proper rational function where \( a_n \) is a non-zero integer other than unity, we rewrite this function as
  \[ F(s) = \frac{N(s)}{D(s)} = \frac{\frac{1}{a_n}(b_m s^m + b_{m-1} s^{m-1} + b_{m-2} s^{m-2} + \ldots + b_1 s + b_0)}{s^n + \frac{a_{n-1}}{a_n} s^{n-1} + \frac{a_{n-2}}{a_n} s^{n-2} + \ldots + \frac{a_1}{a_n} s + \frac{a_0}{a_n}} \]
  to make \( a_n \) unity.

- The roots of the numerator are called the zeros of \( F(s) \), and are found by letting \( N(s) = 0 \), and the roots of the denominator are called the poles of \( F(s) \) and are found by letting \( D(s) = 0 \).

- The zeros and poles can be real and distinct, or repeated, or complex conjugates, or combinations of real and complex conjugates. In most engineering applications we are interested in the nature of the poles.

- If all the poles \( p_1, p_2, p_3, \ldots, p_n \) of \( F(s) \) are distinct we can factor the denominator of \( F(s) \) in the form
  \[ F(s) = \frac{N(s)}{(s-p_1) \cdot (s-p_2) \cdot (s-p_3) \cdot \ldots \cdot (s-p_n)} \]
  where \( p_k \) is distinct from all other poles. Then, the partial fraction expansion method allows us to write the above expression as
  \[ F(s) = \frac{r_1}{(s-p_1)} + \frac{r_2}{(s-p_2)} + \frac{r_3}{(s-p_3)} + \ldots + \frac{r_n}{(s-p_n)} \]
  where \( r_1, r_2, r_3, \ldots, r_n \) are the residues of \( F(s) \). To evaluate the residue \( r_k \), we multiply both sides of (12.5) by \( (s-p_k) \); then, we let \( s \to p_k \), that is,
  \[ r_k = \lim_{s \to p_k} (s-p_k) F(s) = (s-p_k) F(s) \bigg|_{s=p_k} \]

- We can use the MATLAB `residue(r,p,k)` function to verify our answers. This function returns the residues, their associated poles, and a direct term. For proper rational functions there is no direct term.
Chapter 12  Partial Fraction Expansion

- The partial fraction expansion can also be used if the poles are complex. Since complex poles occur in conjugate pairs, if \( p_k \) is a complex pole, then its complex conjugate \( p_k^* \) is also a pole.

- If a rational function \( F(s) \) has simple poles but one of the poles, say \( p_1 \), has a multiplicity \( m \), the function is expressed as

\[
F(s) = \frac{N(s)}{(s-p_1)^m(s-p_2)\ldots(s-p_{n-1})(s-p_n)}
\]

and denoting the \( m \) residues corresponding to multiple pole \( p_1 \) as \( r_{11}, r_{12}, \ldots r_{1m} \), the partial fraction expansion can be expressed as

\[
F(s) = \frac{r_{11}}{(s-p_1)^m} + \frac{r_{12}}{(s-p_1)^{m-1}} + \frac{r_{13}}{(s-p_1)^{m-2}} + \ldots + \frac{r_{1m}}{(s-p_1)}
\]

\[
+ \frac{r_2}{(s-p_2)} + \frac{r_3}{(s-p_3)} + \frac{r_n}{(s-p_n)}
\]

- If a rational function \( F(s) \) has simple poles but one of the poles, say \( p_1 \), has a multiplicity \( m \), for the simple poles we use the same procedure as for distinct poles. The first residue of a repeated pole is found from

\[
r_{11} = \lim_{s \to p_1} (s-p_1)^m F(s)
\]

The second repeated pole is found from

\[
r_{12} = \lim_{s \to p_1} \frac{d}{ds}[(s-p_1)^m F(s)]
\]

the third from

\[
r_{13} = \lim_{s \to p_1} \frac{d^2}{ds^2}[(s-p_1)^m F(s)]
\]

and this process is continued until all residues of the repeated poles have been found.

- With the alternate method of partial fraction expansion we use the equating the numerators procedure thereby making the denominators of both sides the same, and then equating the numerators. We assume that the denominator \( D(s) \) can be expressed as a product of real linear and quadratic factors.
12.4 Exercises

Perform partial fraction expansion for the following. Use MATLAB to simplify and to verify your results.

1. \( \frac{1}{1-s^2} \)

2. \( \frac{1}{s^2 + 4s - 5} \)

3. \( \frac{s}{s^2 - 2s - 3} \)

4. \( \frac{5s - 3}{s^2 - 2s - 3} \)

5. \( \frac{s^2}{s^2 + 2s + 1} \)

6. \( \frac{1}{s(s+1)^2} \)

7. \( \frac{1}{(s+1)(s^2 + 1)} \)

8. \( \frac{1}{s(s^2 + s + 1)} \)
12.5 Solutions to Exercises

1.

\[
\frac{1}{s^2 - 1} = \frac{-1}{s^2} = \frac{-1}{(s + 1)(s - 1)} = \frac{r_1}{s + 1} + \frac{r_2}{s - 1}
\]

\[
r_1 = \left. \frac{-1}{s + 1} \right|_{s = 1} = -1/2 \quad r_2 = \left. \frac{-1}{s - 1} \right|_{s = -1} = 1/2
\]

Then,

\[
\frac{-1}{s^2 - 1} = -\frac{1/2}{s + 1} + \frac{1/2}{s - 1}
\]

Ns = [0, 0, -1]; Ds = [1, 0, -1]; [r, p, k] = residue(Ns, Ds)

\[
r = 0.5000
\]

\[
-0.5000
\]

\[
p = -1
\]

\[
1
\]

\[
k = []
\]

2.

\[
\frac{1}{s^2 + 4s - 5} = \frac{1}{(s - 1)(s + 5)} = \frac{r_1}{s - 1} + \frac{r_2}{s + 5}
\]

\[
r_1 = \left. \frac{1}{s + 5} \right|_{s = 1} = 1/6 \quad r_2 = \left. \frac{1}{s - 1} \right|_{s = -5} = -1/6
\]

Then,

\[
\frac{1}{s^2 + 4s - 5} = \frac{1/6}{s - 1} - \frac{1/6}{s + 5}
\]

format rat; Ns = [0, 0, 1]; Ds = [1, 4, -5]; [r, p, k] = residue(Ns, Ds)

\[
r =
\]

\[
-1/6
\]

\[
1/6
\]

\[
p =
\]

\[
-5
\]

\[
1
\]

\[
k = []
\]
3.

\[ \frac{s}{s^2 - 2s - 3} = \frac{s}{(s + 1)(s - 3)} = \frac{r_1}{s + 1} + \frac{r_2}{s - 3} \]

\[ r_1 = \frac{s}{s - 3} \bigg|_{s = -1} = \frac{1}{4} \quad r_2 = \frac{s}{s + 1} \bigg|_{s = 3} = \frac{3}{4} \]

Then,

\[ \frac{s}{s^2 - 2s - 3} = \frac{1/4}{s + 1} + \frac{3/4}{s - 3} \]

format rat; Ns = [0, 1, 0]; Ds = [1, -2, -3]; [r, p, k] = residue(Ns, Ds)

\[ r = \]
\[ \frac{3}{4} \]
\[ \frac{1}{4} \]

\[ p = \]
\[ 3 \]
\[ -1 \]

\[ k = \]
\[ [] \]

4.

\[ \frac{5s - 3}{s^2 - 2s - 3} = \frac{5s - 3}{(s + 1)(s - 3)} = \frac{r_1}{s + 1} + \frac{r_2}{s - 3} \]

\[ r_1 = \frac{5s - 3}{s - 3} \bigg|_{s = -1} = 2 \quad r_2 = \frac{5s - 3}{s + 1} \bigg|_{s = 3} = 3 \]

Then,

\[ \frac{5s - 3}{s^2 - 2s - 3} = \frac{2}{s + 1} + \frac{3}{s - 3} \]

Ns = [0, 5, -3]; Ds = [1, -2, -3]; [r, p, k] = residue(Ns, Ds)

\[ r = \]
\[ 3 \]
\[ 2 \]

\[ p = \]
\[ 3 \]
\[ -1 \]

\[ k = \]
\[ [] \]
5. This is an improper rational function, and before we apply the partial fraction expansion, we must divide the numerator $N(s)$ by the denominator $D(s)$ to obtain an expression of the form

$$F(s) = k_0 + k_1s + k_2s^2 + \ldots + k_{m-n}s^{m-n} + \frac{N(s)}{D(s)}$$

We could perform long division but we will use the MATLAB `deconv(num,den)` function to express the following rational polynomial as a polynomial with four terms.

```
num=[1 0 0]; den=[1 2 1]; [q,r]=deconv(num,den)
```

$q = 1$

$r = 0 \quad -2 \quad -1$

and thus

$$\frac{s^2}{s^2+2s+1} = 1 + \frac{-2s-1}{s^2+2s+1} = 1 - \frac{2s+1}{(s+1)^2} = 1 - \frac{r_1}{(s+1)^2} + \frac{r_2}{s+1}$$

$$\frac{-2s-1}{(s+1)^2} = \frac{r_1}{(s+1)^2} + \frac{r_2}{s+1} \quad -2s-1 = r_1 + r_2(s+1)$$

$$r_2 = -2 \quad r_1 + r_2 = -1 \quad r_1 = 1$$

Then,

$$\frac{s^2}{s^2+2s+1} = 1 + \frac{-2s-1}{s^2+2s+1} = 1 + \frac{1}{(s+1)^2} + \frac{-2}{s+1}$$

$\text{Ns} = [1, 0, 0]; \text{Ds} = [1, 2, 1]; [r, p, k] = \text{residue(Ns, Ds)}$

$r = -2 \quad 1$

$p = -1 \quad -1$

$k = 1$

6.

$$\frac{l}{s(s+1)^2} = \frac{r_1}{s} + \frac{r_2}{(s+1)^2} + \frac{r_{22}}{s}$$
\[ r_1 = \left. \frac{1}{s+1} \right|_{s=0} = 1 \quad r_{21} = \left. \frac{1}{s} \right|_{s=-1} = -1 \quad r_{22} = \left. \frac{d}{ds} \left( \frac{1}{s} \right) \right|_{s=-1} = -\left. \frac{1}{s^2} \right|_{s=-1} = -1 \]

Then,

\[
\frac{1}{s(s+1)^2} = \frac{1}{s} + \frac{-1}{(s+1)^2} + \frac{-1}{(s+1)}
\]

syms s; expand(s*(s+1)^2)
ans = 
\[ s^3 + 2s^2 + s \]

Ns = [0, 0, 0, 1]; Ds = [1, 2, 1, 0]; [r, p, k] = residue(Ns, Ds)

\[
\begin{align*}
\text{r} = & \quad -1 \\
\text{p} = & \quad -1\ \ \ \ \ \ \ 1 \\
\text{k} = & \quad [ ]
\end{align*}
\]

7.

\[
\frac{1}{(s+1)(s^2+1)} = \frac{r_1}{s+1} + \frac{r_2s + r_3}{s^2+1} = \frac{r_1(s^2+1)}{(s+1)(s^2+1)} + \frac{(r_2s + r_3)(s+1)}{(s+1)(s^2+1)}
\]

Equating numerators and like terms we get

\[ l = r_1s^2 + r_1 + r_2s^2 + r_2s + r_3s + r_3 \]

\[ r_1 + r_2 = 0 \quad r_2 + r_3 = 0 \quad r_1 + r_3 = 1 \]

syms r1 r2 r3
eq 1=r1+r2-0
eq 2=r2+r3-0
eq 3=r1+r3-1
S=solve(eq1, eq2, eq3)
eq 1 =
\text{r1}+\text{r2}
eq 2 =
Chapter 12 Partial Fraction Expansion

\[ \frac{r_2 + r_3}{r_1 + r_3 - 1} \]

```
S =
 r1: [1x1 sym]
 r2: [1x1 sym]
 r3: [1x1 sym]
```

The statement `S = solve(eq1, eq2, eq3, ...eqN)` returns the solutions in the structure `S` whose named fields hold the solution for each variable. Thus, \( r_1 = 1/2, r_2 = -1/2, \) and \( r_3 = 1/2 \). Then,

\[
\frac{1}{(s+1)(s^2+1)} = \frac{1/2}{s+1} + \frac{(-1/2)s+1/2}{s^2+1}
\]

```
syms s; expand((s+1)*(s^2+1))
```

```
ans =
 s^3 + s + s^2 + 1
```

```
Ns = [0, 0, 0, 1]; Ds = [1, 1, 1, 1]; [r, p, k] = residue(Ns, Ds)
```

```
r =
 1/2
 -1/4 - 1/4i
 -1/4 + 1/4i
```

```
p =
 -1
 -1/6004799503160662 + 1i
 -1/6004799503160662 - 1i
```

```
k =
 []
```
These values are inconsistent with those we’ve found. The MATLAB `help residue` command displays the following:

Warning: Numerically, the partial fraction expansion of a ratio of polynomials represents an ill-posed problem. If the denominator polynomial, \( A(s) \), is near a polynomial with multiple roots, then small changes in the data, including roundoff errors, can make arbitrarily large changes in the resulting poles and residues. Problem formulations making use of state-space or zero-pole representations are preferable.

8. \[
\frac{l}{s(s^2 + s + 1)} = \frac{r_1}{s} + \frac{r_2 s + r_3}{s^2 + s + 1} = \frac{r_1 (s^2 + s + 1)}{s(s^2 + s + 1)} + \frac{(r_2 s + r_3)s}{s(s^2 + s + 1)}
\]

Equating numerators and like terms we get
\[
l = r_1 s^2 + r_1 s + r_1 + r_2 s^2 + r_3 s
\]
\[
r_1 + r_2 = 0 \quad r_2 + r_3 = 0 \quad r_1 = 1
\]
By inspection, \( r_1 = 1 \), \( r_2 = -1 \), and \( r_3 = 1 \). Then,
\[
\frac{l}{(s + 1)(s^2 + 1)} = \frac{l}{s} + \frac{-s + 3}{s^2 + s + 1}
\]

```matlab
syms s; expand(s*(s^2+s+1))
ans =
s^3+s^2+s

Ns = [0, 0, 0, 1]; Ds = [1, 1, 1, 0]; [r, p, k] = residue(Ns, Ds)

r =
-1/2 + 390/1351i
-1/2 - 390/1351i
1

p =
-1/2 + 1170/1351i
-1/2 - 1170/1351i
0

k =
[]
```

As in Exercise 7, these values are inconsistent with those we’ve found.
NOTES
Chapter 13

The Gamma and Beta Functions and Distributions

This chapter is an introduction to the gamma and beta functions and their distributions used with many applications in science and engineering. They are also used in probability, and in the computation of certain integrals.

13.1 The Gamma Function

The gamma function, denoted as \( \Gamma(n) \), is also known as the generalized factorial function. It is defined as

\[
\Gamma(n) = \int_0^\infty x^{n-1} e^{-x} \, dx
\]  

(13.1)

and this improper integral converges (approaches a limit) for all \( n > 0 \).

We will derive the basic properties of the gamma function and its relation to the well known factorial function

\[
n! = n(n-1)(n-2)\ldots3 \cdot 2 \cdot 1
\]  

(13.2)

We will evaluate the integral of (13.1) by performing integration by parts using the relation

\[
\int u \, dv = uv - \int v \, du
\]  

(13.3)

Letting

\[
u = e^{-x} \text{ and } dv = x^{n-1} \, dx
\]  

(13.4)

we get

\[
\frac{du}{dx} = -e^{-x} \text{ and } v = \frac{x^n}{n}
\]  

(13.5)

Then, with (13.3), we write (13.1) as

* Improper integrals are two types and these are:
  a. \( \int_a^b f(x) \, dx \) where the limits of integration \( a \) or \( b \) or both are infinite
  b. \( \int_a^b f(x) \, dx \) where \( f(x) \) becomes infinite at a value \( x \) between the lower and upper limits of integration inclusive.
With the condition that \( n > 0 \), the first term on the right side of (13.6) vanishes at the lower limit, that is, for \( x = 0 \). It also vanishes at the upper limit as \( x \to \infty \). This can be proved with L’Hôpital’s rule* by differentiating both numerator and denominator \( m \) times, where \( m \geq n \). Then,

\[
\lim_{x \to \infty} \frac{x^n e^{-x}}{n} = \lim_{x \to \infty} \frac{n x^{n-1} e^{-x}}{n} = \lim_{x \to \infty} \frac{n(n-1)x^{n-2} e^{-x}}{n} = \ldots
\]

\[
= \lim_{x \to \infty} \frac{n(n-1)(n-2) \ldots (n-m+1)x^{n-m}}{n e^x} = 0
\]

Therefore, (13.6) reduces to

\[
\Gamma(n) = \frac{1}{n} \int_0^\infty x^n e^{-x} \, dx
\]

(13.8)

and with (13.1) we have

\[
\Gamma(n) = \int_0^\infty x^{n-1} e^{-x} \, dx = \frac{1}{n} \int_0^\infty x^n e^{-x} \, dx
\]

(13.9)

By comparing the two integrals of (13.9), we see that

\[
\Gamma(n) = \frac{\Gamma(n+1)}{n}
\]

(13.10)

* Quite often, the ratio of two functions, such as \( \frac{f(x)}{g(x)} \), for some value of \( x \), say \( a \), results in the indeterminate form 

\[
\frac{f(a)}{g(a)} = \frac{0}{0}.
\]

To work around this problem, we consider the limit

\[
\lim_{x \to a} \frac{f(x)}{g(x)}
\]

and we wish to find this limit, if it exists. L’Hôpital’s rule states that if \( f(a) = g(a) = 0 \), and if the limit \( \frac{d}{dx} f(x)/\frac{d}{dx} g(x) \) as \( x \) approaches \( a \) exists, then,

\[
\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \left( \frac{d}{dx} f(x)/\frac{d}{dx} g(x) \right)
\]
The Gamma Function

\[ n\Gamma(n) = \Gamma(n+1) \]  

(13.11)

It is convenient to use (13.10) for \( n < 0 \), and (13.11) for \( n > 0 \).

From (13.10), we see that \( \Gamma(n) \) becomes infinite as \( n \to 0 \).

For \( n = 1 \), (13.1) yields

\[ \Gamma(1) = \int_{0}^{\infty} e^{-x} \, dx = -e^{-x}\bigg|_{0}^{\infty} = 1 \]  

(13.12)

Thus, we have derived the important relation,

\[ \Gamma(1) = 1 \]  

(13.13)

From the recurring relation of (13.11), we obtain

\[ \Gamma(2) = 1 \cdot \Gamma(1) = 1 \]
\[ \Gamma(3) = 2 \cdot \Gamma(2) = 2 \cdot 1 = 2! \]
\[ \Gamma(4) = 3 \cdot \Gamma(3) = 3 \cdot 2 = 3! \]  

(13.14)

and in general

\[ \Gamma(n+1) = n! \text{ for } n = 1, 2, 3, \ldots \]  

(13.15)

The formula of (13.15) is a very useful relation; it establishes the relationship between the \( \Gamma(n) \) function and the factorial \( n! \).

We must remember that, whereas the factorial \( n! \) is defined only for zero (recall that \( 0! = 1 \)) and positive integer values, the gamma function exists (is continuous) everywhere except at 0 and negative integer numbers, that is, \(-1, -2, -3, \ldots\), and so on. For instance, when \( n = -0.5 \), we can find \( \Gamma(-0.5) \) in terms of \( \Gamma(0.5) \), but if we substitute the numbers \( 0, -1, -2, -3 \) and so on in (13.11), we get values which are not consistent with the definition of the \( \Gamma(n) \) function, as defined in that relation.

Stated in other words, the \( \Gamma(n) \) function is defined for all positive integers and positive fractional values, and for all negative fractional, but not negative integer values.

We can use MATLAB’s **gamma(n)** function to plot \( \Gamma(n) \) versus \( n \). This is done with the code below which produces the plot shown in Figure 13.1.

\[
\begin{align*}
n & = -4: 0.05: 4; g = \text{gamma}(n); \text{plot}(n,g); \text{axis}([-4 4 -6 6]); \text{grid}; \\
\text{title(’The Gamma Function’);} & \text{xlabel(’n’); ylabel(’Gamma(n)’)}
\end{align*}
\]

Figure 13.1 shows the plot of the function \( \Gamma(n) \) versus \( n \).
Numerical values of $\Gamma(n)$ for $1 \leq n \leq 2$, can be found in math tables, but we can use (13.10) or (13.11) to compute values outside this range. Of course, we can use MATLAB to find any valid values of $n$.

Example 13.1

Compute:

a. $\Gamma(3.6)$  
b. $\Gamma(0.5)$  
c. $\Gamma(-0.5)$

Solution:

a. From (13.11)

$$\Gamma(n+1) = n\Gamma(n)$$

Then,

$$\Gamma(3.6) = 2.6\Gamma(2.6) = (2.6)(1.6)\Gamma(1.6)$$

and from math tables

$$\Gamma(1.6) = 0.8953$$

Therefore,

$$\Gamma(3.6) = (2.6)(1.6)(0.8953) = 3.717$$

b. From (13.10)

$$\Gamma(n) = \frac{\Gamma(n+1)}{n}$$

Then,

$$\Gamma(0.5) = \frac{\Gamma(0.5+1)}{0.5} = \frac{\Gamma(1.5)}{0.5}$$
and from math tables
\[ \Gamma(1.5) = 0.8862 \]
Therefore,
\[ \Gamma(0.5) = (2)(0.8862) = 1.772 \]
c. From (13.10)
\[ \Gamma(n) = \frac{\Gamma(n+1)}{n} \]
Then,
\[ \Gamma(-0.5) = \frac{\Gamma(-0.5+1)}{-0.5} = \frac{\Gamma(0.5)}{-0.5} = -2\Gamma(0.5) \]
and using the result of (b),
\[ \Gamma(-0.5) = -2\Gamma(0.5) = (-2)(1.772) = -3.544 \]

We can verify these answers with MATLAB as follows:
\[ a=\text{gamma}(3.6), \quad b=\text{gamma}(0.5), \quad c=\text{gamma}(-0.5) \]
\[ a = 3.7170 \]
\[ b = 1.7725 \]
\[ c = -3.5449 \]

Excel does not have a function which evaluates \( \Gamma(n) \) directly. It does, however, have the \textsc{gammaln}(x) function. Therefore, we can use the \textsc{exp(gammaln}(n)) function to evaluate \( \Gamma(n) \) at some positive value of \( n \). But because it first computes the natural log, it does not produce an answer if \( n \) is negative as shown in Figure 13.2.

\[ \begin{array}{ccc}
 x & \text{gammaln}(x) & \text{exp(gammaln}(x)) = \frac{\text{gamma}(x)}{x} \\
 3.6 & 1.3129 & 3.7170 \\
 0.5 & 0.5724 & 1.7725 \\
 -0.5 & \text{#NUM!} & \text{#NUM!} \\
\end{array} \]

*Figure 13.2. Using Excel to find \( \Gamma(n) \)*
Example 13.2

Prove that when \( n \) is a positive integer, the relation

\[
\Gamma(n) = (n - 1)!
\]  \hspace{1cm} (13.16)

is true.

**Proof:**

From (13.11),

\[
\Gamma(n + 1) = n\Gamma(n)
\]  \hspace{1cm} (13.17)

Then,

\[
\Gamma(n) = (n - 1)\Gamma(n - 1)
\]  \hspace{1cm} (13.18)

Next, replacing \( n \) with \( n - 1 \) on the left side of (13.18), we get

\[
\Gamma(n - 1) = (n - 2)\Gamma(n - 2)
\]  \hspace{1cm} (13.19)

Substitution of (13.19) into (13.18) yields

\[
\Gamma(n) = (n - 1)(n - 2)\Gamma(n - 2)
\]  \hspace{1cm} (13.20)

By \( n \) repeated substitutions, we get

\[
\Gamma(n) = (n - 1)(n - 2)(n - 3)\ldots 1\Gamma(1)
\]  \hspace{1cm} (13.21)

and since \( \Gamma(1) = 1 \), we have

\[
\Gamma(n) = (n - 1)(n - 2)(n - 3)\ldots 1
\]  \hspace{1cm} (13.22)

or

\[
\Gamma(n) = (n - 1)!
\]  \hspace{1cm} (13.23)

Example 13.3

Use the definition of the \( \Gamma(n) \) function to compute the exact value of \( \Gamma(1/2) \)

**Solution:**

From (13.1),

\[
\Gamma(n) = \int_{0}^{\infty} x^{n-1} e^{-x} dx
\]  \hspace{1cm} (13.24)

Then,

\[
\Gamma\left(\frac{1}{2}\right) = \int_{0}^{\infty} x^{0.5-1} e^{-x} dx = \int_{0}^{\infty} x^{-0.5} e^{-x} dx
\]  \hspace{1cm} (13.25)
Letting \( x = y^2 \), we get
\[
\frac{dx}{dy} = 2y
\]
or
\[
dx = 2y \, dy
\]
By substitution of the last three relations into (13.25), we get
\[
\Gamma \left( \frac{1}{2} \right) = \int_0^\infty y^{2\left(-\frac{1}{2}\right)} e^{-y^2} 2y \, dy = 2 \int_0^\infty y^{-\frac{1}{2}} e^{-y^2} \, dy = 2 \int_0^\infty e^{-y^2} \, dy \quad (13.26)
\]
Next, we define \( \Gamma \left( \frac{1}{2} \right) \) as a function of both \( x \) and \( y \), that is, we let
\[
\Gamma \left( \frac{1}{2} \right) = 2 \int_0^\infty e^{-x^2} \, dx
\]
\[
\Gamma \left( \frac{1}{2} \right) = 2 \int_0^\infty e^{-y^2} \, dy
\]
Multiplication of (13.27) by (13.28) yields
\[
\left[ \Gamma \left( \frac{1}{2} \right) \right]^2 = 4 \int_0^\infty e^{-x^2} \, dx \int_0^\infty e^{-y^2} \, dy = 4 \int_0^\infty \int_0^\infty e^{-(x^2 + y^2)} \, dx \, dy \quad (13.29)
\]
Now, we convert (13.29) to polar coordinates by making the substitution
\[
\rho^2 = x^2 + y^2
\]
and by recalling that:
1. the total area of a region is found by either one of the double integrals
\[
A = \iint \, dx \, dy = \iint r \, dr \, d\theta \quad (13.31)
\]
2. from differential calculus
\[
\frac{du}{du} e^{u^2} = e^{u^2} \frac{du}{du} u^2 = 2ue^{u^2} \quad (13.32)
\]
Then,
\[
\int_{\rho_1}^{\rho_2} \rho e^{-\rho^2} \, d\rho = -\frac{1}{2} e^{-\rho^2} \quad (13.33)
\]
We observe that as \( x \to \infty \) and \( y \to \infty \),
\[ \rho \to \infty \quad \text{and} \quad \theta \to \pi/2 \]  

Substitution of (13.30), (13.33) and (13.34) into (13.29) yields

\[ \left[ \Gamma\left(\frac{1}{2}\right)\right]^2 = -2\int_0^{\pi/2} (e^{-\rho^2} \Big|_{\rho = \theta}) d\theta = -2\int_0^{\pi/2} (\theta - 1) d\theta = 2\int_0^{\pi/2} d\theta = 2\theta|_0^{\pi/2} = \pi \]

and thus, we have obtained the exact value

\[ \Gamma\left(\frac{1}{2}\right) = \sqrt{\pi} \]  

(13.35)

**Example 13.4**

Compute:

a. \( \Gamma(-0.5) \)  

b. \( \Gamma(-1.5) \)  

c. \( \Gamma(-2.5) \)

**Solution:**

Using the relations

\[ \Gamma(n) = \frac{\Gamma(n+1)}{n} \quad \text{and} \quad \Gamma(0.5) = \sqrt{\pi} \]

we get:

a. for \( n = -0.5 \),

\[ \Gamma(-0.5) = \frac{\Gamma(0.5)}{-0.5} = \frac{\sqrt{\pi}}{-0.5} = -2\sqrt{\pi} \]

b. for \( n = -1.5 \),

\[ \Gamma(-1.5) = \frac{\Gamma(-1.5+1)}{-1.5} = \frac{\Gamma(-0.5)}{-1.5} = \frac{-2\sqrt{\pi}}{-1.5} = \frac{4}{3}\sqrt{\pi} \]

c. for \( n = -2.5 \),

\[ \Gamma(-2.5) = \frac{\Gamma(-2.5+1)}{-2.5} = \frac{\Gamma(-1.5)}{-2.5} = \frac{4\sqrt{\pi}}{-2.5} = -\frac{8}{15}\sqrt{\pi} \]

Other interesting relations involving the \( \Gamma(n) \) function are:

\[ \Gamma(n)\Gamma(1-n) = \frac{\pi}{\sin n\pi} \quad \text{for} \quad 0 < n < 1 \]  

(13.36)

\[ 2^{2n-1}\Gamma(n)\Gamma\left(n+\frac{1}{2}\right) = \sqrt{\pi}\Gamma(2n) \quad \text{for any} \quad n \neq \text{negative integer} \]  

(13.37)
The Gamma Function

\[ \Gamma(n + 1) = n! \]
\[ = \sqrt{2\pi}nn^n e^{-n} \left\{ 1 + \frac{1}{12n} + \frac{1}{288n^2} - \frac{139}{51840n^3} - \frac{571}{2488320n^4} + \ldots \right\} \tag{13.38} \]

Relation (13.38) is referred to as Stirling's asymptotic series for the \( \Gamma(n) \) function. If \( n \) is a positive integer, the factorial \( n! \) can be approximated as

\[ n! \approx \sqrt{2\pi}nn^n e^{-n} \tag{13.39} \]

**Example 13.5**

Use (13.36) to prove that

\[ \Gamma\left(\frac{1}{2}\right) = \sqrt{\pi} \]

**Proof:**

\[ \Gamma\left(\frac{1}{2}\right)\Gamma\left(1 - \frac{1}{2}\right) = \Gamma\left(\frac{1}{2}\right)\Gamma\left(\frac{1}{2}\right) = \frac{\pi}{\sin \frac{\pi}{2}} \]

or

\[ \left[\Gamma\left(\frac{1}{2}\right)\right]^2 = \pi \]

Therefore,

\[ \Gamma\left(\frac{1}{2}\right) = \sqrt{\pi} \]

**Example 13.6**

Compute the product

\[ \Gamma\left(\frac{1}{3}\right)\Gamma\left(\frac{2}{3}\right) \]

**Solution:**

Using (13.36), we get

\[ \Gamma\left(\frac{1}{3}\right)\Gamma\left(1 - \frac{1}{3}\right) = \frac{\pi}{\sin \frac{\pi}{3}} \]

or

\[ \Gamma\left(\frac{1}{3}\right)\Gamma\left(\frac{2}{3}\right) = \frac{\pi}{\sqrt{3}/2} = \frac{2\pi}{\sqrt{3}} = \frac{2\sqrt{3}\pi}{3} \]
Example 13.7

Use (13.37) to find

\[ \Gamma \left( \frac{3}{2} \right) \]

Solution:

\[ 2^{3-1} \Gamma \left( \frac{3}{2} \right) \Gamma \left( \frac{3}{2} + \frac{1}{2} \right) = \sqrt{\pi} \Gamma \left( 2 \cdot \frac{3}{2} \right) \]

\[ 2^2 \Gamma \left( \frac{3}{2} \right) \Gamma (2) = \sqrt{\pi} \Gamma (3) \]

\[ \Gamma \left( \frac{3}{2} \right) = \frac{\sqrt{\pi} \Gamma (3)}{4 \Gamma (2)} = \frac{2! \sqrt{\pi}}{4 \cdot 1} = \frac{\sqrt{\pi}}{2} \]

Example 13.8

Use (13.39) to compute 50!

Solution:

\[ 50! \approx \sqrt{2\pi \times 50 \times 50^{50}} \times e^{-50} \]

We use MATLAB as a calculator, that is, we type and execute the expression

\[ \text{sqrt(2*pi*50)*50^50*exp(-50)} \]

\[ \text{ans = 3.0363e+064} \]

This is an approximation. To find the exact value, we use the relation \( \Gamma (n + 1) = n! \) and the MATLAB \texttt{gamma(n)} function. Then,

\[ \text{gamma(50+1)} \]

\[ \text{ans = 3.0414e+064} \]

We can check this answer with the Excel \texttt{FACT(n)} function, that is,

\[ =\text{FACT(50)} \text{ and Excel displays 3.04141E+64} \]

The \( \Gamma (n) \) function is very useful in integrating some improper integrals. Some examples follow.
Example 13.9

Using the definition of the \( \Gamma(n) \) function, evaluate the integrals

\[
\begin{align*}
\text{a.} & \quad \int_0^\infty x^4 e^{-x} \, dx \\
\text{b.} & \quad \int_0^\infty x^5 e^{-2x} \, dx
\end{align*}
\]

Solution:

By definition,

\[
\int_0^\infty x^{n-1} e^{-x} \, dx = \Gamma(n)
\]

Then,

a. \[
\int_0^\infty x^4 e^{-x} \, dx = \Gamma(5) = 4! = 24
\]

b. Let \( 2x = y \); then, \( dx = dy/2 \), and by substitution,

\[
\int_0^\infty x^5 e^{-2x} \, dx = \int_0^\infty \left(\frac{y}{2}\right)^5 e^{-y/2} \, dy = \frac{1}{2^6} \int_0^\infty y^5 e^{-y} \, dy
\]

\[
= \frac{\Gamma(6)}{64} = \frac{5!}{64} = \frac{120}{64} = \frac{15}{8}
\]

Example 13.10

A negatively charged particle is \( \alpha \) meters apart from the positively charged side of an electric field. It is initially at rest, and then moves towards the positively charged side with a force inversely proportional to its distance from it. Assuming that the particle moves towards the center of the positively charged side, considered to be the center of attraction \( 0 \), derive an expression for the time required the negatively charged particle to reach \( 0 \) in terms of the distance \( \alpha \) and its mass \( m \).

Solution:

Let the center of attraction \( 0 \) be the point zero on the \( x \)-axis, as indicated in Figure 13.3.

\[
\begin{array}{c}
\text{movement of particle} \\
0 \quad \alpha \quad x
\end{array}
\]

\textit{Figure 13.3. Sketch for Example 13.10}

By Newton’s law,
\[ m \frac{dx^2}{dt^2} = -\frac{k}{x} \]  
\[ (13.40) \]

where

\[ m = \text{mass of particle} \]
\[ x = \text{distance (varies with time)} \]
\[ k = \text{positive constant of proportionality and the minus (−) sign indicates that the distance } x \text{ decreases as time } t \text{ increases.} \]

At \( t = 0 \), the particle is assumed to be located on the \( x \)-axis at point \( x = \alpha \), and moves towards the origin at \( x = 0 \). Let the velocity of the particle be \( v \). Then,

\[ \frac{dx}{dt} = v \]  
\[ (13.41) \]

and

\[ \frac{dx^2}{dt^2} = \frac{dv}{dt} = \frac{dv}{dx} = v \frac{dv}{dx} \]  
\[ (13.42) \]

Substitution of (13.42) into (13.40) yields

\[ mv \frac{dv}{dx} = -\frac{k}{x} \]  
\[ (13.43) \]

or

\[ mv dv = -\frac{k}{x} (dx) \]  
\[ (13.44) \]

Integrating both sides of (13.44), we get

\[ \frac{mv^2}{2} = -k \ln x + C \]  
\[ (13.45) \]

where \( C \) represents the constants of integration of both sides, and it is evaluated from the initial condition that \( v = 0 \) when \( x = \alpha \). Then,

\[ C = k \ln \alpha \]  
\[ (13.46) \]

and by substitution into (13.45),

\[ \frac{mv^2}{2} = k \ln \alpha - k \ln x = k \ln \frac{\alpha}{x} \]  
\[ (13.47) \]

Solving for \( v^2 \) and taking the square root of both sides we get
The Gamma Function

\[ v = \frac{dx}{dt} = \pm \frac{2k}{\sqrt{m}} \frac{\ln \frac{\alpha}{x}}{x} \]  

(13.48)

Since \( x \) decreases as \( t \) increases, we choose the negative sign, that is,

\[ \frac{dx}{dt} = -\frac{2k}{\sqrt{m}} \frac{\ln \frac{\alpha}{x}}{x} \]  

(13.49)

Solving (13.49) for \( dt \) we get

\[ dt = -\frac{m}{2k \sqrt{\ln(\alpha/x)}} \frac{dx}{\frac{\ln \frac{\alpha}{x}}{x}} \]  

(13.50)

We are interested in the time required for the particle to reach the origin \( 0 \). We denote this time as \( T \); it is found from the relation below, noting that the integration on the right side is with respect to the distance \( x \) where at \( t = 0, x = \alpha \), and at \( \tau = t, x = 0 \). Then,

\[ T = \int_{0}^{\tau} d\tau = -\frac{m}{2k} \int_{0}^{\alpha} \frac{dx}{\sqrt{\ln(\alpha/x)}} \]  

(13.51)

To simplify (13.51), we let

\[ y = \ln \left( \frac{\alpha}{x} \right), \text{ then } e^{-y} = \frac{\alpha}{x} \]  

(13.52)

or

\[ x = \alpha e^{-y}, \text{ and } dx = -\alpha e^{-y} dy \]  

(13.53)

Also, since

\[ \lim_{x \to \alpha} \ln \left( \frac{\alpha}{x} \right) = 0 \text{ and } \lim_{x \to 0} \ln \left( \frac{\alpha}{x} \right) = \infty \]

the lower and upper limits of integration in (13.51), are being replaced with \( 0 \) and \( \infty \) respectively. Therefore, we express (13.51) as

\[ T = -\frac{m}{2k} \int_{0}^{\infty} -\alpha e^{-y} \frac{dy}{\sqrt{y}} = \alpha \sqrt{\frac{m}{2k}} \int_{0}^{\infty} y^{-1/2} e^{-y} dy \]

Finally, using the definition of the \( \Gamma(n) \) function, we have

\[ T = \alpha \Gamma \left( \frac{1}{2} \right) \frac{m}{\sqrt{2k}} = \alpha \sqrt{\pi} \frac{m}{\sqrt{2k}} = \alpha \frac{\pi m}{\sqrt{2k}} \]  

(13.54)
Example 13.11

Evaluate the integrals

\[ \int_0^{\pi/2} \cos^n \theta \, d\theta \quad \text{and} \quad \int_0^{\pi/2} \sin^n \theta \, d\theta \quad (13.55) \]

Solution:

From the definition of the \( \Gamma(n) \) function,

\[ \Gamma(n) = \int_0^\infty x^{n-1} e^{-x} \, dx \quad (13.56) \]

Also,

\[ \Gamma(m) = \int_0^\infty x^{m-1} e^{-x} \, dx \quad (13.57) \]

For \( m > 0 \) and \( n > 0 \), multiplication of (13.56) by (13.57) yields

\[ \Gamma(m)\Gamma(n) = \int_0^\infty u^{m-1} e^{-u} \, du \int_0^\infty v^{n-1} e^{-v} \, dv \quad (13.58) \]

where \( u \) and \( v \) are dummy variables of integration. Next, letting \( u = x^2 \) and \( v = y^2 \), we get \( du = 2xdx \) and \( dv = 2ydy \). Then, with these substitutions, relation (13.58) it written as

\[ \Gamma(m)\Gamma(n) = 4 \int_0^\infty \int_0^\infty x^{2m-2} e^{-x^2} \, dx \int_0^\infty y^{2n-2} e^{-y^2} \, dy \]

\[ = 4 \int_0^\infty \int_0^\infty x^{2m-2} y^{2n-2} e^{-(x^2+y^2)} \, dx \, dy \quad (13.59) \]

Next, we convert (13.59) to polar coordinates by letting \( x = \rho \cos \theta \) and \( y = \rho \sin \theta \) Then,

\[ \Gamma(m)\Gamma(n) = 4 \int_0^{\pi/2} \int_0^\infty (\rho \cos \theta)^{2m-1} (\rho \sin \theta)^{2n-1} e^{-\rho^2} \, \rho \, d\rho \, d\theta \quad (13.60) \]

\[ = 2 \int_0^{\pi/2} \cos^{2m-1} \theta \cdot \sin^{2n-1} \theta \, d\theta \int_0^\infty \rho^{2m+2n-2} e^{-\rho^2} \, 2\rho \, d\rho \]

To simplify (13.60), we let \( \rho^2 = w \); then, \( dw = 2\rho \, d\rho \) and thus relation (13.60) is written as

\[ \Gamma(m)\Gamma(n) = 2 \int_0^{\pi/2} \cos^{2m-1} \theta \cdot \sin^{2n-1} \theta \, d\theta \int_0^\infty w^{m+n-1} e^{-w} \, dw \quad (13.61) \]

\[ = 2 \int_0^{\pi/2} \cos^{2m-1} \theta \cdot \sin^{2n-1} \theta \, d\theta \cdot \Gamma(m+n) \]
Rearranging (13.61) we get

$$\int_{0}^{\pi/2} \cos^{2m - 1} \theta \cdot \sin^{2n - 1} \theta d\theta = \frac{\Gamma(m)\Gamma(n)}{2\Gamma(m + n)}$$

(13.62)

and this expression can be simplified by replacing $2m - 1$ with $n$, that is, $m = \frac{(n + 1)}{2}$, and $2n - 1$ with $\theta$, that is, $n = \frac{\theta}{2}$. Then, we get the special case of (13.62) as

$$\int_{0}^{\pi/2} \cos^n \theta d\theta = \frac{\Gamma\left(\frac{n + 1}{2}\right)\Gamma\left(\frac{1}{2}\right)}{2\Gamma\left(\frac{n + 1}{2} + \frac{1}{2}\right)} = \frac{\Gamma\left(\frac{n + 1}{2}\right)\sqrt{\pi}}{\Gamma\left(\frac{n + 1}{2} + \frac{1}{2}\right)^2}$$

(13.63)

If, in (13.62), we replace $2m - 1$ with $\theta$ and $2n - 1$ with $m$, we get the integral of the $\sin^n \theta$ function as

$$\int_{0}^{\pi/2} \sin^n \theta d\theta = \frac{\Gamma\left(\frac{1}{2}\right)\Gamma\left(\frac{m + 1}{2}\right)}{2\Gamma\left(\frac{1}{2} + \frac{m + 1}{2}\right)} = \frac{\Gamma\left(\frac{m + 1}{2}\right)}{\Gamma\left(\frac{m + 2}{2} + \frac{1}{2}\right)^2}$$

(13.64)

We observe that (13.63) and (13.64) are equal since $m$ and $n$ can be interchanged. Therefore,

$$\int_{0}^{\pi/2} \cos^n \theta d\theta = \int_{0}^{\pi/2} \sin^n \theta d\theta = \frac{\Gamma\left(\frac{n + 1}{2}\right)\sqrt{\pi}}{\Gamma\left(\frac{n + 1}{2} + \frac{1}{2}\right)^2} \quad n > -1$$

(13.65)

The relations of (13.65) are known as Wallis’s formulas.

### 13.2 The Gamma Distribution

One of the most common probability distributions* is the gamma distribution which is defined as

$$f(x, n, \beta) = \frac{x^{n-1} e^{-x/\beta}}{\beta^n \Gamma(n)} \quad x > 0, \quad n, \beta > 0$$

(13.66)

---

A detailed discussion of this probability distribution is beyond the scope of this book; it will suffice to say that it is used in reliability and queuing theory. When \( n \) is a positive integer, it is referred to as Erlang distribution. Figure 13.4 shows the probability density function (pdf) of the gamma distribution for \( n = 3 \) and \( \beta = 2 \).

Figure 13.4. The pdf for the gamma distribution.

We can evaluate the gamma distribution with the Excel \texttt{GAMMADIST} function whose syntax is

\[
\texttt{GAMMADIST}(x, \text{alpha}, \text{beta}, \text{cumulative})
\]

where:

\( x \) = value at which the distribution is to be evaluated

\( \text{alpha} \) = the parameter \( n \) in (13.66)

\( \text{beta} \) = the parameter \( \beta \) in (13.66)

\( \text{cumulative} \) = a TRUE / FALSE logical value; if TRUE, \texttt{GAMMADIST} returns the cumulative distribution function (cdf), and if FALSE, it returns the probability density function* (pdf).

**Example 13.12**

Use Excel’s \texttt{GAMMADIST} function to evaluate \( f(x) \), that is, the pdf of the gamma distribution if:

a. \( x = 4, n = 3 \), and \( \beta = 2 \)

b. \( x = 7, n = 3 \), and \( \beta = 2 \)

* Several probability density functions are also presented on the text mentioned on the footnote of the previous page.
Solution:
Since we are interested in the probability density function (pdf) values, we specify the FALSE condition. Then,

a. 
=\text{GAMMADIST}(4,3,2,\text{FALSE}) \text{ returns } 0.1353

b. 
=\text{GAMMADIST}(7,3,2,\text{FALSE}) \text{ returns } 0.0925

We observe that these values are consistent with the plot of Figure 13.4.

13.3 The Beta Function

The beta function, denoted as $B(m, n)$, is defined as

$$B(m, n) = \int_0^1 x^{m-1} (1-x)^{n-1} \, dx$$

(13.67)

where $m > 0$ and $n > 0$.

Example 13.13

Prove that

$$B(m, n) = B(n, m)$$

(13.68)

Proof:

Let $x = 1 - y$; then, $dx = -dy$. We observe that as $x \to 0$, $y \to 1$ and as $x \to 1$, $y \to 0$. Therefore,

$$B(m, n) = \int_0^1 x^{m-1} (1-x)^{n-1} \, dx = -\int_0^1 (1-y)^{m-1} [1-(1-y)]^{n-1} \, dy$$

$$= \int_0^1 (1-y)^{m-1} y^{n-1} \, dy = \int_0^1 y^{n-1} (1-y)^{m-1} \, dy = B(n, m)$$

and thus (13.68) is proved.

Example 13.14

Prove that

$$B(m, n) = 2 \int_0^{\pi/2} \cos^{m-1} \theta \cdot \sin^{n-1} \theta \, d\theta$$

(13.69)
Proof:

We let \( x = \sin^2 \theta \); then, \( dx = 2 \sin \theta \cos \theta d\theta \). We observe that as \( x \to 0 \), \( \theta \to 0 \) and as \( x \to 1 \), \( \theta \to \pi/2 \). Then,

\[
B(m, n) = \int_0^1 x^{m-1} (1-x)^{n-1} dx
\]

\[
= 2 \int_0^{\pi/2} (\sin^2 \theta)^{m-1} (\cos^2 \theta)^{n-1} \sin \theta \cos \theta d\theta
\]

\[
= 2 \int_0^{\pi/2} (\sin^{2m-1} \theta)(\cos^{2m-1} \theta) d\theta
\]

(13.70)

Example 13.15

Prove that

\[
B(m, n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}
\]

(13.71)

Proof:

The proof is evident from (13.62) and (13.70).

The \( B(m, n) \) function is also useful in evaluating certain integrals as illustrated by the following examples.

Example 13.16

Evaluate the integral

\[
\int_0^1 x^4 (1-x)^3 dx
\]

(13.72)

Solution:

By definition

\[
B(m, n) = \int_0^1 x^{m-1} (1-x)^{n-1} dx
\]

and thus for this example,

\[
\int_0^1 x^4 (1-x)^3 dx = B(5, 4)
\]

Using (13.71) we get

\[
B(5, 4) = \frac{\Gamma(5)\Gamma(4)}{\Gamma(9)} = \frac{4!3!}{8!} = \frac{24 \times 6}{40320} = \frac{144}{40320} = \frac{1}{280}
\]

(13.73)
The Beta Function

We can also use MATLAB’s beta(m,n) function. For this example,

\[
\text{format rat; } \% \text{ display answer in rational format}
\]

\[
z=\text{beta}(5,4)
\]

\[
z = 1/280
\]

Excel does not have a function that computes the \( B(m, n) \) function directly. However, we can use (13.71) for its computation as shown in Figure 13.5.

\[
\begin{array}{cccc}
 m & n & \Gamma(m) \exp(\text{gammaln}(m)) & \Gamma(n) \exp(\text{gammaln}(n)) & \Gamma(m+n) \exp(\text{gammaln}(m+n)) & \text{Beta}(m,n) = \frac{\Gamma(m) x \Gamma(n) / \Gamma(m+n)}{a} \\
 5 & 4 & 24.00 & 6.00 & 40320.00 & 1/280 \\
\end{array}
\]

**Figure 13.5. Computation of the beta function with Excel.**

**Example 13.17**

Evaluate the integral

\[
\int_0^2 \frac{x^2}{\sqrt{2-x}} dx
\]

**Solution:**

Let \( x = 2v \); then \( x^2 = 4v^2 \), and \( dx = 2dv \). We observe that as \( x \to 0 \), \( v \to 0 \), and as \( x \to 2 \), \( v \to 1 \). Then, (13.74) becomes

\[
\int_0^1 \frac{4v^2}{\sqrt{2-2v}} 2dv = \frac{8}{\sqrt{2}} \int_0^1 \frac{v^2}{\sqrt{1-v}} dv = 4\sqrt{2} \int_0^1 v^2 (1-v)^{-1/2} dv
\]

\[
= 4\sqrt{2} \cdot B\left(3, \frac{1}{2}\right) = 4\sqrt{2} \frac{\Gamma(3)\Gamma(1/2)}{\Gamma(7/2)}
\]

where

\[
\Gamma(3) = 2!
\]
\[
\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}
\]
\[
\Gamma\left(\frac{7}{2}\right) = \left(\frac{7}{2} - 1\right)\Gamma\left(\frac{7}{2} - 1\right) = \left(\frac{5}{2}\right)\Gamma\left(\frac{5}{2}\right) = \left(\frac{5}{2}\right)(5/2 - 1)\Gamma\left(\frac{5}{2} - 1\right)
\]

\[
= 5/2 \cdot 3/2 \cdot (3/2 - 1)\Gamma\left(3/2 - 1\right) = (15/8)\Gamma\left(1/2\right) = 15\sqrt{\pi}/8
\]

Then, from (13.74), (13.75) and (13.76) we get

\[
\int_0^2 \frac{x^2}{\sqrt{2-x}} dx = \frac{4\sqrt{2} \cdot 2! \cdot \sqrt{\pi}}{15\sqrt{\pi}/8} = \frac{64\sqrt{2}}{15}
\]
13.4 The Beta Distribution

The beta distribution is defined as

\[ f(x, m, n) = \frac{x^{m-1}(1-x)^{n-1}}{B(m, n)} \quad x < 0 < 1, \quad m, n > 0 \]  

(13.78)

A plot of the beta probability density function (pdf) for \( m = 3 \) and \( n = 2 \), is shown in Figure 13.6.

As with the gamma probability distribution, a detailed discussion of the beta probability distribution is beyond the scope of this book; it will suffice to say that it is used in computing variations in percentages of samples such as the percentage of the time in a day people spent at work, driving habits, eating times and places, etc.

Using (13.71) we can express the beta distribution as

\[ f(x, m, n) = \frac{\Gamma(m + n)}{\Gamma(m)\Gamma(n)} \cdot x^{m-1}(1-x)^{n-1} \quad x < 0 < 1, \quad m, n > 0 \]  

(13.79)

We can evaluate the beta cumulative distribution function (cdf) with Excel's BETADIST function whose syntax is

\texttt{BETADIST(x, alpha, beta, A, B)}
where:

\( x \) = value between \( A \) and \( B \) at which the distribution is to be evaluated

**alpha** = the parameter \( m \) in (13.79)

**beta** = the parameter \( n \) in (13.79)

\( A \) = the lower bound to the interval of \( x \)

\( B \) = the upper bound to the interval of \( x \)

From the plot of Figure 13.6, we see that when \( x = 1 \), \( f(x, m, n) \) which represents the probability density function, is zero. However, the cumulative distribution (the area under the curve) at this point is 100% or unity since this is the upper limit of the \( x \)-range. This value can be verified by

\[ \text{=BETADIST}(1,3,2,0,1) \]

which returns 1.0000

### 13.5 Summary

- The gamma function, denoted as \( \Gamma(n) \), is also known as generalized factorial function. It is defined as

\[
\Gamma(n) = \int_{0}^{\infty} x^{n-1} e^{-x} \, dx
\]

- It is convenient to use the relation

\[
\Gamma(n) = \frac{\Gamma(n+1)}{n}
\]

for \( n < 0 \) and the relation

\[ n\Gamma(n) = \Gamma(n+1) \]

for \( n > 0 \).

- The \( \Gamma(n) \) function is defined for all positive integers and positive fractional values, and for all negative fractional, but not negative integer values.

- The \( \Gamma(n) \) function and the factorial \( n! \) are related as

\[
\Gamma(n+1) = n! \quad \text{for} \quad n = 1, 2, 3, \ldots
\]

- We can use MATLAB’s `gamma(n)` function to obtain values of \( \Gamma(n) \).

- We can use the `EXP(GAMMALN(n))` function to evaluate \( \Gamma(n) \) at some positive value of \( n \).

- To evaluate \( \Gamma(n) \) when \( n \) is a positive integer, we can use the relation

\[
\Gamma(n) = (n-1)!
\]
• Other useful relations are shown below.

\[ \Gamma \left( \frac{1}{2} \right) = \sqrt{\pi} \]

\[ \Gamma(n)\Gamma(1-n) = \frac{\pi}{\sin(n\pi)} \]

for \( 0 < n < 1 \)

\[ 2^{2n-1} \Gamma(n)\sqrt{n} = \sqrt{n\pi}\Gamma(2n) \]

for any \( n \neq \text{negative integer} \)

• The relation

\[ \Gamma(n+1) = n! = \sqrt{2\pi n} n^ne^{-n} \left\{ 1 + \frac{1}{12n} + \frac{1}{288n^2} - \frac{139}{51840n^3} - \frac{571}{2488320n^4} + \ldots \right\} \]

is referred to as Stirling’s asymptotic series for the \( \Gamma(n) \) function. If \( n \) is a positive integer, the factorial \( n! \) can be approximated as

\[ n! \approx \sqrt{2\pi n} n^ne^{-n} \]

• The \( \Gamma(n) \) function is very useful in integrating some improper integrals.

• The relations

\[ \int_0^{\pi/2} \cos^n \theta d\theta = \int_0^{\pi/2} \sin^n \theta d\theta = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n+1}{2} + 1\right)} \frac{\sqrt{\pi}}{2} \quad n > -1 \]

are known as Wallis’s formulas.

• The gamma distribution which is defined as

\[ f(x, n, \beta) = \frac{x^{n-1} e^{-x/\beta}}{\beta^n \Gamma(n)} \quad x > 0, \ n, \beta > 0 \]

• The beta function, \( B(m, n) \) where \( m > 0 \) and \( n > 0 \) is defined as

\[ B(m, n) = \int_0^1 x^{m-1}(1-x)^{n-1} dx \]

• The beta function \( B(m, n) \) and gamma function \( \Gamma(n) \) are related by

\[ B(m, n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)} \]
• The beta $B(m, n)$ function is also useful in evaluating certain integrals.

• We can use MATLAB’s `beta(m,n)` function to evaluate the beta $B(m, n)$ function.

• The beta distribution is defined as

$$f(x, m, n) = \frac{x^{m-1}(1-x)^{n-1}}{B(m, n)} \quad x < 0 < 1, \quad m, n > 0$$
13.6 Exercises

1. Given that \( m = 2.5 \) and \( n = -1.25 \), compute

\[
\frac{\Gamma(m+n)}{\Gamma(m)\Gamma(n)}
\]

Verify your answer with MATLAB and Excel

2. Given that \( m = 10 \) and \( n = 8 \), compute \( B(m, n) \)

Verify your answer with MATLAB and Excel

3. Evaluate the following integrals

a. \( \int_{0}^{\infty} e^{-x^3} \, dx \)

b. \( \int_{0}^{\infty} xe^{-x^3} \, dx \)

c. \( \int_{0}^{1} \frac{dx}{\sqrt[4]{1-x^{4}}} \)

d. \( \int_{0}^{\pi/2} \sqrt[4]{\tan \theta} \, d\theta \)

e. \( \int_{0}^{3} \frac{dx}{\sqrt{3x-x^{3}}} \)
13.7 Solutions to Exercises

1. By repeated use of the relations \( n\Gamma(n) = \Gamma(n+1) \) for \( n > 1 \) and \( \Gamma(n) = \frac{(n-1)!}{n} \) for \( n < 1 \), we get

\[
\frac{\Gamma(m+n)}{\Gamma(m)\Gamma(n)} = \frac{\Gamma(2.5 + (-1.25))}{\Gamma(2.5)\Gamma(-1.25)} = \frac{\Gamma(1.25)}{\Gamma(2.5)\Gamma(-1.25)} = \frac{\Gamma(5/4)}{\Gamma(5/2)\Gamma(-5/4)}
\]

\[
= \frac{\Gamma(1/4 + 1)}{\Gamma(3/2 + 1)} \cdot \frac{\Gamma(-5/4 + 1)}{\Gamma(-5/4)} = \frac{1/4 \cdot \Gamma(1/4)}{3/2 \cdot (3/2) \cdot (-4/5) \cdot \Gamma(-1/4)}
\]

\[
= \frac{1/4 \cdot \Gamma(1/4)}{3/2 \cdot 1/2 \cdot \Gamma(1/2) \cdot (-4/5) \cdot \Gamma(3/4) / -1/4} = \frac{5}{48} \cdot \frac{\Gamma(1/4)}{\sqrt{\pi} \cdot \Gamma(3/4)}
\]

There are no exact values for \( \Gamma(1/4) \) and \( \Gamma(3/4) \); therefore, we obtain their approximate values from tables, where we find that \( \Gamma(1/4) = 3.6256 \) and \( \Gamma(3/4) = 1.2254 \). Then, by substitution into (1) we get:

\[
\frac{\Gamma(m+n)}{\Gamma(m)\Gamma(n)} = \frac{5}{48} \cdot \frac{3.6256}{\sqrt{\pi} \cdot 1.2254} = 0.1739
\]

Check with MATLAB:

\[
m=2.5; n=-1.25; \text{gamma}(m+n)/(\text{gamma}(m)*\text{gamma}(n))
\]

\[
\text{ans} = 0.1739
\]

We cannot check the answer with Excel because it cannot compute negative values.

2.

\[
B(m, n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)} = \frac{\Gamma(10) \cdot \Gamma(8)}{\Gamma(18)} = \frac{(9!) \times (7!)}{17!}
\]

\[
= \frac{9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2}{17 \cdot 16 \cdot 15 \cdot 14 \cdot 13 \cdot 12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2}
\]

\[
= \frac{7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2}{17 \cdot 16 \cdot 15 \cdot 14 \cdot 13 \cdot 12 \cdot 11 \cdot 10} = \frac{5040}{980179200} = 5.1419 \times 10^{-6}
\]

Check with MATLAB:

\[
\text{beta}(10,8)
\]

\[
\text{ans} = 5.1419e-006
\]
3.

a. Let \( x^3 = y \), then \( x = y^{1/3} \), \( dx = \frac{1}{3} \cdot y^{(-2/3)} \, dy \), so

\[
\int_0^\infty e^{-x^3} \, dx = \int_0^\infty e^{-y} \cdot \frac{1}{3} \cdot y^{1/3 - 1} \, dy = \frac{1}{3} \Gamma\left(\frac{1}{3}\right)
\]

b.

\[
\int_0^\infty xe^{-x^3} \, dx = \int_0^\infty x^{2-1} e^{-x^3} \, dx = \Gamma(2) = 1! = 1
\]

c. We let \( x^4 = y \) or \( x = y^{1/4} \). Then, \( dx = (1/4)y^{(-3/4)} \, dy \) and thus

\[
\int_0^1 \frac{dx}{\sqrt[4]{1-x^4}} = \frac{1}{4} \int_0^1 \frac{1}{\sqrt[4]{1-y}} \cdot y^{(-3/4)} \, dy = \frac{1}{4} \int_0^1 (1-y)^{(-1/2)} \cdot y^{(-3/4)} \, dy
\]

(1)

Also,

\[
\Gamma(3/4) \cdot \Gamma(1-3/4) = \frac{\pi}{\sin(3\pi/4)} = \frac{\pi}{\sqrt{2}/2}
\]

or

\[
\Gamma(3/4) \cdot \Gamma(1/4) = \sqrt{2}\pi, \quad \Gamma(3/4) = \frac{\sqrt{2}\pi}{\Gamma(1/4)}
\]

and by substitution into (1)

\[
\int_0^1 \frac{dx}{\sqrt[4]{1-x^4}} = \frac{1}{4} \cdot \frac{\Gamma(1/4) \cdot \Gamma(1/2)}{\Gamma(3/4)} = \frac{1}{4} \cdot \frac{\Gamma(1/4) \cdot \sqrt{\pi}}{\sqrt{2}\pi/\Gamma(1/4)}
\]

\[
= \frac{\sqrt{\pi}}{4 \sqrt{2}\pi} \cdot \left\{ \Gamma(1/4) \right\}^2 = \frac{\left\{ \Gamma(1/4) \right\}^2}{4 \sqrt{2}\pi}
\]

d.

\[
\int_0^{\pi/2} \sqrt{\tan \theta} \, d\theta = \int_0^{\pi/2} \left( \frac{\sin \theta}{\cos \theta} \right)^{1/2} \, d\theta = \int_0^{\pi/2} (\sin \theta)^{1/2} (\cos \theta)^{-1/2} \, (d\theta)
\]

From (13.62),

\[
\int_0^{\pi/2} \cos^{2m-1} \theta \cdot \sin^{2n-1} \theta \, d\theta = \frac{\Gamma(m) \Gamma(n)}{2 \Gamma(m+n)}
\]
Letting $2m - 1 = 1/2$ and $2n - 1 = -1/2$ we get $m = 3/4$ and $n = 1/4$. Then,

$$
\int_0^{\pi/2} \sqrt{\tan \theta} d\theta = \frac{\Gamma(3/4)\Gamma(1/4)}{2\Gamma(3/4 + 1/4)} = \frac{\sqrt{2\pi}}{2\Gamma(1)} = \frac{\sqrt{2\pi}}{2}
$$

e.

$$
\int_0^3 \frac{dx}{\sqrt[3]{3x - x^2}} = \int_0^3 \frac{dx}{\sqrt[3]{x(3 - x)}} = \int_0^3 x^{-1/2} \cdot (3 - x)^{-1/2} dx \quad (1)
$$

Let $x = 3y$, then $dx = 3dy$, $x^{-1/2} = (3y)^{-1/2} = (\sqrt{3}/3)y^{-1/2}$. When $x = 0$, $y = 0$ and when $x = 3$, $y = 1$, and the integral of $(1)$ becomes

$$
\frac{\sqrt{3}}{3} \cdot 3 \int_0^1 y^{-1/2} \cdot (3 - 3y)^{-1/2} dy = \frac{\sqrt{3}}{3} \int_0^1 y^{-1/2} \cdot \frac{1}{\sqrt{3}}(1 - y)^{-1/2} dy
$$

$$
= \int_0^1 y^{-1/2}(1 - y)^{-1/2} dy \quad (2)
$$

Recalling that

$$
B(m, n) = \int_0^1 x^{m-1}(1 - x)^{n-1} dx = \frac{\Gamma(m) \cdot \Gamma(n)}{\Gamma(m + n)}
$$

it follows that $m - 1 = -1/2$, $m = 1/2$, $n - 1 = -1/2$, $m = 1/2$ and thus

$$
\int_0^3 \frac{dx}{\sqrt[3]{3x - x^2}} = B\left(\frac{1}{2}, \frac{1}{2}\right) = \frac{\Gamma(1/2) \cdot \Gamma(1/2)}{\Gamma(1/2 + 1/2)} = \frac{\Gamma(1/2)^2}{\Gamma(1)} = \pi
$$
Chapter 14

Orthogonal Functions and Matrix Factorizations

This chapter is an introduction to orthogonal functions. We begin with orthogonal lines and functions, orthogonal trajectories, orthogonal vectors, and we conclude with the factorization methods LU, Cholesky, QR, and singular value decomposition.

14.1 Orthogonal Functions

Orthogonal functions are those which are perpendicular to each other. Mutually orthogonal systems of curves and vectors are of particular importance in physical problems. From analytic geometry and elementary calculus we know that two lines are orthogonal if the product of their slopes is equal to minus one. This is shown in Figure 14.1.

Orthogonality applies also to curves. Figure 14.2 shows the angle between two curves $C_1$ and $C_2$. 

---

Numerical Analysis Using MATLAB and Spreadsheets, Second Edition
Orchard Publications
By definition, in Figure 14.2, the angle between the curves $C_1$ and $C_2$ is the angle $\beta$ between their tangent lines $L_1$ and $L_2$. If $m_1$ and $m_2$ are the slopes of these two lines, then, $L_1$ and $L_2$ are orthogonal if $m_2 = -1/m_1$.

**Example 14.1**

Prove that every curve of the family

$$xy = a \quad a \neq 0 \quad (14.1)$$

is orthogonal to every curve of the family

$$x^2 - y^2 = b \quad b \neq 0 \quad (14.2)$$

**Proof:**

At a point $P(x, y)$ on any curve of (14.1), the slope is

$$xdy + ydx = 0$$

or

$$\frac{dy}{dx} = -\frac{y}{x} \quad (14.3)$$

On any curve of (14.2) the slope is

$$2xdx - 2ydy = 0$$

or

$$\frac{dy}{dx} = \frac{x}{y} \quad (14.4)$$

From (14.3) and (14.4) we see that these two curves are orthogonal since their slopes are negative reciprocals of each other. The cases where $x = 0$ or $y = 0$ cannot occur because we defined $a \neq 0$ and $b \neq 0$.

Other orthogonal functions are the $\cos x$ and $\sin x$ functions as we've learned in Chapter 6.

**14.2 Orthogonal Trajectories**

Two families of curves with the property that each member of either family cuts every member of the other family at right angles are said to be *orthogonal trajectories* of each other. Thus, the curves of (14.2) are orthogonal trajectories of the curves of (14.1). The two families of these curves are shown in Figure 14.3.
Example 14.2
Find the orthogonal trajectories of the family of parabolas

\[ y = cx^2 \quad c \neq 0 \quad (14.5) \]

Solution:
The slope of (14.5) is

\[ \frac{dy}{dx} = 2cx \quad (14.6) \]

From (14.5), \( c = \frac{y}{x^2} \) and thus we rewrite (14.6) as

\[ \frac{dy}{dx} = 2 \frac{y}{x^2} \cdot x = 2 \frac{y}{x} \quad (14.7) \]

Therefore, the slope of the orthogonal family we are seeking must be

\[ \frac{dy}{dx} = \frac{x}{2y} \quad (14.8) \]

or

\[ 2ydy + xdx = 0 \]

\[ 2\int ydy + \int xdx = 0 \]

\[ 2 \cdot \frac{y^2}{2} + \frac{x^2}{2} = k \quad (constant) \]

\[ x^2 + 2y^2 = C \quad (constant) \quad (14.9) \]
Relation (14.9) represents a family of ellipses and the trajectories are shown in Figure 14.4.

\[ X \cdot Y = x_1 y_1 + x_2 y_2 + x_3 y_3 + \ldots + x_n y_n \quad (a \text{ scalar}) \]  

(14.10)

**Example 14.3**

Given that  
\[ X = [1 \ 1 \ 1] \text{ and } Y = [2 \ 1 \ 2] \]

find the dot product  \( X \cdot Y \)

**Solution:**

\[ X \cdot Y = (1) \cdot (2) + (1) \cdot (1) + (1) \cdot (2) = 5 \]

**Definition:** Two vectors  \( X_1 \) and  \( X_2 \) are said to be orthogonal if their dot product is zero.

**Example 14.4**

Test the vectors  
\[ X_1 = [1 \ 1 \ 1] \text{ and } X_2 = [1 \ -2 \ 1] \]

for orthogonality.

**Solution:**

\[ X_1 \cdot X_2 = (1) \cdot (1) + (1) \cdot (-2) + (1) \cdot (1) = 0 \]

Therefore the vectors  \( X_1 \) and  \( X_2 \) are orthogonal to each other.
Orthogonal Vectors

With any vector \( X \neq 0 \) we may associate a unique unit vector \( U \) which is obtained by dividing each component of \( X \) by each magnitude \( |X| \) defined as

\[
|X| = \sqrt{x_1^2 + x_2^2 + \ldots + x_n^2}
\]

where \( x_i \) represents an element of the vector \( X \). This process is called normalization.

**Example 14.5**

Given that

\[
X = \begin{bmatrix} 2 & 4 & 4 \end{bmatrix}
\]

compute the unit vector \( U_X \).

**Solution:**

First, we compute the magnitude \( |X| \). For this example,

\[
|X| = \sqrt{2^2 + 4^2 + 4^2} = 6
\]

To compute the unit vector \( U_X \) we divide each element of \( X \) by the magnitude \( |X| \). Thus,

\[
U_X = \begin{bmatrix} \frac{2}{6} & \frac{4}{6} & \frac{4}{6} \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \end{bmatrix}
\]

A basis that consists of mutually orthogonal vectors is referred to as an orthogonal basis. If these vectors are also unit vectors, the basis is called orthonormal basis.

If the column (or row) vectors of a square matrix \( A \) are mutually orthogonal unit vectors, the matrix \( A \) is orthogonal and

\[
A \cdot A^T = I
\]

where \( A^T \) is the transpose of \( A \) and \( I \) is the identity matrix.

**Example 14.6**

Given that

\[
A = \begin{bmatrix} 1/2 & 1/4 \\ 1/2 & 1/2 \end{bmatrix}
\]

find an orthonormal set of eigenvectors* and verify that the result satisfies (14.11).

---

* It is strongly suggested that the reader reviews the definitions of eigenvalues and eigenvectors in Chapter 5 at this time.
Chapter 14  Orthogonal Functions and Matrix Factorizations

Solution:

First, we find the eigenvalues of the matrix $A$ from the relation $\text{det}(A - \lambda I) = 0$ where for this example

$$\text{det}\begin{pmatrix} 1/2 & 1/4 & -\lambda & 1 & 0 \\ 1/2 & 1/2 & 0 & 1 \\ 1/2 - \lambda & 1/4 & 0 & 1/2 - \lambda \\ 1/4 & 1/2 & 1/2 - \lambda & 0 \end{pmatrix} = 0$$

$$\text{det}\begin{pmatrix} 1/2 - \lambda & 1/4 \\ 1/4 & 1/2 - \lambda \end{pmatrix} = 0$$

$$\lambda^2 - \lambda + 3/16 = 0$$

from which $\lambda_1 = 1/4$ and $\lambda_2 = 3/4$ and as we’ve learned in Chapter 5, with these eigenvalues we can obtain an infinite number of eigenvectors. To find a $2 \times 2$ square matrix $Z$ such that

$$Z \cdot Z^T = I$$

we start with

$$\begin{pmatrix} z_1 & z_2 \\ -z_1 & z_2 \end{pmatrix} \cdot \begin{pmatrix} z_1 - z_1 \\ z_2 - z_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

(14.12)

or

$$\begin{pmatrix} z_1^2 + z_2^2 & -z_1^2 + z_2^2 \\ -z_1^2 + z_2^2 & z_1^2 + z_2^2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

(14.13)

Equating like terms we get

$$z_1^2 + z_2^2 = 1$$

$$-z_1^2 + z_2^2 = 0$$

From the second equation we get $z_1^2 = z_2^2$ and by substitution into the first we get $2z_1^2 = 1$ or

$$z_1 = z_2 = 1/(\pm \sqrt{2})$$

This result indicates that we can choose either $1/\sqrt{2}$ or $1/(\pm \sqrt{2})$ for the values of $z_1$ and $z_2$. We choose the value $1/\sqrt{2}$ and then the first (left most) matrix in (14.12) is

$$Z = \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/(\pm \sqrt{2}) & 1/(\pm \sqrt{2}) \end{pmatrix}$$
and as a check,

\[
\begin{bmatrix}
1 \sqrt{2} & 1 \sqrt{2} \\
1/(-\sqrt{2}) & 1/\sqrt{2}
\end{bmatrix}
\begin{bmatrix}
1 \sqrt{2} & 1/(-\sqrt{2}) \\
1/\sqrt{2} & 1/\sqrt{2}
\end{bmatrix}
= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
\]

The computations for finding orthonormal sets of eigenvectors for larger size (3 \times 3 or higher) matrices using the above procedure becomes quite involved. A simpler procedure is the Gram-Schmidt orthogonalization procedure which we will discuss on the next section.

### 14.4 The Gram-Schmidt Orthogonalization Procedure

Let \( X_1, X_2, \ldots X_m \) be some column vectors. We can find an orthogonal basis \( Y_1, Y_2, \ldots Y_m \) using the following relations. We must remember that the products in (14.14) below are the inner (dot) products and if \( X = [x_1 \ x_2 \ x_3 \ \ldots \ x_n] \) and \( Y = [y_1 \ y_2 \ y_3 \ \ldots \ y_n] \) are two vectors of the same length their dot product is defined as \( X \cdot Y = x_1y_1 + x_2y_2 + x_3y_3 + \ldots + x_ny_n \) (a scalar).

Thus in the second equation in (14.14) the dot products on the numerator and denominator must be found first and the result must be from the dot product of it and \( Y_i \)

\[
\begin{align*}
Y_1 &= X_1 \\
Y_2 &= X_2 - \frac{Y_1 \cdot X_2}{Y_1 \cdot Y_1} Y_1 \\
Y_3 &= X_3 - \frac{Y_2 \cdot X_3}{Y_2 \cdot Y_2} Y_2 - \frac{Y_1 \cdot X_3}{Y_1 \cdot Y_1} Y_1 \\
& \quad \vdots \\
Y_m &= X_m - \frac{Y_{m-1} \cdot X_m}{Y_{m-1} \cdot Y_{m-1}} Y_{m-1} \ldots - \frac{Y_1 \cdot X_m}{Y_1 \cdot Y_1} Y_1 
\end{align*}
\]

(14.14)

Also, the unit vectors

\[
U_i = \frac{Y_i}{|Y_i|} \quad i = 1, 2, \ldots, m
\]

(14.15)

are mutually orthogonal and form an orthonormal basis.

In our subsequent discussion the column vectors will be denoted as row vectors transposed.

**Example 14.7**

Given that \( X_1 = [1 \ 1 \ 1]^T, X_2 = [1 \ -2 \ 1]^T, \) and \( X_3 = [1 \ 2 \ 3]^T, \) find an orthonormal basis.
Solution:

From (14.14)

\[ Y_1 = X_1 = [1 \ 1 \ 1]^T \]
\[ Y_2 = X_2 - \frac{Y_1 \cdot X_2}{Y_1 \cdot Y_1} \cdot Y_1 = [1 \ -2 \ 1]^T \]
\[ Y_3 = X_3 - \frac{Y_2 \cdot X_3}{Y_2 \cdot Y_2} \cdot Y_2 - \frac{Y_1 \cdot X_3}{Y_1 \cdot Y_1} \cdot Y_1 = [1 \ 2 \ 3]^T \]
\[ \cdot \frac{0}{6} \cdot Y_2 - \frac{6}{3} [1 \ 1 \ 1]^T = [1 \ -2 \ 1]^T \]

and from (14.15)

\[ U_1 = \frac{Y_1}{|Y_1|} = [1/\sqrt{3} \ 1/\sqrt{3} \ 1/\sqrt{3}]^T \]
\[ U_2 = \frac{Y_2}{|Y_2|} = [1/\sqrt{6} \ -2/\sqrt{6} \ 1/\sqrt{6}]^T \]
\[ U_3 = \frac{Y_3}{|Y_3|} = [-1/\sqrt{2} \ 0 \ 1/\sqrt{2}]^T \]

and denoting the matrix whose elements are the unit vectors as \( A \), we have:

\[
A = \begin{bmatrix}
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{3}} & -\frac{2}{\sqrt{6}} & 0 \\
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}}
\end{bmatrix}
\]

We can verify that \( A \cdot A^T = I \) with the MATLAB code below.

\[
A=[1/\sqrt(3) \ 1/\sqrt(6) \ -1/\sqrt(2); \ 1/\sqrt(3) \ -2/\sqrt(6) \ 0; \ 1/\sqrt(3) \ 1/\sqrt(6) \ 1/\sqrt(2)];
I=A*A'
\]

\[
I =
\begin{bmatrix}
1.0000 & 0 & 0.0000 \\
0 & 1.0000 & 0 \\
0.0000 & 0 & 1.0000
\end{bmatrix}
\]

We can also use the MATLAB function \texttt{orth(A)} to produce an orthonormal basis as shown below.

\[
B=[1 \ 1 \ 1; \ 1 \ -2 \ 1; \ 1 \ 2 \ 3]; \ C=\text{orth}(B)
\]
The LU Factorization

We observe that the vectors of the \( C \) matrix produced by MATLAB are different from those we derived with the Gram-Schmidt orthogonalization procedure. The reason for this difference is that the orthogonalization process is not unique, that is, we may find different values depending on the process being used. As shown below, the vectors produced by MATLAB also satisfy the condition \( C \cdot C^T = I \).

\[ I = C^T \cdot C \]

\[
\begin{bmatrix}
1.0000 & -0.0000 & 0.0000 \\
-0.0000 & 1.0000 & -0.0000 \\
0.0000 & -0.0000 & 1.0000
\end{bmatrix}
\]

14.5 The LU Factorization

In matrix computations, computers use the so-called matrix factorization methods to decompose a matrix \( A \) into a product of other smaller matrices. The \textit{LU factorization method} decomposes a matrix \( A \) into a lower triangular matrix \( L \) and an upper triangular matrix \( U \) so that \( A = L \cdot U \).

In Chapter 4 we saw how the method of Gaussian elimination proceeds by systematically removing the unknowns from a system of linear equations.

Consider the following \( 3 \times 3 \) lower triangular case.

\[
\begin{bmatrix}
L_{11} & 0 & 0 \\
L_{21} & L_{22} & 0 \\
L_{31} & L_{32} & L_{33}
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} =
\begin{bmatrix}
b_1 \\
b_2 \\
b_3
\end{bmatrix}
\]

The unknowns are found from

\[
x_1 = b_1 / L_{11}
\]

\[
x_2 = (b_2 - L_{21}x_1) / L_{22}
\]

\[
x_3 = (b_3 - L_{31}x_1 - L_{32}x_2) / L_{33}
\]

provided that \( L_{11} \cdot L_{22} \cdot L_{33} \neq 0 \).

For the upper triangular case, the unknowns are written in reverse order. Thus, to solve
we start from the bottom to the top as shown below.

\[
x_3 = b_3/U_{33} \\
x_2 = (b_2 - U_{23}x_3)/U_{22} \\
x_1 = (b_1 - U_{12}x_2 - U_{13}x_3)/U_{11}
\]

provided that \( U_{11} \cdot U_{22} \cdot U_{33} \neq 0 \).

**Example 14.8**

Let us review the example given in Chapter 4 which consists of the following equations.

\[
\begin{align*}
2v_1 - v_2 + 3v_3 &= 5 \\
-4v_1 - 3v_2 - 2v_3 &= 8 \\
3v_1 + v_2 - v_3 &= 4
\end{align*}
\]

To find the three unknowns, we start by multiplying the first equation by \(-2\) and subtracting it from the second equation. This removes \(v_1\) from the second equation. Likewise, we multiply the first equation by \(3/2\) and we subtract it from the third equation. With these two reductions we obtain

\[
\begin{align*}
2v_1 - v_2 + 3v_3 &= 5 \\
-5v_2 + 4v_3 &= 18 \\
2.5v_2 - 5.5v_3 &= -3.5
\end{align*}
\]

Next we multiply the second equation of (14.20) by \(-1/2\) and we subtract it from the third equation of (14.20) and we get the system of equations below.

\[
\begin{align*}
2v_1 - v_2 + 3v_3 &= 5 \\
-5v_2 + 4v_3 &= 18 \\
-3.5v_3 &= 5.5
\end{align*}
\]

We see that the eliminations have transformed the given square system into an equivalent upper triangular system that gives the same solution which is obtained as follows:
The LU Factorization

\[ v_3 = -11/7 \]
\[ v_2 = (18 - 4v_3)/(-5) = -34/7 \]
\[ v_1 = (5 + v_2 - 3v_3)/2 = 17/7 \]

The elements of the upper triangular matrix \( U \) are the coefficients of the unknowns in (14.21). Thus,

\[
\begin{bmatrix}
    U_{11} & U_{12} & U_{13} \\
    0 & U_{22} & U_{23} \\
    0 & 0 & U_{33}
\end{bmatrix}
= \begin{bmatrix}
    2 & -1 & 3 \\
    0 & -5 & 4 \\
    0 & 0 & 3.5
\end{bmatrix}
\]

Now, let us use the relations of (14.16) and (14.18) to find the lower and upper triangular matrices of our example where

\[ A = \begin{bmatrix}
    2 & -1 & 3 \\
    -4 & -3 & -2 \\
    3 & 1 & -1
\end{bmatrix} \]

We want to find \( L_{ij} \) and \( U_{ij} \) such that

\[
\begin{bmatrix}
    L_{11} & 0 & 0 \\
    L_{21} & L_{22} & 0 \\
    L_{31} & L_{32} & L_{33}
\end{bmatrix}
\begin{bmatrix}
    U_{11} & U_{12} & U_{13} \\
    0 & U_{22} & U_{23} \\
    0 & 0 & U_{33}
\end{bmatrix}
= A = \begin{bmatrix}
    2 & -1 & 3 \\
    -4 & -3 & -2 \\
    3 & 1 & -1
\end{bmatrix}
\tag{14.22}
\]

where the first matrix on the left side is the lower triangular matrix \( L \) and the second is the upper triangular matrix \( U \). The elements of matrix \( U \) are the coefficients of \( v_1, v_2, \) and \( v_3 \) in (14.20). To find the elements of matrix \( L \) we use MATLAB to multiply matrix \( A \) by the inverse of matrix \( U \). Thus,

\[
U=[2 & -1 & 3; 0 & -5 & 4; 0 & 0 & -3.5]; A=[2 & -1 & 3; -4 & -3 & -2; 3 & 1 & -1]; L=A*inv(U)
L =
\begin{bmatrix}
    1 & 0 & 0 \\
    -2 & 1 & 0 \\
    3/2 & -1/2 & 1
\end{bmatrix}
\]

Therefore, the matrix \( A \) has been decomposed to a lower triangular matrix \( L \) and an upper matrix \( U \) as shown below.
Chapter 14  Orthogonal Functions and Matrix Factorizations

\[
\begin{bmatrix}
2 & -1 & 3 \\
-4 & -3 & -2 \\
3 & 1 & -1
\end{bmatrix}
= \begin{bmatrix}
1 & 0 & 0 \\
-2 & 1 & 0 \\
3/2 & -1/2 & 1
\end{bmatrix}
\cdot
\begin{bmatrix}
2 & -1 & 3 \\
0 & -5 & 4 \\
0 & 0 & -3.5
\end{bmatrix}
\]

Check with MATLAB:

\[
L=[1 \ 0 \ 0; \ -2 \ 1 \ 0; \ 3/2 \ -1/2 \ 1]; U=[2 \ -1 \ 3; \ 0 \ -5 \ 4; \ 0 \ 0 \ -3.5]; A=L*U
\]

\[
A =
\begin{bmatrix}
2 & -1 & 3 \\
-4 & -3 & -2 \\
3 & 1 & -1
\end{bmatrix}
\]

We found the elements of the lower triangular matrix \( L \) by first computing the inverse of the upper triangular matrix \( U \) and performing the matrix multiplication \( L = A \cdot U^{-1} \) but not \( L = U^{-1} \cdot A \). Was this necessary? The answer is no. For a square matrix where none of the diagonal elements are zero, the lower triangular matrix has the form

\[
L = \begin{bmatrix}
1 & 0 & 0 \\
L_{21} & 1 & 0 \\
L_{31} & L_{32} & 1
\end{bmatrix}
\]

and in our example we found that the values of the subdiagonal elements are \( L_{21} = -2 \), \( L_{31} = 3/5 \), and \( L_{32} = -1/2 \). These values are the multipliers that we’ve used in the elimination process in succession.

Example 14.9

Use the MATLAB function \([L,U]=lu(A)\) to decompose the matrix

\[
A = \begin{bmatrix}
2 & -3 & 1 \\
-1 & 5 & -2 \\
3 & -8 & 4
\end{bmatrix}
\]

into a lower and an upper triangular.

Solution:

\[
\text{format rat; A=[2 -3 1; -1 5 -2; 3 -8 4]; [L,U]=lu(A)}
\]

\[
L =
\begin{bmatrix}
2/3 & 1 & 1 \\
-1/3 & 1 & 0 \\
1 & 0 & 0
\end{bmatrix}
\]
The LU Factorization

\[ U = \begin{bmatrix} 3 & -8 & 4 \\ 0 & 7/3 & -2/3 \\ 0 & 0 & -1 \end{bmatrix} \]

We observe that while the upper triangular matrix \( U \) has the proper structure, the lower triangular matrix \( L \) lacks structure. When a matrix lacks structure we say that it is permuted. To put \( L \) in the proper structure, let us interchange the first and third rows. Then,

\[ L' = \begin{bmatrix} 1 & 0 & 0 \\ -1/3 & 1 & 0 \\ 2/3 & 1 & 1 \end{bmatrix} \]  \hspace{1cm} (14.23)

The new matrix \( L' \) has now the proper structure. Let us now use MATLAB to see if \( L' \cdot U = A \).

\[ L1=[1 \ 0 \ 0; -1/3 \ 1 \ 0; 2/3 \ 1 \ 1]; \ U=[3 \ -8 \ 4; 0 \ 7/3 \ -2/3; 0 \ 0 \ -1]; \ A1=L1*U \]

\[ A1 = \begin{bmatrix} 3 & -8 & 4 \\ -1 & 5 & -2 \\ 2 & -3 & 1 \end{bmatrix} \]

We see that matrix \( A \) is now permuted. To put it in the given form we need to make the same interchanges in rows as with the lower triangular matrix, that is, we must interchange the first and third rows.

To find out how MATLAB performs LU factorization, let us invoke the \texttt{help lu} command. Only part of the display is shown below.

\texttt{help lu}

\texttt{LU} \hspace{1cm} LU factorization.

\[ [L,U] = LU(X) \] \texttt{stores} an upper triangular matrix in \( U \) and a “psychologically lower triangular matrix” (i.e. a product of lower triangular and permutation matrices) in \( L \), so that \( X = L*U \). \( X \) can be rectangular.

\[ [L,U,P] = LU(X) \texttt{returns} \] unit lower triangular matrix \( L \), upper triangular matrix \( U \), and permutation matrix \( P \) so that \( P*X = L*U \).

The permutation matrix \( P \) is an identity matrix that is permuted so that the rows of this matrix indicate the interchanges. Consider, for example, the identity matrix.
If we interchange the first and third rows of the identity matrix $I$ above, we get the permutation matrix $P$ below.

$$P = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

and matrix $P$ indicates the same interchanges as with the lower triangular matrix in Example 14.9.

**Example 14.10**

Use the MATLAB function $[L,U,P]=lu(A)$ to decompose the matrix

$$A = \begin{bmatrix} 2 & -3 & 1 \\ -1 & 5 & -2 \\ 3 & -8 & 4 \end{bmatrix}$$

into a lower and an upper triangular and show that $P \cdot A = L \cdot U$.

**Solution:**

This is the same matrix as in Example 14.9. Thus,

$A=[2 -3 1; -1 5 -2; 3 -8 4]; [L,U,P]=lu(A)$

$L = \begin{bmatrix} 1 & 0 & 0 \\ -1/3 & 1 & 0 \\ 2/3 & 1 & 1 \end{bmatrix}$

$U = \begin{bmatrix} 3 & -8 & 4 \\ 0 & 7/3 & -2/3 \\ 0 & 0 & -1 \end{bmatrix}$

$P = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$
The Cholesky Factorization

We observe that the lower triangular matrix has now the proper structure and the $P$ matrix displayed by MATLAB is the same as in (14.24). Also,

\[ PA = P \cdot A, \quad LU = L \cdot U \]

\[
\begin{bmatrix}
3 & -8 & 4 \\
-1 & 5 & -2 \\
2 & -3 & 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
3 & -8 & 4 \\
-1 & 5 & -2 \\
2 & -3 & 1
\end{bmatrix}
\]

We observe that $P \cdot A = L \cdot U$ with the first and second rows interchanged when compare with the given matrix $A$.

The MATLAB matrix left division operator $x = A \backslash b$ uses the $L \cdot U$ factorization approach.

14.6 The Cholesky Factorization

A matrix is said to be positive definite if

\[ x^T \cdot A \cdot x > 0 \quad (14.25) \]

for every $x \neq 0$ and $A$ is symmetric, that is, $A^T = A$. Under those conditions, there exists an upper triangular matrix $G$ with positive diagonal elements such that

\[ G^T \cdot G = A \quad (14.26) \]

Relation (14.26) is referred to as Cholesky factorization. It is a special case of LU factorization and requires fewer computations than the LU factorization method of the previous section. Let us invoke the MATLAB help chol command to see how MATLAB performs this factorization.

CHOL Cholesky factorization.

CHOL(X) uses only the diagonal and upper triangle of X. The lower triangular is assumed to be the (complex conjugate) transpose of the upper. If X is positive definite, then R = CHOL(X) produces an upper triangular R so that R' * R = X. If X is not positive definite, an error message is printed.

[R,p] = CHOL(X), with two output arguments, never produces an error message. If X is positive definite, then p is 0 and R is the same as above. But if X is not positive definite,
then $p$ is a positive integer.

We will consider an example using the Cholesky factorization after we review the MATLAB functions `eye(n)` and `diag(v,k)` as defined by MATLAB.

help eye

EYE Identity matrix.
EYE(N) is the N-by-N identity matrix.

EYE(M,N) or EYE([M,N]) is an M-by-N matrix with 1's on the diagonal and zeros elsewhere.

EYE(SIZE(A)) is the same size as A.

See also ONES, ZEROS, RAND, RANDN.

help diag

DIAG Diagonal matrices and diagonals of a matrix.
DIAG(V,K) when V is a vector with N components is a square matrix of order N+ABS(K) with the elements of V on the K-th diagonal. K = 0 is the main diagonal, K > 0 is above the main diagonal and K < 0 is below the main diagonal.

DIAG(V) is the same as DIAG(V,0) and puts V on the main diagonal.

DIAG(X,K) when X is a matrix is a column vector formed from the elements of the K-th diagonal of X.

DIAG(X) is the main diagonal of X. DIAG(DIAG(X)) is a diagonal matrix.

Example
m = 5;
diag(-m:m) + diag(ones(2*m,1),1) + diag(ones(2*m,1),-1)
produces a tridiagonal matrix of order 2*m+1.

See also SPDIAGS, TRIU, TRIL.

Example 14.11

Use MATLAB to compute the Cholesky factorization of matrix $A$ as defined below.

format bank; $B=[-0.25 -0.50 -0.75 -1.00]$;
$A=5*eye(5)+diag(B,-1)+diag(B,1)$, $G=chol(A)$, $A1=G'*G$

Solution:

Execution of the MATLAB code above displays the following:
The QR Factorization

A =

\[
\begin{bmatrix}
5.00 & -0.25 & 0 & 0 & 0 \\
-0.25 & 5.00 & -0.50 & 0 & 0 \\
0 & -0.50 & 5.00 & -0.75 & 0 \\
0 & 0 & -0.75 & 5.00 & -1.00 \\
0 & 0 & 0 & -1.00 & 5.00
\end{bmatrix}
\]

G =

\[
\begin{bmatrix}
2.24 & -0.11 & 0 & 0 & 0 \\
0 & 2.23 & -0.22 & 0 & 0 \\
0 & 0 & 2.22 & -0.34 & 0 \\
0 & 0 & 0 & 2.21 & -0.45 \\
0 & 0 & 0 & 0 & 2.19
\end{bmatrix}
\]

A1 =

\[
\begin{bmatrix}
5.00 & -0.25 & 0 & 0 & 0 \\
-0.25 & 5.00 & -0.50 & 0 & 0 \\
0 & -0.50 & 5.00 & -0.75 & 0 \\
0 & 0 & -0.75 & 5.00 & -1.00 \\
0 & 0 & 0 & -1.00 & 5.00
\end{bmatrix}
\]

We observe that \( A1 = A \), that is, the matrix product \( G^T \cdot G = A \) is satisfied.

14.7 The QR Factorization

The QR factorization decomposes a matrix \( A \) into the product of an orthonormal matrix and an upper triangular matrix. The MATLAB function \([Q,R]=qr(A)\) produces an \( n \times n \) matrix whose columns form an orthonormal or unitary \(^*\) matrix \( Q \) and an upper triangular matrix \( R \) of the same size as matrix \( A \). In other words, \( A \) can be factored as

\[ A = QR \quad (14.27) \]

Then, a system described by \( Ax = b \) becomes

\[ QRx = b \quad (14.28) \]

and multiplying both sides of (14.28) by \( Q \cdot Q^T = I \) we get

\[ Rx = Q^T b \quad (14.29) \]

The MATLAB \([Q,R]=qr(A)\) is described as follows:

* An \( n \times n \) matrix \( A \) is called unitary if \( (A^*)^T = A^{-1} \) where \( A^* \) is the complex conjugate matrix of \( A \).
**help qr**

**QR**  
Orthogonal-triangular decomposition.  
\[ [Q, R] = QR(A) \] produces an upper triangular matrix \( R \) of the same dimension as \( A \) and a unitary matrix \( Q \) so that \( A = Q*R \).  
\[ [Q, R, E] = QR(A) \] produces a permutation matrix \( E \), an upper triangular \( R \) and a unitary \( Q \) so that \( A*E = Q*R \). The column permutation \( E \) is chosen so that abs(diag(R)) is decreasing.  
\[ [Q, R] = QR(A,0) \] produces the "economy size" decomposition. If \( A \) is \( m \)-by-\( n \) with \( m > n \), then only the first \( n \) columns of \( Q \) are computed.  
\[ [Q, R, E] = QR(A,0) \] produces an "economy size" decomposition in which \( E \) is a permutation vector, so that \( Q*R = A(:,E) \). The column permutation \( E \) is chosen so that abs(diag(R)) is decreasing.  
By itself, \( QR(A) \) is the output of LAPACK's DGEQRF or ZGEQRF routine. \( TRIU(QR(A)) \) is \( R \).  
\[ R = QR(A) \] returns only \( R \). Note that \( R = chol(A'*A) \).  
\[ [Q, R] = QR(A) \] returns both \( Q \) and \( R \), but \( Q \) is often nearly full.  
\[ [C, R] = QR(A, B) \], where \( B \) has as many rows as \( A \), returns \( C = Q'*B \).  
\[ R = QR(A,0) \] and \[ [C, R] = QR(A, B, 0) \] produce economy size results.  
The full version of \( QR \) does not return \( C \).  
The least squares approximate solution to \( A*x = b \) can be found with the Q-less QR decomposition and one step of iterative refinement:  
\[
\begin{align*}
x &= R\backslash(R'\backslash(A'*b)) \\
r &= b - A*x \\
e &= R\backslash(R'\backslash(A'*r)) \\
x &= x + e;
\end{align*}
\]

**Example 14.12**

Given that  
\[
A = \begin{bmatrix} 2 & -3 & 1 \\ -1 & 5 & -2 \\ 3 & -8 & 4 \end{bmatrix} \quad \text{and} \quad b = \begin{bmatrix} 2 \\ 4 \\ 5 \end{bmatrix}
\]
solve \( Ax = b \) using the MATLAB function \([Q, R] = qr(A)\) and \( x = R\backslash Q^T b \).
Solution:

\[
A = \begin{bmatrix} 2 & -3 & 1; & -1 & 5 & -2; & 3 & -8 & 4 \end{bmatrix}; \ b = \begin{bmatrix} 2 & 4 & 5 \end{bmatrix}; \ [Q, R] = \text{qr}(A), \ x = R \backslash Q^*b
\]

\[
Q = \begin{bmatrix} -0.53 & -0.62 & -0.58 \\ 0.27 & -0.77 & 0.58 \\ -0.80 & 0.15 & 0.58 \end{bmatrix}
\]

\[
R = \begin{bmatrix} -3.74 & 9.35 & -4.28 \\ 0 & -3.24 & 1.54 \\ 0 & 0 & 0.58 \end{bmatrix}
\]

\[
x = \begin{bmatrix} 4.14 \\ 4.43 \\ 7.00 \end{bmatrix}
\]

Check = \(A \backslash b\)

\[
\text{Check } = \begin{bmatrix} 4.14 \\ 4.43 \\ 7.00 \end{bmatrix}
\]

Let us verify that the matrix \(Q\) is unitary. Of course, since the elements are real numbers, the complex conjugate of \(Q\) is also \(Q\) and thus we only need to show that \(Q^T = Q^{-1}\) or \(Q \cdot Q^T = I\).

\[
Q^*Q'
\]

\[
\text{ans } = \begin{bmatrix} 1.00 & 0.00 & -0.00 \\ 0.00 & 1.00 & -0.00 \\ -0.00 & -0.00 & 1.00 \end{bmatrix}
\]

QR factorization is normally used to solve overdetermined systems, that is, systems with more equations than unknowns as in applications where we need to find the least square distance in linear regression. In an overdetermined system, there is no vector \(X\) which can satisfy the entire system of equations, so we select the vector \(X\) which produces the minimum error. MATLAB does this with either the left division operator (\(\backslash\)) or with the non-negative least-squares function \(\text{lsqnonneg}(A, b)\). This function returns the vector \(X\) that minimizes \(\text{norm}(A \cdot X - b)\) subject to \(X \geq 0\) provided that the elements of \(A\) and \(b\) are real numbers.

* We defined overdetermined and underdetermined systems in Chapter 8
A = \begin{bmatrix} 2 & -3 & 1 \\ -1 & 5 & -2 \\ 3 & -8 & 4 \end{bmatrix}; \quad b = \begin{bmatrix} 2 & 4 & 5 \end{bmatrix}; \quad X = \text{lsqnonneg}(A, b)

X =

4.1429
4.4286
7.0000

Underdetermined systems have infinite solutions and MATLAB selects one but no warning message is displayed.

As we’ve learned in Chapter 4, the MATLAB function \texttt{inv(A)} produces the inverse of the square matrix \(A\) and an error message is displayed if \(A\) is not square. The function \texttt{pinv(A)} displays the pseudo-inverse of a \(m \times n\) (non-square) matrix \(A\). Of course, if \(A\) is square, then \texttt{pinv(A)} = \texttt{inv(A)}.

### 14.8 Singular Value Decomposition

The Singular Value Decomposition (SVD) method decomposes a matrix \(A\) into a diagonal matrix \(S\), of the same dimension as \(A\) and with nonnegative diagonal elements in decreasing order, and unitary matrices \(U\) and \(V\) so that

\[
A = U \cdot S \cdot V^T
\]

The matrices \(U\), \(S\), and \(V\), decomposed from a given matrix \(A\), can be found with the MATLAB function \texttt{[U, S, V]=svd(A)}.

**Example 14.13**

Decompose the matrix

\[
A = \begin{bmatrix}
2 & -3 & 1 \\ -1 & 5 & -2 \\ 3 & -8 & 4
\end{bmatrix}
\]

into two unitary matrices and a diagonal matrix with non-negative elements.

**Solution:**

We will use the MATLAB \texttt{[U, S, V]=svd(A)} function.

\[
A = \begin{bmatrix} 2 & -3 & 1 \\ -1 & 5 & -2 \\ 3 & -8 & 4 \end{bmatrix}; \quad [U, S, V]=\text{svd}(A)
\]

\[
U =

\begin{bmatrix}
-0.3150 & -0.8050 & -0.5028 \\ 0.4731 & -0.5924 & 0.6521 \\ -0.8228 & -0.0325 & 0.5675
\end{bmatrix}
\]
Summary

\[ S = \begin{bmatrix} 11.4605 & 0 & 0 \\ 0 & 1.1782 & 0 \\ 0 & 0 & 0.5184 \end{bmatrix} \]

\[ V = \begin{bmatrix} -0.3116 & -0.9463 & 0.0863 \\ 0.8632 & -0.2440 & 0.4420 \\ -0.3972 & 0.2122 & 0.8929 \end{bmatrix} \]

As expected, the diagonal elements of the triangular matrix are non-negative and in decreasing values. We also verify that the matrices \( U \) and \( V \) are unitary as shown below.

\[ U^*U' \]

\[
\text{ans} = \\
\begin{bmatrix} 1.0000 & -0.0000 & -0.0000 \\ -0.0000 & 1.0000 & 0.0000 \\ -0.0000 & 0.0000 & 1.0000 \end{bmatrix}
\]

\[ V^*V' \]

\[
\text{ans} = \\
\begin{bmatrix} 1.0000 & -0.0000 & 0.0000 \\ -0.0000 & 1.0000 & -0.0000 \\ 0.0000 & -0.0000 & 1.0000 \end{bmatrix}
\]

14.9 Summary

- Orthogonal functions are those which are perpendicular to each other.
- Two families of curves with the property that each member of either family cuts every member of the other family at right angles are said to be orthogonal trajectories of each other.
- The inner (dot) product of two vectors \( X = [x_1, x_2, x_3, \ldots, x_n] \) and \( Y = [y_1, y_2, y_3, \ldots, y_n] \) is a scalar defined as \( X \cdot Y = x_1y_1 + x_2y_2 + x_3y_3 + \ldots + x_ny_n \).
- If the dot product of two vectors \( X_1 \) and \( X_2 \) is zero, these vector are said to be orthogonal to each other.
- The magnitude of a vector \( X \), denoted as \( |X| \), is defined as \( |X| = \sqrt{x_1^2 + x_2^2 + \ldots + x_n^2} \). A unique unit vector \( U \) is obtained by dividing each component of \( X \) by the magnitude \( |X| \) and this process is referred to as normalization.
• A basis that consists of mutually orthogonal vectors is referred to as an orthogonal basis. If these vectors are also unit vectors, the basis is called orthonormal basis.

• If the column (or row) vectors of a square matrix \( A \) are mutually orthogonal unit vectors, the matrix \( A \) is said to be orthogonal and \( A \cdot A^T = I \) where \( A^T \) is the transpose of \( A \) and \( I \) is the identity matrix.

• We can find an orthonormal set of eigenvectors in a \( 2 \times 2 \) matrix easily from the eigenvalues but the computations for finding orthonormal sets of eigenvectors for larger size (\( 3 \times 3 \) or higher) matrices using the above procedure becomes quite involved. A simpler procedure is the Gram-Schmidt orthogonalization procedure which we will discuss on the next section.

• The LU factorization method decomposes a matrix \( A \) into a lower triangular matrix \( L \) and an upper triangular matrix \( U \) so that \( A = L \cdot U \). The MATLAB function \([L,U]=lu(A)\) decomposes the matrix \( A \) into a lower triangular matrix \( L \) and an upper triangular matrix \( U \).

• A matrix is said to be positive definite if \( x^T \cdot A \cdot x > 0 \) for every \( x \neq 0 \) and \( A \) is symmetric, that is, \( A^T = A \). Under those conditions, there exists an upper triangular matrix \( G \) with positive diagonal elements such that \( G^T \cdot G = A \). This process is referred to as the Cholesky factorization.

• The QR factorization decomposes a matrix \( A \) into the product of an orthonormal matrix and an upper triangular matrix. The MATLAB function \([Q,R]=qr(A)\) produces an \( n \times n \) matrix whose columns form an orthonormal or unitary matrix \( Q \) and an upper triangular matrix \( R \) of the same size as matrix \( A \).

• The Singular Value Decomposition (SVD) method decomposes a matrix \( A \) into a diagonal matrix \( S \), of the same dimension as \( A \) and with nonnegative diagonal elements in decreasing order, and unitary matrices \( U \) and \( V \) so that \( A = U \cdot S \cdot V^T \). The matrices \( U \), \( S \), and \( V \), decomposed from a given matrix \( A \), can be found with the MATLAB function \([U, S, V]=svd(A)\).
14.10 Exercises

1. Show that the curve \( x^2 + 3y^2 = k_1 \) and the curve \( 3y = k_2x^3 \) where \( k_1 \) and \( k_2 \) are constants, are orthogonal to each other.

2. Find the orthogonal trajectories of the curves of the family \( 2x^2 + y^2 = kx \)

3. Given the vectors \( X_1 = [2 -1]^T \) and \( X_2 = [1 -3]^T \), use the Gram-Schmidt orthogonalization procedure to find two vectors \( Y_1 \) and \( Y_2 \) to form an orthonormal basis.

4. Use MATLAB to find another set of an orthonormal basis with the vectors given in Exercise 3.

5. Use the Gaussian elimination method as in Example 14.8 to decompose the system of equations

\[
\begin{align*}
x_1 + 2x_2 + 3x_3 &= 14 \\
-2x_1 + 3x_2 + 2x_3 &= 10 \\
5x_1 - 8x_2 + 6x_3 &= 7
\end{align*}
\]

into an upper triangular matrix \( U \) and a lower triangular matrix \( L \). Verify your answers with MATLAB.

6. Using the MATLAB functions \texttt{eye(n)} and \texttt{diag(v,k)} to define and display the matrix \( A \) shown below.

\[
A = \begin{bmatrix}
4.00 & -0.80 & 0 & 0 \\
-0.80 & 4.00 & -1.00 & 0 \\
0 & -1.00 & 4.00 & -1.20 \\
0 & 0 & -1.20 & 4.00
\end{bmatrix}
\]

Then, use the MATLAB Cholesky factorization function to obtain the matrix \( G \) and verify that \( G^T \cdot G = A \).

7. Use the appropriate MATLAB function to decompose the system of equations

\[
A = \begin{bmatrix}
1 & 0 & -1 \\
0 & 1 & 2 \\
-2 & -3 & 4
\end{bmatrix}
\]

\[ b = \begin{bmatrix} 3 \\ 5 \\ 9 \end{bmatrix} \]

into an upper triangular matrix \( R \) of the same dimension as \( A \) and a unitary matrix \( Q \) so that \( Q \cdot R = A \). Use a suitable function to verify your results.
8. Use the appropriate MATLAB function to decompose the matrix $A$ given as

$$A = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ -2 & -3 & 4 \end{bmatrix}$$

into a diagonal matrix $S$ of the same dimension as $A$ and with non-negative diagonal elements in decreasing order and unitary matrices $U$ and $V$ so that $U \cdot S \cdot V^T = A$. 
14.11 Solutions to Exercises

1.

\[ x^2 + 3y^2 = k_1 \quad (1) \]

\[ 3y = k_2x^3 \quad (2) \]

Implicit differentiation of (1) yields

\[ 2x + 6y \frac{dy}{dx} = 0 \]

or

\[ \frac{dy}{dx} = -\frac{1}{3} \cdot \frac{x}{y} \quad (3) \]

Differentiation of (2) yields

\[ \frac{dy}{dx} = \frac{3k_2x^2}{3} = k_2x^2 \quad (4) \]

From (2),

\[ k_2 = \frac{3y}{x^3} \]

and by substitution into (4) we get

\[ \frac{dy}{dx} = \frac{3y}{x^3} \cdot x^2 = \frac{3y}{x} \quad (5) \]

We see that (5) is the negative reciprocal of (3) and thus the given curves are orthogonal to each other.

2.

\[ 2x^2 + y^2 = kx \quad (1) \]

Implicit differentiation of (1) yields

\[ \frac{d}{dx}(2x^2) + \frac{d}{dx}y^2 = \frac{d}{dx}(kx) \]

\[ 4x + 2y \frac{dy}{dx} = k \]

and solving for \( \frac{dy}{dx} \),

\[ \frac{dy}{dx} = \frac{k - 4x}{2y} \quad (2) \]

From (1),

\[ k = \frac{2x^2 + y^2}{x} \quad (3) \]
and by substitution into (2)

$$\frac{dy}{dx} = \frac{2x^2 + y^2 - 4x}{x} = \frac{-2x^2 + y^2}{2xy}$$ \hspace{1cm} (4)

Now, we need to find the curves whose slopes are given by the negative reciprocal of (4), that is, we need to find the family of the curves of

$$\frac{dy}{dx} = \frac{2xy}{2x^2 - y^2}$$ \hspace{1cm} (5)

We rewrite (5) as

$$(2x^2 - y^2)dy = 2xydx$$ \hspace{1cm} (6)

and we let $y = ux$. Then, $dy = udx + xdu$ and by substitution into (6)

$$(2x^2 - u^2x^2)(udx + xdu) = 2x^2udx$$

Division of both sides of the above by $x^2$ yields

$$(2 - u^2)(udx + xdu) = 2udx$$

Collecting like terms and simplifying we get

$$x(2 - u^2)du = u^3dx$$

Separating the variables we get

$$\frac{dx}{x} = \frac{(2 - u^2)}{u^3}du = \frac{2}{u^3}du - \frac{du}{u}$$

or

$$\frac{dx}{x} + \frac{du}{u} = \frac{2}{u^3}du$$

and by integrating these terms we find

$$ln|x| + ln|u| = \frac{-l}{u^2} + C$$

By substitution of $u = y/x$ we get

$$ln|x| + ln\left|\frac{y}{x}\right| + ln|C| = ln\left|x \cdot \frac{y}{x} \cdot C\right| = ln|Cy| = \frac{-x^2}{y^2}$$
and thus the family of curves orthogonal to the given family is
\[ x^2 = -y^2 \ln |Cy| \]

3. From (14.14)
\[
Y_1 = X_1 = [2 \ -1]^T
\]
\[
Y_2 = X_2 - \frac{Y_1 \cdot X_2}{Y_1 \cdot Y_1} \cdot Y_1 = [1 \ -3]^T - \frac{[2 \ -1]^T \cdot [1 \ -3]^T}{[2 \ -1]^T \cdot [2 \ -1]^T} \cdot [2 \ -1]^T
\]
\[
= [1 \ -3]^T - \frac{2 + 3}{4 + 1} \cdot [2 \ -1]^T = [1 \ -3]^T - \frac{5}{5} \cdot [2 \ -1]^T = [1 \ -3]^T - [2 \ -1]^T = [-1 \ 2]^T
\]

and from (14.15)
\[
U_1 = \frac{Y_1}{|Y_1|} = \left[ \frac{2}{\sqrt{5}} \ -1/\sqrt{5} \right]^T
\]
\[
U_2 = \frac{Y_2}{|Y_2|} = \left[ -1/\sqrt{5} \ -2/\sqrt{5} \right]^T
\]

and denoting the matrix whose elements are the unit vectors as \( A \), we have:
\[
A = \begin{bmatrix}
\frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \\
-\frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}}
\end{bmatrix}
\]

We verify that \( A \cdot A^T = I \) as shown below.
\[
\begin{bmatrix}
\frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \\
-\frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}}
\end{bmatrix} \cdot \begin{bmatrix}
\frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \\
-\frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}}
\end{bmatrix} = \begin{bmatrix}
\frac{4}{5} + \frac{1}{5} & -\frac{2}{5} + \frac{2}{5} \\
-\frac{2}{5} + \frac{2}{5} & \frac{1}{5} + \frac{4}{5}
\end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
\]

4. \( A=[2 \ -1; \ 1 \ -3] \); \( B=\text{orth}(A) \)
\[
B = \\
-0.5257 & -0.8507 \\
-0.8507 & 0.5257
\]
\[
I=B \cdot B' \\
I = \\
1.0000 & -0.0000 \\
-0.0000 & 1.0000
\]
5.
\[ x_1 + 2x_2 + 3x_3 = 14 \\
-2x_1 + 3x_2 + 2x_3 = 10 \quad (1) \\
5x_1 - 8x_2 + 6x_3 = 7 \\
\]

Multiplying the first equation of (1) by \(-2\) and subtracting it from the second in (1) we get the second equation in (2) and thus \(x_1\) is eliminated. Likewise, we multiply the first equation by \(5\) and we subtract it from the third in (1). Then,
\[
\begin{align*}
x_1 + 2x_2 + 3x_3 &= 14 \\
7x_2 + 8x_3 &= 38 \quad (2) \\
-18x_2 - 9x_3 &= -63 \\
\end{align*}
\]

Next, we multiply the second equation in (2) by \(-18/7\) and we subtract it from the third in (2). Then, after simplification
\[
\begin{align*}
x_1 + 2x_2 + 3x_3 &= 14 \\
7x_2 + 8x_3 &= 38 \quad (3) \\
(81/7)x_3 &= 243/7 \\
\end{align*}
\]

Thus,
\[
\begin{align*}
x_3 &= 243/81 = 3 \\
x_2 &= (38 - 8x_3)/7 = 2 \\
x_1 &= (14 - 3x_3 - 2x_2) = 1 \\
\end{align*}
\]

The multipliers that we’ve used are \(-2\), \(5\), and \(-18/7\). These are the elements \(L_{21}\), \(L_{31}\), and \(L_{32}\) respectively. Therefore, the lower triangular matrix is
\[
L = \begin{bmatrix}
1 & 0 & 0 \\
-2 & 1 & 0 \\
5 & -18/7 & 1 \\
\end{bmatrix}
\]

The elements of the upper triangular matrix are the coefficients of the unknowns in (3) and thus
\[
U = \begin{bmatrix}
1 & 2 & 3 \\
0 & 7 & 8 \\
0 & 0 & 81/7 \\
\end{bmatrix}
\]

Now, we use MATLAB to verify that \(L \cdot U = A\)

\[
L=[1 \quad 0 \quad 0; \quad -2 \quad 1 \quad 0; \quad 5 \quad -18/7 \quad 1]; \quad U=[1 \quad 2 \quad 3; \quad 0 \quad 7 \quad 8; \quad 0 \quad 0 \quad 81/7]; \quad A=L*U
\]
6. \[ A = \begin{bmatrix} 1 & 2 & 3 \\ -2 & 3 & 2 \\ 5 & -8 & 6 \end{bmatrix} \]

format bank; \[ B = \begin{bmatrix} -0.8 & -1.0 & -1.2 \end{bmatrix} \]
\[ A = 4 \text{eye}(4) + \text{diag}(B, -1) + \text{diag}(B, 1), \quad G = \text{chol}(A), \quad A1 = G^*G \]

\[ A = \begin{bmatrix} 4.00 & -0.80 & 0 & 0 \\ -0.80 & 4.00 & -1.00 & 0 \\ 0 & -1.00 & 4.00 & -1.20 \\ 0 & 0 & -1.20 & 4.00 \end{bmatrix} \]

\[ G = \begin{bmatrix} 2.00 & -0.40 & 0 & 0 \\ 0 & 1.96 & -0.51 & 0 \\ 0 & 0 & 1.93 & -0.62 \\ 0 & 0 & 0 & 1.90 \end{bmatrix} \]

\[ A1 = \begin{bmatrix} 4.00 & -0.80 & 0 & 0 \\ -0.80 & 4.00 & -1.00 & 0 \\ 0 & -1.00 & 4.00 & -1.20 \\ 0 & 0 & -1.20 & 4.00 \end{bmatrix} \]

7. \[ A = \begin{bmatrix} 1 & 0 & -1; 0 & 1 & 2; -2 & -3 & 4 \end{bmatrix} \]
\[ b = [3 \ 5 \ 9] \]
\[ [Q,R] = \text{qr}(A), \quad QQT = Q^*Q, \quad x = R \backslash Q^*b, \quad \text{Check} = A \backslash b \]

\[ Q = \begin{bmatrix} -0.4472 & 0.7171 & 0.5345 \\ 0 & -0.5976 & 0.8018 \\ 0.8944 & 0.3586 & 0.2673 \end{bmatrix} \]

\[ R = \begin{bmatrix} -2.2361 & -2.6833 & 4.0249 \\ 0 & -1.6733 & -0.4781 \\ 0 & 0 & 2.1381 \end{bmatrix} \]

\[ QQT = \begin{bmatrix} 1.0000 & 0.0000 & 0.0000 \\ 0.0000 & 1.0000 & 0.0000 \\ 0.0000 & 0.0000 & 1.0000 \end{bmatrix} \]

\[ x = \]
6.7500
-2.5000
3.7500

Check =
6.7500
-2.5000
3.7500

8.

\[
\begin{bmatrix}
1 & 0 & -1; 0 & 1 & 2; -2 & -3 & 4
\end{bmatrix};
\]
\[
[U, S, V] = \text{svd}(A), \ U U^T = U^* U', \ V V^T = V^* V'
\]

\[
U =
\begin{bmatrix}
-0.2093 & -0.2076 & -0.9556 \\
0.1977 & 0.9480 & -0.2493 \\
0.9577 & -0.2410 & -0.1574
\end{bmatrix}
\]

\[
S =
\begin{bmatrix}
5.5985 & 0 & 0 \\
0 & 2.0413 & 0 \\
0 & 0 & 0.7000
\end{bmatrix}
\]

\[
V =
\begin{bmatrix}
-0.3795 & 0.1345 & -0.9154 \\
-0.4779 & 0.8187 & 0.3184 \\
0.7922 & 0.5583 & -0.2464
\end{bmatrix}
\]

\[
U U^T =
\begin{bmatrix}
1.0000 & 0.0000 & 0.0000 \\
0.0000 & 1.0000 & 0.0000 \\
0.0000 & 0.0000 & 1.0000
\end{bmatrix}
\]

\[
V V^T =
\begin{bmatrix}
1.0000 & 0.0000 & -0.0000 \\
0.0000 & 1.0000 & -0.0000 \\
-0.0000 & -0.0000 & 1.0000
\end{bmatrix}
\]
Chapter 15

Bessel, Legendre, and Chebyshev Functions

This chapter is an introduction to some very interesting functions. These are special functions that find wide applications in science and engineering. They are solutions of differential equations with variable coefficients and, under certain conditions, satisfy the orthogonality principle.

15.1 The Bessel Function

The Bessel functions, denoted as \( J_n(x) \), are used in engineering, acoustics, aeronautics, thermodynamics, theory of elasticity and others. For instance, in the electrical engineering field, they are used in frequency modulation, transmission lines, and telephone equations.

Bessel functions are solutions of the differential equation

\[
x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + (x^2 - n^2)y = 0
\]

where \( n \) can be any number, positive or negative integer, fractional, or even a complex number. Then, the form of the general solution of (15.1) depends on the value of \( n \).

Differential equations with variable coefficients, such as (15.1), cannot be solved in terms of familiar functions as those which we encountered in ordinary differential equations with constant coefficients. The usual procedure is to derive solutions in the form of infinite series, and the most common are the Method of Frobenius and the Method of Picard. It is beyond the scope of this book to derive the infinite series which are approximations to the solutions of these differential equations; these are discussed in advanced mathematics textbooks. Therefore, we will accept the solutions without proof.

Applying the method of Frobenius to (15.1), we obtain the infinite power series

\[
J_n(x) = \sum_{k=0}^{\infty} (-1)^k \cdot \left( \frac{x}{2} \right)^{n+2k} \cdot \frac{1}{k! \cdot \Gamma(n+k+1)} \quad n \geq 0
\]

(15.2)

This series is referred to as Bessel function of order \( n \) where \( n \) is any positive real number or zero. If in (15.2), we replace \( n \) with \(-n\), we get the relation

\[
J_{-n}(x) = \sum_{k=0}^{\infty} (-1)^k \cdot \left( \frac{x}{2} \right)^{-n+2k} \cdot \frac{1}{k! \cdot \Gamma(-n+k+1)}
\]

(15.3)
and the function $J_{-n}(x)$ is referred to as the Bessel function of negative order $n$.

For the special case where $n$ is a positive integer or zero,

$$I(n+k+1) = (n+k)!$$

and (15.2) reduces to

$$J_n(x) = \sum_{k=0}^{\infty} (-1)^k \left( \frac{x}{2} \right)^{n+2k} \frac{l}{k! \cdot (n+k)!} \quad n = 0, 1, 2, \ldots$$

or

$$J_n(x) = \frac{x^n}{2^n \cdot n!} \left\{ 1 - \frac{x^2}{2^2 \cdot 1! \cdot (n+1)} + \frac{x^4}{2^4 \cdot 2! \cdot (n+1)(n+2)} \right. \left. - \frac{x^6}{2^6 \cdot 3! \cdot (n+1)(n+2)(n+3)} + \ldots \right\}$$

For $n = 0, 1$ and 2, (15.6) reduces to the following series:

$$J_0(x) = 1 - \frac{x^2}{2^2 \cdot (1!)^2} + \frac{x^4}{2^4 \cdot (2!)^2} - \frac{x^6}{2^6 \cdot (3!)^2} + \frac{x^8}{2^8 \cdot (4!)^2} - \ldots$$

$$J_1(x) = \frac{x}{2} - \frac{x^3}{2^3 \cdot 1! \cdot 2!} + \frac{x^5}{2^5 \cdot 2! \cdot 3!} - \frac{x^7}{2^7 \cdot 3! \cdot 4!} + \frac{x^9}{2^9 \cdot 4! \cdot 5!} - \ldots$$

$$J_2(x) = \frac{x^2}{2^2 \cdot 2!} - \frac{x^4}{2^4 \cdot 1! \cdot 3!} + \frac{x^6}{2^6 \cdot 2! \cdot 4!} - \frac{x^8}{2^8 \cdot 3! \cdot 5!} + \frac{x^{10}}{2^{10} \cdot 4! \cdot 6!} - \ldots$$

We observe from (15.7) through (15.9), that when $n$ is zero or even, $J_n(x)$ is an even function of $x$, and odd when $n$ is odd.

If we differentiate the series of $J_0(x)$ in (15.7), and compare with the series of $J_1(x)$ in (15.8), we see that

$$\frac{d}{dx} J_0(x) = -J_1(x)$$

Also, if we multiply the series for $J_1(x)$ by $x$ and differentiate it, we will find that

$$\frac{d}{dx} \{xJ_1(x)\} = xJ_0(x)$$
Example 15.1

Compute, correct to four decimal places, the values of

\[ a. \ J_0(2) \quad b. \ J_1(3) \quad c. \ J_2(1) \]

Solution:

a.
From (15.7),

\[
J_0(2) = 1 - \frac{4}{4} + \frac{16}{64} - \frac{64}{64 \times 36} + \frac{256}{256 \times 576} = \frac{1}{4} - \frac{1}{36} + \frac{l}{576} = \frac{43}{192} = 0.2240
\]

or from math tables, \( J_0(2) = 0.2239 \)

b.
From (15.8),

\[
J_1(3) = \frac{3}{2} - \frac{27}{16} + \frac{243}{384} - \frac{2187}{18432} + \frac{19683}{1474560} = 0.3400
\]

or from math tables, \( J_1(3) = 0.3391 \)

c.
From (15.9),

\[
J_2(1) = \frac{1}{8} - \frac{1}{96} + \frac{1}{1536} - \frac{1}{184320} + \frac{1}{17694720} = 0.1152
\]

or from math tables, \( J_2(1) = 0.1149 \).

We can use the MATLAB \texttt{besselj(n,x)} function or the Excel \texttt{BESSELJ(x,n)} function for the above computations. With MATLAB, we get

\texttt{besselj(0,2), besselj(1,3), besselj(2,1)}

\[
\text{ans} = \\
0.2239
\]

\[
\text{ans} = \\
0.3391
\]

\[
\text{ans} = \\
0.1149
\]

and with Excel,

\[
\text{besselj(2,0)=} \quad 0.2239 \quad \text{besselj(3,1)=} \quad 0.3391 \quad \text{besselj(1,2)=} \quad 0.1149
\]

The MATLAB code below plots \( J_0(x), J_1(x), \) and \( J_2(x) \).
Chapter 15  Bessel, Legendre, and Chebyshev Functions

\[ x = 0.00: 0.05: 10.00; v = \text{besselj}(0,x); w = \text{besselj}(1,x); z = \text{besselj}(2,x); \]
\[ \text{plot}(x,v,w,x,z); \text{grid}; \text{title('Bessel Functions of the First Kind')}; \text{xlabel('x')}; \text{ylabel('Jn(x)')}; \]
\[ \text{text}(0.95, 0.85, 'J0(x)'); \text{text}(2.20, 0.60, 'J1(x)'); \text{text}(4.25, 0.35, 'J2(x)') \]

The plots for \( J_0(x) \), \( J_1(x) \) and \( J_2(x) \) are shown in Figure 15.1.*

![Bessel Functions of the First Kind](image)

**Figure 15.1.** Plots of \( J_0(x) \), \( J_1(x) \) and \( J_2(x) \) using MATLAB

We can also use Excel to plot these series as shown in Figure 15.2.

The definition of a Bessel function of the first kind will be explained shortly.

The \( x \)-axis crossings in the plot of Figures 15.1 and 15.2 show the first few roots of the \( J_0(x) \), \( J_1(x) \), and \( J_2(x) \) series. However, all \( J_n(x) \) are infinite series and thus, it is a very difficult and tedious task to compute all roots of these series. Fortunately, tables of some of the roots of \( J_0(x) \) and \( J_1(x) \) are shown in math tables.

The equations \( J_0(x) = 0 \) and \( J_1(x) = 0 \) exhibit some interesting characteristics. The most noteworthy are:

1. They have no complex roots
2. Each has an infinite number of distinct real roots

* In Frequency Modulation (FM), \( x \) is denoted as \( \beta \) and it is called **modulation index**. The functions \( J_0(\beta) \), \( J_1(\beta) \), \( J_2(\beta) \) and so on, represent the carrier, first sideband, second sideband etc. respectively.
3. Between two consecutive roots of one of these equations lies one and only one root of the other equation, that is, the roots of these equations separate each other. This is observed on Table 15.1 which shows the first 5 positive roots of these equations, and the differences between consecutive roots. For instance, we observe that the first root 3.8317 of $J_1(x)$ lies between the roots 2.4048 and 5.5201 of $J_0(x)$.

**TABLE 15.1 The first few roots of $J_0(x)$ and $J_1(x)$**

<table>
<thead>
<tr>
<th>$J_0(x) = 0$</th>
<th>$J_1(x) = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roots</td>
<td>Differences</td>
</tr>
<tr>
<td>2.4048</td>
<td>3.1153</td>
</tr>
<tr>
<td>5.5201</td>
<td>3.1336</td>
</tr>
<tr>
<td>8.6537</td>
<td>3.1378</td>
</tr>
<tr>
<td>11.7915</td>
<td>3.1394</td>
</tr>
<tr>
<td>14.9309</td>
<td>…</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
</tr>
</tbody>
</table>
4. As the roots become larger and larger, the difference between consecutive roots approaches
the value of $\pi$, that is, $J_0(x)$ and $J_1(x)$, are almost periodic with period almost $2\pi$. In other
words, these series behave like the $\cos x$ and $\sin x$ functions.

If $n$ is half of an odd integer, such as $1/2$, $3/2$, $5/2$, and so on, then $J_n(x)$ can be expressed in a
finite form of sines and cosines. Consider, for example, the so-called half-order Bessel functions
$J_{1/2}(x)$ and $J_{(-1/2)}(x)$. If we let $n = 1/2$ in (15.2), we get

$$J_{1/2}(x) = \frac{2}{\sqrt{\pi x}} \sin x$$  \hspace{1cm} (15.12)

Likewise, if we let $n = 1/2$ in (15.3), we get

$$J_{(-1/2)}(x) = \frac{2}{\sqrt{\pi x}} \cos x$$  \hspace{1cm} (15.13)

Example 15.2

Compute, correct to four decimal places, the values of

a. $J_{1/2}(\frac{\pi}{4})$  \hspace{1cm} b. $J_{(-1/2)}(\frac{\pi}{4})$

Solution:

a. Using (15.12),

$$J_{1/2}(\frac{\pi}{4}) = \frac{2}{\sqrt{\pi (\pi/4)}} \sin(\pi/4) = \frac{1}{\pi} \cdot \frac{\sqrt{2}}{2} = \frac{4}{2\pi} = \frac{2}{\pi} = 0.6366$$

b. Using (15.13).

$$J_{(-1/2)}(\frac{\pi}{4}) = \frac{2}{\sqrt{\pi (\pi/4)}} \cos(\pi/4) = \frac{1}{\pi} \cdot \frac{\sqrt{2}}{2} = \frac{2}{\pi} = 0.6366$$

Check with MATLAB:

besselj(0.5,pi/4), besselj(-0.5,pi/4)

ans =
0.6366

ans =
0.6366

The Bessel functions which we have discussed thus far, are referred to as Bessel functions of the first
kind. Other Bessel functions, denoted as $Y_n(x)$ and referred to as Bessel functions of the second kind,
The Bessel Function

or Weber functions, or Neumann functions. These are additional solutions of the Bessel’s equation, and will be explained in the next paragraph. Also, certain differential equations resemble the Bessel equation, and thus their solutions are called Modified Bessel functions, or Hankel functions.

As mentioned earlier, a Bessel function \( J_n(x) \) for \( n > 0 \), can be obtained by replacing \( n \) with \( -n \) in (15.2). If \( n \) is an integer, we will prove that

\[
J_{-n}(x) = (-1)^n J_n(x)
\]  
(15.14)

**Proof:**

From (15.3),

\[
J_{-n}(x) = \sum_{k=0}^{\infty} \frac{(-1)^k \cdot (x/2)^{n+2k}}{k! \cdot \Gamma(-n+k+1)}
\]  
(15.15)

Now, we recall from Chapter 13, that the numbers \( n = 0, -1, -2, \ldots \) yield infinite values in \( \Gamma(n) \); then, the first summation in the above relation is zero for \( k = 0, 1, 2, \ldots, n-1 \). Also, if we let \( k = n + m \) in the second summation, after simplification and comparison with (15.5), we see that

\[
\sum_{m=0}^{\infty} \frac{(-1)^n \cdot (x/2)^{n+2m}}{(n+m)! \cdot \Gamma(m+1)} = (-1)^n J_n(x)
\]

and thus (15.14) has been proved.

It is shown in advanced mathematics textbooks that, if \( n \) is not an integer, \( J_n(x) \) and \( J_{-n}(x) \) are linearly independent; for this case, the general solution of the Bessel equation is

\[
y = AJ_n(x) + BJ_{-n}(x)
\]  
(15.16)

For \( n = 1, 2, 3, \ldots \) and so on, the functions \( J_n(x) \) and \( J_{-n}(x) \) are not linearly independent as we have seen in (15.14); therefore, (15.16) is not the general solution, that is, for this case, these two series produce only one solution, and for this reason, the Bessel functions of the second kind are introduced to obtain the general solution.
The following example illustrates the fact that when \( n \) is not an integer or zero, relation (15.16) is the general solution.

**Example 15.3**

Find the general solution of Bessel’s equation of order \( 1/2 \).

**Solution:**

By the substitution \( n = 1/2 \) in (15.1), we get

\[
x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + \left( x^2 - \frac{1}{4} \right) y = 0
\]

(15.17)

We will show that the general solution of (15.17) is

\[
y = AJ_{1/2}(x) + BJ_{-1/2}(x)
\]

(15.18)

By substitution of (15.12) and (15.13) into (15.18), we get

\[
y = A \frac{\sqrt{2}}{\pi x} \sin x + B \frac{\sqrt{2}}{\pi x} \cos x
\]

(15.19)

and letting \( C_1 = A\sqrt{2/\pi} \) and \( C_2 = B\sqrt{2/\pi} \), (15.19) can be written as

\[
y = C_1 \frac{\sin x}{\sqrt{x}} + C_2 \frac{\cos x}{\sqrt{x}}
\]

(15.20)

Since the two terms on the right side of (15.20) are linearly independent, \( y \) represents the general solution of (15.17).

The Bessel functions of the second kind, third kind, and others, can be evaluated at specified values either with MATLAB or Excel. The descriptions, syntax, and examples for each can be found by invoking `help bessel` for MATLAB, and `help` for Excel.

One very important property of the Bessel’s functions is that within certain limits, they constitute an *orthogonal system.* For instance, if \( a \) and \( b \) are distinct roots of \( J_0(x) = 0 \), \( J_0(a) = 0 \) and \( J_0(b) = 0 \), then,

\[
\int_0^1 xJ_0(ax)J_0(bx)dx = 0
\]

(15.21)

* Two functions constitute an orthogonal system, when the average of their cross product is zero within some specified limits.
and we say that \( J_0(ax) \) and \( J_0(bx) \) are orthogonal in the interval \( 0 \leq x \leq 1 \). They are also orthogonal with the variable \( x \).

The function

\[
e^{-\frac{x^2(t^2-1)}{2}} = \sum_{n=-\infty}^{\infty} J_n(x)t^n
\]

is referred to as the generating function for Bessel functions of the first kind of integer order. Using this function, we can obtain several interesting properties for integer values of \( n \). Some of these are given below without proof. More detailed discussion and proofs can be found in advanced mathematics textbooks.

\[
\sum_{n=-\infty}^{\infty} J_n^2(x) = 1
\]  

(15.23)

\[
cos(x \sin \phi) = J_0(x) + 2 \sum_{k=1}^{\infty} J_{2k}(x) \cos 2k\phi
\]

\[
sin(x \sin \phi) = 2 \sum_{k=1}^{\infty} J_{2k-1}(x) \sin(2k-1)\phi
\]

(15.24)

where the subscript \( 2k \) denotes that the first relation is valid for even values of \( k \), whereas \( 2k-1 \) in the second, indicates that the second relation is valid for odd values of \( k \). Also,

\[
\int_0^\pi \cos n\phi \cdot \cos(x \sin \phi) d\phi = \begin{cases} \frac{\pi J_n(x)}{n} & n \text{ even} \\ 0 & n \text{ odd} \end{cases}
\]

(15.25)

\[
\int_0^\pi \sin n\phi \cdot \sin(x \sin \phi) d\phi = \begin{cases} 0 & n \text{ even} \\ \frac{\pi J_n(x)}{n} & n \text{ odd} \end{cases}
\]

and

\[
J_n(x) = \frac{1}{\pi} \int_0^\pi \cos(n\phi - x \sin \phi) d\phi
\]

(15.26)

Relations (15.23) through (15.26) appear in frequency modulation. For example, the average power is shown to be

\[
P_{ave} = \frac{1}{2} A_C^2 \sum_{n=-\infty}^{\infty} J_n^2(\beta)
\]

and with (15.23), it reduces to

\[
P_{ave} = \frac{1}{2} A_C^2
\]
15.2 Legendre Functions

Another second-order differential equation with variable coefficients is the equation

\[
(1-x^2)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + n(n+1)y = 0
\]

(15.27)

known as Legendre’s equation. Here, \( n \) is a constant, and if it is zero or a positive integer, then (15.27) has polynomial solutions of special interest.

Applying the method of Frobenius, as in the Bessel equation, we obtain two independent solutions \( y_1 \) and \( y_2 \) as follows.

\[
y_1 = a_0 \left[ 1 - \frac{n(n+1)}{2!} x^2 + \frac{(n-2)n(n+1)(n+3)}{4!} x^4 - \ldots \right]
\]

(15.28)

\[
y_2 = a_1 \left[ x - \frac{(n-1)(n+2)}{3!} x^3 + \frac{(n-3)(n-1)(n+2)(n+4)}{5!} x^5 - \ldots \right]
\]

(15.29)

where \( a_0 \) and \( a_1 \) are constants. We observe that \( y_1 \) is an even function of \( x \), while \( y_2 \) is an odd function. Then, the general solution of (15.27) is \( y = y_1 + y_2 \) or

\[
y = a_0 \left[ 1 - \frac{n(n+1)}{2!} x^2 + \frac{(n-2)n(n+1)(n+3)}{4!} x^4 - \ldots \right]
\]

\[
+ a_1 \left[ x - \frac{(n-1)(n+2)}{3!} x^3 + \frac{(n-3)(n-1)(n+2)(n+4)}{5!} x^5 - \ldots \right]
\]

(15.30)

and this series is absolutely convergent* for \( |x| > 1 \).

The parameter \( n \) is usually a positive integer. If \( n \) is zero, or an even positive integer, the first term on the right side of (15.30) contains only a finite number of terms; if it is odd, the second term contains only a finite number of terms. Therefore, whenever \( n \) is zero or a positive integer; the general solution of Legendre’s equation contains a polynomial solution which is denoted as \( P_n(x) \), and an infinite series solution which is denoted as \( Q_n(x) \).

The Legendre polynomials are defined as

* Assume that the infinite series \( \sum_{n=1}^{\infty} u_n(x_0) = u_1(x_0) + u_2(x_0) + \ldots \) converges, i.e., reaches a limit. If, when we replace the terms of this series by their absolute value, we find that the resulting series \( \sum_{n=1}^{\infty} |u_n(x_0)| = |u_1(x_0)| + |u_2(x_0)| + \ldots \) also converges, this series is said to be absolutely convergent.
Legendre Functions

\[ P_n(x) = (-1)^{n/2} \cdot \frac{1 \cdot 3 \cdot 5 \cdot \ldots \cdot (n-1)}{2 \cdot 4 \cdot 6 \cdot \ldots \cdot n} \left[ 1 - \frac{n(n+1)}{2!} x^2 + \ldots \right] \]  
for \( n = 0 \) or \( n = \text{even integer} \)  

(15.31)

\[ P_n(x) = (-1)^{(n-1)/2} \cdot \frac{1 \cdot 3 \cdot 5 \cdot \ldots \cdot n}{2 \cdot 4 \cdot 6 \cdot \ldots \cdot (n-1)} \left[ x - \frac{(n-1)(n+2)}{3!} x^3 + \ldots \right] \]  
for \( n = \text{odd integer} \)  

(15.32)

and these are also referred to as surface zonal harmonics. The infinite series solution \( Q_n(x) \) is referred to as Legendre functions of the second kind. These become infinite as \( x \to \pm 1 \) and their applications to science and engineering problems are very limited. Accordingly, they will not be discussed in this text.

The even and odd functions of (15.31) and (15.32) can be combined to a single relation as

\[ P_n(x) = \sum_{k=0}^{N} \frac{(-1)^k \cdot (2n-2k)!}{2^n k! (n-k)! (n-2k)!} x^{n-2k} \]  
where \( N = \frac{n}{2} \) for \( n = \text{even} \) and \( N = \frac{(n-1)}{2} \) for \( n = \text{odd} \)  

(15.33)

From (15.33), or (15.31) and (15.32), we obtain the following first 6 Legendre polynomials.

\[ P_0(x) = 1 \quad P_1(x) = x \]
\[ P_2(x) = \frac{1}{2}(3x^2 - 1) \quad P_3(x) = \frac{1}{2}(5x^3 - 3x) \]
\[ P_4(x) = \frac{1}{8}(35x^4 - 30x^2 + 3) \quad P_5(x) = \frac{1}{8}(63x^5 - 70x^3 + 15x) \]  

(15.34)

The relation

\[ P_n(x) = \frac{1}{2^n \cdot n!} \cdot \frac{d^n}{dx^n} (x^2 - 1)^n \]  

(15.35)

is known as Rodrigues’ formula, and offers another method of expressing the Legendre polynomials. We prove (15.35) as follows.

From the binomial theorem,

\[ (x^2 - 1)^n = \sum_{k=0}^{n} \frac{(-1)^k \cdot n!}{k! \cdot (n-k)!} x^{2n-2k} \]  

(15.36)
and differentiation of (15.36) with respect to \( x \) \( n \) times yields

\[
\frac{d^n}{dx^n}(x^2 - 1)^n = \sum_{k=0}^{N} \frac{(-1)^k \cdot n!}{k!(n-k)!} \cdot \frac{(2n-2k)!}{(n-2k)!} x^{n-2k} \quad (15.37)
\]

Now, by comparison with (15.33), we recognize (15.37) as \( 2^n \cdot n! \cdot P_n(x) \) and thus (15.35) is proved.

Another important identity involving Legendre polynomials, is the generating function for Legendre polynomials which is defined as

\[
\frac{1}{\sqrt{1-2xt+t^2}} = P_0(x) + P_1(x)t + P_2(x)t^2 + \ldots + P_n(x)t^n = \sum_{n=0}^{\infty} P_n(x)t^n \quad (15.38)
\]

We will illustrate the use of the Legendre polynomials with the following example.

**Example 15.4**

Find the potential difference (voltage) \( v \) at a point \( P \) developed by a nearby dipole in terms of the distance between the point \( P \) and the dipole, and the angle which point \( P \) makes with the center of the dipole.

**Solution:**

Let the charges \( q \) and \(-q\) of the dipole be a distance \( 2d \) apart with the origin \( 0 \) as the midpoint as shown in Figure 15.3.

Let the potential at point \( P \) be \( V_P \). From electromagnetic field textbooks we find that

---

* A dipole is a pair of electric charges or magnetic poles, of equal magnitude but of opposite sign or polarity, separated by a small distance. Alternately, a dipole is an antenna, usually fed from the center, consisting of two equal rods extending outward in a straight line.
Numerical Analysis Using MATLAB and Spreadsheets, Second Edition
Orchard Publications

Legendre Functions

\[ V_p = \frac{q}{4\pi\varepsilon_0} \left( \frac{1}{r_2} - \frac{1}{r_1} \right) \]  
(15.39)

where \( \varepsilon_0 \) is the permittivity* of the vacuum. For simplicity, we will denote the quantity \( 1/(4\pi\varepsilon_0) \) as \( k \) and thus we rewrite (15.39) as

\[ V_p = kq \left( \frac{1}{r_2} - \frac{1}{r_1} \right) = kq(r_2^{-1} - r_1^{-1}) \]  
(15.40)

Next, we need to express \( r_1 \) and \( r_2 \) in terms or \( d \) and \( r \). By the law of cosines,

\[ r_1 = \sqrt{d^2 + r^2 - 2dr \cos(180^\circ - \theta)} = \sqrt{d^2 + r^2 + 2dr \cos \theta} \]  
(15.41)

and

\[ r_2 = \sqrt{d^2 + r^2 - 2dr \cos \theta} \]  
(15.42)

Dividing both sides of (15.42) by \( r \), we get

\[ \frac{r_2}{r} = \sqrt{\frac{d^2}{r^2} + 1 - \frac{2d \cos \theta}{r}} \]  
(15.43)

or

\[ r_2^{-1} = \left( \frac{1}{r} \left( \frac{d^2}{r^2} + 1 - \frac{2d \cos \theta}{r} \right) \right)^{-1/2} \]  
(15.44)

In all practical applications, the point \( P \) is sufficiently far from the origin; thus, we assume that \( r > d \). Now, we want to relate the terms inside the parentheses of (15.44), to a Legendre polynomial. We do this by expressing these terms in the form of the generating function of (15.38).

We let \( x = \cos \theta \), and \( y = d/r \); then, by substitution into (15.44) we get

\[ \left( \frac{d^2}{r^2} + 1 - \frac{2d \cos \theta}{r} \right)^{-1/2} = (1 - 2xy + y^2)^{-1/2} = \sum_{n=0}^{\infty} P_n(x) y^n \]  
(15.45)

We recall that (15.45) holds only if \( |x| < 1 \) and \( |y| < 1 \). This requirement is satisfied since \( x \) and \( y \), as defined, are both less than unity.

To find a similar expression for \( r_1^{-1} \), we simply replace \( x \) with \(-x\) in (15.45), and thus

* Permittivity is a measure of the ability of a material to resist the formation of an electric field within it.
By substitution of (15.45) and (15.46) into (15.40), we get

\[
V_p = \frac{kq}{r} \sum_{n=0}^{\infty} [P_n(x)y^n - P_n(-x)y^n] \quad (15.47)
\]

Since \( x = \cos \theta \), and \( y = d/r \), we can express (15.47) as

\[
V_p = \frac{kq}{r} \sum_{n=0}^{\infty} [P_n(\cos \theta) - P_n(-\cos \theta)] \left( \frac{d}{r} \right)^n \quad (15.48)
\]

However, if \( n \) is even in (15.48), \( P_n(-\cos \theta) = \cos \theta \), and therefore, all even powers vanish. But when \( n \) is odd, \( P_n(-\cos \theta) = -P_n(\cos \theta) \) and the odd powers in (15.48) are duplicated. Then,

\[
V_p = \frac{kq}{r} \sum_{n=0}^{\infty} 2P_{2n+1}(\cos \theta) \left( \frac{d}{r} \right)^{2n+1} \quad (15.49)
\]

and for \( r \gg d \), (15.49) can be approximated as

\[
V_p \approx \frac{2kq}{r} P_1(\cos \theta) \left( \frac{d}{r} \right) = \frac{2kdq}{r^2} \cos \theta * \quad (15.50)
\]

The term \( 2dq \) is the magnitude of the so-called dipole moment. It is a vector directed from the negative charge towards the positive charge. It is denoted with the letter \( p \), that is,

\[
p = 2qd \quad (15.51)
\]

The relation of (15.50) can, of course, be derived without the use of Legendre polynomials as follows:

For \( r \gg d \), the distances \( r_1, r, \) and \( r_2 \) can be approximated by parallel lines as shown in Figure 15.4. Then, the negative and positive charges look like a single point charge, and using (15.40) we get

\[
V_p = kq \left( \frac{1}{r_2} - \frac{1}{r_1} \right) = \frac{kq}{r_1 \cdot r_2} (r_2 - r_1) = \frac{2kdq}{r^2} \cos \theta \quad (15.52)
\]

We observe that (15.52) is the same as (15.50).

* Here, we have used the identity \( P_1(\cos \theta) = \cos \theta \). This will be seen shortly in (15.57) when we discuss the trigonometric form of the Legendre polynomials.
Another interesting relation that can be used to find the Legendre polynomial series of a function \( f(x) \) for \( |x| < 1 \), is

\[
B_n = \frac{2n + 1}{2} \int_{-1}^{1} f(x)P_n(x)dx \tag{15.53}
\]

Then, a function \( f(x) \) can be expanded as

\[
f(x) = B_0P_0(x) + B_1P_1(x) + B_2P_2(x) + \ldots + B_nP_n(x) = \sum_{n=0}^{\infty} B_nP_n(x) \tag{15.54}
\]

The example below illustrates how this relation is being used.

**Example 15.5**

Compute the Legendre polynomial series representing the waveform of Figure 15.5.
Solution:

We will first compute the coefficients $B_n$ from (15.53); then, we will substitute these into (15.54). We will also use (15.34) for the polynomials of $P_n(x)$.

For this example,

$$B_0 = \frac{1}{2} \int_{-1}^{0} (-1) \cdot 1 \cdot dx + \frac{1}{2} \int_{0}^{1} 1 \cdot 1 \cdot dx = -\frac{1}{2}x\bigg|_{-1}^{0} + \frac{1}{2}x\bigg|_{0}^{1} = -\frac{1}{2} + \frac{1}{2} = 0$$

$$B_1 = \frac{3}{2} \int_{-1}^{0} (-1) \cdot x \cdot dx + \frac{3}{2} \int_{0}^{1} 1 \cdot x \cdot dx = -\frac{3}{4}x^2\bigg|_{-1}^{0} + \frac{3}{4}x^2\bigg|_{0}^{1} = \frac{3}{4} + \frac{3}{4} = \frac{3}{2}$$

$$B_2 = \frac{5}{2} \int_{-1}^{0} (-1) \cdot \frac{1}{2}(3x^2 - 1)dx + \frac{5}{2} \int_{0}^{1} 1 \cdot \frac{1}{2}(3x^2 - 1)dx = 0$$

$$B_3 = \frac{7}{2} \int_{-1}^{0} (-1) \cdot \frac{1}{2}(5x^3 - 3x)dx + \frac{7}{2} \int_{0}^{1} 1 \cdot \frac{1}{2}(5x^3 - 3x)dx = -\frac{7}{8}$$

$$B_4 = \frac{9}{2} \int_{-1}^{0} (-1) \cdot \frac{1}{8}(35x^4 - 30x^2 + 3)dx + \frac{9}{2} \int_{0}^{1} 1 \cdot \frac{1}{8}(35x^4 - 30x^2 + 3)dx = 0$$

$$B_5 = -\frac{11}{2} \int_{-1}^{0} \frac{1}{8}(63x^5 - 70x^3 + 15x)dx + \frac{11}{2} \int_{0}^{1} \frac{1}{8}(63x^5 - 70x^3 + 15x)dx = \frac{11}{16}$$

and so on. Therefore, using (15.54) and (15.34) we get

$$f(x) = \frac{3}{2}P_1(x) - \frac{7}{8}P_3(x) + \frac{11}{16}P_5(x)$$

$$= \frac{3}{2}x - \frac{7}{8} \cdot \frac{1}{2}(5x^3 - 3x) + \frac{11}{16} \cdot \frac{1}{8}(63x^5 - 70x^3 + 15x)$$

$$= \frac{3}{2}x - \frac{7}{16}(5x^3 - 3x) + \frac{11}{128} \cdot (63x^5 - 70x^3 + 15x)$$

$$= \frac{525}{128}x^5 - \frac{525}{64}x^3 + \frac{693}{128}x^5$$

(15.55)

We observe that the waveform of $f(x)$ is an odd function and, as we found above, its expansion contains only odd Legendre polynomials.

In many applications, the algebraic form of the Legendre polynomials is usually the most useful. However, there are times when we want to express the polynomials in terms trigonometric functions, as we did in Example 15.4. Also, the trigonometric forms are most convenient with the cylindrical and spherical coordinate systems. It is shown in advanced mathematics textbooks that
Legendre Functions

\[ P_n \cos \theta = \frac{1 \cdot 3 \cdot \ldots \cdot (2n-1)}{2 \cdot 4 \cdot \ldots \cdot 2n} 2 \cos n \theta + \frac{1}{2} \cdot \frac{1 \cdot 3 \cdot \ldots \cdot (2n-3)}{2 \cdot 4 \cdot \ldots \cdot (2n-2)} 2 \cos (n-2) \theta + \ldots \]  
(15.56)

From (15.56) we obtain the first 6 Legendre polynomials in trigonometric form listed below.

\[ P_0 \cos \theta = 1 \]
\[ P_1 \cos \theta = \cos \theta \]
\[ P_2 \cos \theta = \frac{3 \cos 2 \theta + 1}{4} \]
(15.57)
\[ P_3 \cos \theta = \frac{5 \cos 3 \theta + 3 \cos \theta}{8} \]
\[ P_4 \cos \theta = \frac{35 \cos 4 \theta + 20 \cos 2 \theta + 9}{64} \]
\[ P_5 \cos \theta = \frac{63 \cos 5 \theta + 35 \cos 3 \theta + 30 \cos \theta}{128} \]

The Legendre polynomials in algebraic form, satisfy the orthogonality principle when \( m \neq n \) as indicated by the following integral.

\[
\int_{-1}^{1} P_m(x)P_n(x)dx = \begin{cases} 
0 & m \neq n \\
\frac{2}{2n+1} & m = n
\end{cases}
\]  
(15.58)

Similarly, the Legendre polynomials in trigonometric form satisfy the orthogonality principle when \( m \neq n \) as indicated by the following integral.

\[
\int_{0}^{\pi} P_m(\cos \theta)P_n(\cos \theta)\sin \theta d\theta = \begin{cases} 
0 & m \neq n \\
\frac{2}{2n+1} & m = n
\end{cases}
\]  
(15.59)

We must remember that all the Legendre polynomials we have discussed thus far are referred to as surface zonal harmonics, and math tables include values of these as computed from Rodrigues' formula of (15.35).

There is another class of Legendre functions which are solutions of the differential equation

\[
(1-x^2)\frac{d^2y}{dx^2} - 2x \frac{dy}{dx} + \left[ n(n+1) - \frac{m^2}{1-x^2} \right] y = 0
\]  
(15.60)
and this is referred to as the associated Legendre differential equation. We observe that if \( m = 0 \), (15.60) reduces to (15.27).

The general solution of (15.60) is

\[
y = C_1 P_n^m(x) + C_2 Q_n^m(x) \tag{15.61}
\]

where \( C_1 \) and \( C_2 \) are arbitrary constants. The functions \( P_n^m(x) \) and \( Q_n^m(x) \) are referred to as associated Legendre functions of the first and second kind respectively. These are evaluated from

\[
P_n^m(x) = (-1)^m (1 - x^2)^{m/2} \frac{d^m}{dx^m} P_n(x) \tag{15.62}
\]

and

\[
Q_n^m(x) = (-1)^m (1 - x^2)^{m/2} \frac{d^m}{dx^m} Q_n(x) \tag{15.63}
\]

Relations (15.62) and (15.63) are also known as spherical harmonics.

We will restrict our subsequent discussion to the associated Legendre functions of the first kind, that is, the polynomials \( P_n^m(x) \).

At present, Excel does not have any functions related to Legendre polynomials. MATLAB provides the \texttt{legendre(n,x)} function that computes the associated Legendre functions of the first kind of degree \( n \), and order \( m = 0, 1, 2, \ldots, n \) evaluated for each element of \( x \).

**Example 15.6**

Find the following associated Legendre functions and evaluate as indicated.

\[
\begin{align*}
a. \quad P_2^1(x) \bigg|_{x = 0.5} \\
b. \quad P_3^2(x) \bigg|_{x = -0.5} \\
c. \quad P_2^3(x) \bigg|_{x = 0.25}
\end{align*}
\]

**Solution:**

For this example, we use the relation (15.62), that is,

\[
P_n^m(x) = (-1)^m (1 - x^2)^{m/2} \frac{d^m}{dx^m} P_n(x)
\]

and the appropriate relations of (15.34). For this example,

\[
a. \quad P_2^1(x) \bigg|_{x = 0.5} = (-1)^1 (1 - 0.5^2)^{1/2} \frac{d}{dx} P_2(x) \bigg|_{x = 0.5} = -(1 - 0.5^2)^{1/2} \frac{d}{dx} \left( \frac{3x^2 - 1}{2} \right) \bigg|_{x = 0.5} = -(1 - 0.5^2)^{1/2} (3x) = -1.2990
\]

For $m = 0$ in (15.62), we get

$$P^1_2(x)\bigg|_{x = 0.5} = \frac{\left(3x^2 - 1\right)}{2}\bigg|_{x = 0.5} = -0.125$$

As stated above, the MATLAB `legendre(n,x)` function computes the associated Legendre functions of the first kind of degree $n$ and order $m = 0, 1, 2, \ldots, n$ evaluated for each element of $x$. Here, $n = 2$ and thus MATLAB will return a matrix whose rows correspond to the values of $m = 0$, $m = 1$, and $m = 2$, for the first, second, and third rows respectively.

Check with MATLAB:

```matlab
disp('The values for m = 0, m = 1 and m = 2 are:'); legendre(2,0.5)
```

The values for $m = 0$, $m = 1$ and $m = 2$ are:
```
ans =
 -0.1250
 -1.2990
 2.2500
```
or more elegantly,
```
m=0:2; y=zeros(3,2); y(:,1)=m'; y(:,2)=legendre(2,0.5);
fprintf('
'); fprintf('m Legendre
'); fprintf('%2.0f %7.4f
',y')
```

```
m Legendre
 0 -0.1250
 1 -1.2990
 2 2.2500
```
b.

$$P^2_3(x)\bigg|_{x = -0.5} = (-1)^2(1-x^2)^{2/2} \frac{d^2}{dx^2}P_3(x)\bigg|_{x = -0.5} = (1-x^2)^2 \frac{d^2}{dx^2}\left(\frac{5x^3-3x}{2}\right)\bigg|_{x = -0.5} = (1-x^2)(15x)\bigg|_{x = -0.5} = 5.6250$$

Here, $n = 3$, and thus MATLAB will display a matrix whose rows correspond to the values of $m = 0$, $m = 1$, $m = 2$, and $m = 3$, for the first, second, third and fourth rows respectively.

Check with MATLAB:

```matlab
m=0:3; y=zeros(4,2); y(:,1)=m'; y(:,2)=legendre(3,-0.5);
fprintf('
'); fprintf('m Legendre
'); fprintf('%2.0f %7.4f
',y')
```

```
m Legendre
 0 -0.1250
 1 -1.2990
 2 2.2500
 3 5.6250
```
Chapter 15  Bessel, Legendre, and Chebyshev Functions

m  Legendre
0  0.4375
1  -0.3248
2  -5.6250
3  -9.7428

c. \[ P_2^3(x) \bigg|_{x=0.25} = (-1)^3 (1-x^2)^{3/2} \frac{d^3}{dx^3} P_2(x) \bigg|_{x=0.25} = -(1-x^2)^{3/2} \frac{d^3}{dx^3} (3x^2-1) \bigg|_{x=0.25} \]

and since the third derivative of \( 3x^2-1 \) is zero, it follows that \( P_2^3(x) = 0 \).

In general, if \( m > n \), then \( P_n^m(x) = 0 \).

15.3 Laguerre Polynomials

Another class of polynomials that satisfy the orthogonality principle, are the Laguerre polynomials \( L_n(x) \); these are solutions of the differential equation

\[ \frac{\frac{d^2}{dx^2}}{x} \left( \frac{dy}{dx} \right) + (1-x) \frac{dy}{dx} + ny = 0 \]  \hspace{1cm} (15.64)

These polynomials are computed with the Rodrigues’ formula

\[ L_n(x) = e^x \frac{d^n}{dx^n} (x^n e^{-x}) \] \hspace{1cm} (15.65)

The orthogonality principle for these polynomials states that

\[ \int_0^\infty e^{-x} L_m(x)L_n(x)dx = 0 \]  \hspace{1cm} (15.66)

Example 15.7

Compute the Laguerre polynomials

a. \( L_0(x) \)  \hspace{0.5cm} b. \( L_1(x) \)  \hspace{0.5cm} c. \( L_2(x) \)  \hspace{0.5cm} d. \( L_3(x) \)

Solution:

Using Rodrigues’s formula of (15.65), we get
Chebyshev Polynomials

\[
L_0(x) = e^x \frac{d^0}{dx^0}(x^0 e^{-x}) = e^x e^{-x} = e^0 = 1
\]

\[
L_1(x) = e^x \frac{d^1}{dx^1}(xe^{-x}) = e^x (e^{-x} - xe^{-x}) = 1 - x
\]

\[
L_2(x) = e^x \frac{d^2}{dx^2}(x^2 e^{-x}) = e^x e^{-x} (2 - 4x + x^2) = 2 - 4x + x^2
\]

\[
L_3(x) = e^x \frac{d^3}{dx^3}(x^3 e^{-x}) = 6 - 18x + 9x^2 - x^3
\]  

(15.67)

The differentiation of the last two polynomials in (15.67) was performed with MATLAB as follows:

```matlab
syms x y z
y=x^2*exp(-x); z=diff(y,2); % Differentiate y twice with respect to x
L2x=exp(x)*z; simplify(L2x)
ans =
2-4*x+x^2

syms x y z w ; y=x^3*exp(-x); z=diff(y,2); % Differentiate y twice
% we cannot differentiate three times at once
w=diff(z); % Differentiate one more time
L3x=exp(x)*w; simplify(L3x)
ans =
6-18*x+9*x^2-x^3
```

15.4 Chebyshev Polynomials

The **Chebyshev polynomials** are solutions of the differential equations

\[
(1-x^2)\frac{d^2y}{dx^2} - x \frac{dy}{dx} + n^2y = 0
\]  

(15.68)

and

\[
(1-x^2)\frac{d^2y}{dx^2} - 3x \frac{dy}{dx} + n(n+2)y = 0
\]  

(15.69)

The solutions of (15.68) are referred to as **Chebyshev polynomials of the first kind** and are denoted as \( y = T_n(x) \). \(^*\) The solutions of (15.69) are the **Chebyshev polynomials of the second kind**; these are denoted as \( y = U_n(x) \). Both kinds comprise a set of orthogonal functions.
We will restrict our discussion to the $T_n(x)$ polynomials. We will plot some of these later in this section.

Two interesting properties of the $T_n(x)$ polynomials are:

1. They exhibit equiripple amplitude characteristics over the range $-1 \leq x \leq 1$, that is, within this range, they oscillate with the same ripple. This property is the basis for the Chebyshev approximation in the design of Chebyshev type electric filters.

2. For $|x| > 1$ they increase or decrease more rapidly than any other polynomial of order $n$.

These polynomials are tabulated in reference books which contain mathematical functions. A good reference is the Handbook of Mathematical Functions, Dover Publications. They can also be derived from the following relations.

\[
T_n(x) = \cos(n \cos^{-1} x) \quad \text{for } |x| \leq 1 \tag{15.70}
\]

\[
T_n(x) = \cosh(n \cosh^{-1} x) \quad \text{for } |x| > 1 \tag{15.71}
\]

Using (15.70) or (15.71), we can express $T_n(x)$ as polynomials in powers of $x$. Some are shown in Table 15.2.

**TABLE 15.2  Chebyshev polynomials expressed in powers of $x$**

<table>
<thead>
<tr>
<th>$n$</th>
<th>$T_n(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>$x$</td>
</tr>
<tr>
<td>2</td>
<td>$2x^2 - 1$</td>
</tr>
<tr>
<td>3</td>
<td>$4x^3 - 3x$</td>
</tr>
<tr>
<td>4</td>
<td>$8x^4 - 8x^2 + 1$</td>
</tr>
<tr>
<td>5</td>
<td>$16x^5 - 20x^3 + 5x$</td>
</tr>
<tr>
<td>6</td>
<td>$32x^6 - 48x^4 + 18x^2 - 1$</td>
</tr>
</tbody>
</table>

* *Some books use the notation $C_k(x)$ for these polynomials. However, another class of orthogonal functions known as Genenbauer or Ultraspherical functions use the notation $C_n^{(s)}(x)$ and for this reason, we will avoid notation $C_k(x)$ for the Chebyshev polynomials.*
To show that the relation of (15.70) can be expressed as a polynomial, we let

\[ x = \cos y \]  

and

\[ T_n(y) = \cos ny \]  

Next, in (15.73), we replace \( n \) with \( n + 1 \) and we get

\[ T_{n+1}(y) = \cos(n+1)y = \cos ny \cos y - \sin ny \sin y \]  

Similarly, replacing \( n \) with \( n - 1 \), we get

\[ T_{n-1}(y) = \cos(n-1)y = \cos ny \cos y + \sin ny \sin y \]  

Now, we add (15.74) with (15.75), and making use of (15.73) and (15.72), we get

\[ T_{n+1}(y) + T_{n-1}(y) = 2 \cos ny \cos y = 2T_n(y)x = 2xT_n(y) \]  

or

\[ T_{n+1}(y) = 2xT_n(y) - T_{n-1}(y) \]  

Then, we can replace \( y \) with \( x \) to get

\[ T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x) \]  

Recurrence Relation

The polynomials in Table 15.2, can now be verified by using a combination of the above relations. Thus, for \( n = 0 \), (15.73) yields

\[ T_0(y) = T_0(x) = 1 \]  

For \( n = 1 \), from (15.73) and (15.72), we get

\[ T_1(y) = T_1(x) = x \]  

To derive the algebraic expressions corresponding to \( n = 2, 3, 4 \) and so on, we use the recurrence formula of (15.77). For instance, when \( n = 2 \),

\[ T_2(x) = 2xT_1(x) - T_0(x) = 2x^2 - 1 \]  

and when \( n = 3 \),

\[ T_3(x) = 2xT_2(x) - T_1(x) = 4x^3 - 2x - x = 4x^3 - 3x \]  

Alternately, we can prove the first 3 entries of Table 15.2 with (15.70) by letting \( y = \cos^{-1}x \).
Thus, for $n = 0$,

$$T_0(x) = \cos(0 \cdot \cos^{-1} x) = \cos(0 \cdot y) = 1$$

For $n = 1$,

$$T_1(x) = \cos(1 \cdot \cos^{-1} x) = \cos(1 \cdot y) = \cos y = x$$

and for $n = 2$,

$$T_2(x) = \cos(2 \cdot \cos^{-1} x) = \cos(2 \cdot y) = 2 \cos^2 y - 1$$

or

$$T_2(x) = 2x^2 - 1$$

Relation (15.71) can be derived from (15.70) as follows:

We recall that

$$\cos \alpha = \frac{e^{j\alpha} + e^{-j\alpha}}{2} \quad (15.82)$$

and

$$\cosh \alpha = \frac{e^\alpha + e^{-\alpha}}{2} \quad (15.83)$$

Then,

$$\cos \alpha = \cosh j\alpha \quad (15.84)$$

and when $|x| > 1$,

$$\cos^{-1} x = -j \cosh^{-1} x \quad * \quad (15.85)$$

By substitution into (15.70), making use of (15.85), and that $\cosh(-t) = \cosh t$, we get

$$T_n(x) = \cos[n(-j \cos^{-1} x)] = \cos(-jn \cos^{-1} x) = \cosh(jn \cosh^{-1} x)$$

$$= \cosh[j(-jn \cosh^{-1} x)] = \cosh(nc \cosh^{-1} x)$$

and this is the same as (15.71).

We can also use MATLAB to convert (15.70) and (15.71) to polynomials. For example, if $n = 3$,

```matlab
syms x;
expand(cos(3*acos(x))), expand(cosh(3*acosh(x)))
```

* Let $\cos \alpha = \cosh j\alpha = \nu$; then $\alpha = \cos^{-1} \nu$, $j\alpha = \cos^{-1} \nu$, $j \cos^{-1} \nu = \cosh^{-1} \nu$ and (15.85) follows.
The MATLAB code below plots the $T_n(x)$ for $n = 0$ through $n = 6$.

% Chebyshev polynomials
% 
x=−1.2:0.01:1.2; Tnx0=cos(0*acos(x));
Tnx1=cos(1*acos(x)); Tnx2=cos(2*acos(x)); Tnx3=cos(3*acos(x)); Tnx4=cos(4*acos(x));
Tnx5=cos(5*acos(x)); Tnx6=cos(6*acos(x));
plot(x, Tnx0, x, Tnx1, x, Tnx2, x, Tnx3, x, Tnx4, x, Tnx5, x, Tnx6);...
axis([-1.2 1.2 -1.5 1.5]); grid; title('Chebyshev Polynomials of the First Kind');
xlabel('x'); ylabel('Tn(x)')

Figure 15.6 shows the plot of the Chebyshev polynomials of the first kind $T_n(x)$ for $n = 0$ through $n = 6$.

As mentioned earlier, Chebyshev polynomials, among other applications, are used in the design of electric filters. The filters are described in terms of rational polynomials that approximate the behavior of ideal filters. The basic Chebyshev low-pass filter approximation is defined as

$$A^2(\omega) = \frac{\alpha}{1 + \varepsilon^2 T_n^2(\omega/\omega_C)} \tag{15.86}$$

where $\omega$ is the operating radian frequency, $\omega_C$ is the cutoff frequency, and $\alpha$ and $\varepsilon$ are other parameters that are used to specify the order and type of the electric filter.

For example, if we want to design a second order Chebyshev low-pass filter, we use the Chebyshev polynomial

$$T_2(x) = 2x^2 - 1$$

and (15.86) becomes

$$A^2(\omega) = \frac{\alpha}{1 + \varepsilon^2 [2(\omega/\omega_C)^2 - 1]} \tag{15.87}$$

15.5 Summary

- Differential equations with variable coefficients cannot be solved in terms of familiar functions as those which we encountered in ordinary differential equations with constant coefficients. The usual procedure is to derive solutions in the form of infinite series, and the most common are the Method of Frobenius and the Method of Picard.

- Bessel functions are solutions of the differential equation

\[
x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + (x^2 - n^2)y = 0
\]

where \( n \) can be any number, positive or negative integer, fractional, or even a complex number. The general solution depends on the value of \( n \).
Summary

- The series
  \[ J_n(x) = \sum_{k=0}^{\infty} (-1)^k \cdot \left(\frac{x}{2}\right)^{n+2k} \cdot \frac{1}{k! \cdot \Gamma(n+k+1)} \quad n \geq 0 \]
  where \( n \) is any positive real number or zero is referred to as Bessel function of order \( n \).

- The series
  \[ J_{-n}(x) = \sum_{k=0}^{\infty} (-1)^k \cdot \left(\frac{x}{2}\right)^{-n+2k} \cdot \frac{1}{k! \cdot \Gamma(-n+k+1)} \]
  is referred to as the Bessel function of negative order \( n \).

- For \( n = 0, 1 \) and \( 2 \) the series reduce to
  \[
  J_0(x) = 1 - \frac{x^2}{2^2 \cdot (1)!^2} + \frac{x^4}{2^4 \cdot (2)!^2} - \frac{x^6}{2^6 \cdot (3)!^2} + \frac{x^8}{2^8 \cdot (4)!^2} - \ldots
  \]
  \[
  J_1(x) = \frac{x}{2} - \frac{x^3}{2^3 \cdot 1! \cdot 2!} + \frac{x^5}{2^5 \cdot 2! \cdot 3!} - \frac{x^7}{2^7 \cdot 3! \cdot 4!} + \frac{x^9}{2^9 \cdot 4! \cdot 5!} - \ldots
  \]
  \[
  J_2(x) = \frac{x^2}{2^2 \cdot 2!} - \frac{x^4}{2^4 \cdot 1! \cdot 3!} + \frac{x^6}{2^6 \cdot 2! \cdot 4!} - \frac{x^8}{2^8 \cdot 3! \cdot 5!} + \frac{x^{10}}{2^{10} \cdot 4! \cdot 6!} - \ldots
  \]

- Two more useful relations are
  \[
  \frac{d}{dx} J_0(x) = -J_1(x)
  \]
  \[
  \frac{d}{dx} \{xJ_1(x)\} = xJ_0(x)
  \]

- Values of \( J_n(x) \) can be calculated using the appropriate series given above. They also can be found in math table books, and can also be found with the MATLAB \texttt{besselj(n,x)} function or the Excel \texttt{BESSELJ(x,n)} function.

- The Bessel functions
  \[
  J_{1/2}(x) = \frac{\sqrt{2}}{\eta \pi x} \sin x \quad \text{and} \quad J_{(-1/2)}(x) = \frac{\sqrt{2}}{\eta \pi x} \cos x
  \]
  are known as half-order Bessel functions.

- Besides the above functions known as Bessel functions of the first kind, other Bessel functions, denoted as \( Y_n(x) \) and referred to as Bessel functions of the second kind, or Weber functions,
or Neumann functions exist. Also, certain differential equations resemble the Bessel equation, and thus their solutions are called Modified Bessel functions, or Hankel functions.

- If \( n \) is not an integer, \( J_n(x) \) and \( J_{-n}(x) \) are linearly independent; for this case, the general solution of the Bessel equation is
  \[
  y = AJ_n(x) + BJ_{-n}(x)
  \]
  \( n \neq 0, 1, 2, 3, \ldots \)

- If \( a \) and \( b \) are distinct roots of \( J_0(x) = 0 \), \( J_0(a) = 0 \) and \( J_0(b) = 0 \), then,
  \[
  \int_0^1 xJ_0(ax)J_0(bx)dx = 0
  \]
  and thus we say that \( J_0(ax) \) and \( J_0(bx) \) are orthogonal in the interval \( 0 \leq x \leq 1 \).

- The differential equation
  \[
  (1 - x^2)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + n(n + 1)y = 0
  \]
  where \( n \) is a constant, is known as Legendre's equation.

- The infinite series solution of the Legendre functions, denoted as \( Q_n(x) \), is referred to as Legendre functions of the second kind.

- The Legendre polynomials are defined as
  \[
  P_n(x) = \sum_{k=0}^N \frac{(-1)^k \cdot (2n - 2k)!}{2^k k!(n-k)!(n-2k)!} x^{n-2k}
  \]
  where \( N = \frac{n}{2} \) for \( n \) even and \( N = \frac{(n-1)}{2} \) for \( n \) odd
  and the first 6 Legendre polynomials are
  \[
  \begin{align*}
  P_0(x) &= 1 \\
  P_1(x) &= x \\
  P_2(x) &= \frac{1}{2}(3x^2 - 1) \\
  P_3(x) &= \frac{1}{2}(5x^3 - 3x) \\
  P_4(x) &= \frac{1}{8}(35x^4 - 30x^2 + 3) \\
  P_5(x) &= \frac{1}{8}(63x^5 - 70x^3 + 15x)
  \end{align*}
  \]

- The relation
  \[
  P_n(x) = \frac{1}{2^n \cdot n!} \cdot \frac{d^n}{dx^n}((x^2 - 1)^n)
  \]
Summary

is known as Rodrigues’ formula, and offers another method of expressing the Legendre polynomials.

• The Legendre polynomial series of a function \( f(x) \) for \(|x| < 1\), is

\[
B_n = \frac{2n+1}{2} \int_{-1}^{1} f(x)P_n(x)dx
\]

and with this relation we can find a polynomial \( f(x) \) defined as

\[
f(x) = B_0P_0(x) + B_1P_1(x) + B_2P_2(x) + \ldots + B_nP_n(x) = \sum_{n=0}^{\infty} B_nP_n(x)
\]

• The trigonometric form of the Legendre polynomials is

\[
P_n \cos \theta = \frac{1 \cdot 3 \cdot \ldots \cdot (2n-1)}{2 \cdot 4 \cdot \ldots \cdot 2n} 2\cos^n \theta + \frac{1}{2} \cdot \frac{1 \cdot 3 \cdot \ldots \cdot (2n-3)}{2 \cdot 4 \cdot \ldots \cdot (2n-2)} 2\cos^{n-2} \theta + \ldots
\]

and the first 6 Legendre polynomials in trigonometric form listed below.

\[
\begin{align*}
P_0 \cos \theta &= 1 \\
P_1 \cos \theta &= \cos \theta \\
P_2 \cos \theta &= \frac{3 \cos 2\theta + 1}{4} \\
P_3 \cos \theta &= \frac{5 \cos 3\theta + 3 \cos \theta}{8} \\
P_4 \cos \theta &= \frac{35 \cos 4\theta + 20 \cos 2\theta + 9}{64} \\
P_5 \cos \theta &= \frac{63 \cos 5\theta + 35 \cos 3\theta + 30 \cos \theta}{128}
\end{align*}
\]

• The Legendre polynomials in algebraic form, satisfy the orthogonality principle when \( m \neq n \) as indicated by the integral

\[
\int_{-1}^{1} P_m(x)P_n(x)dx = \begin{cases} 
0 & m \neq n \\
2 & m = n \\
\frac{2n+1}{2} & m = n
\end{cases}
\]

• The Legendre polynomials in trigonometric form satisfy the orthogonality principle when \( m \neq n \) as indicated by the integral
The differential equation

$$
(1-x^2)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + \left[ n(n+1) - \frac{m^2}{1-x^2} \right] y = 0
$$

is referred to as the associated Legendre differential equation. The general solution of this equation is

$$
y = C_1 P_n^m(x) + C_2 Q_n^m(x)
$$

where $C_1$ and $C_2$ are arbitrary constants. The functions $P_n^m(x)$ and $Q_n^m(x)$ are referred to as associated Legendre functions of the first and second kind respectively. These functions, also known as spherical harmonics, are evaluated from the relations

$$
P_n^m(x) = (-1)^m(1-x^2)^{m/2} \cdot \frac{d^m}{dx^m} P_n(x)
$$

$$
Q_n^m(x) = (-1)^m(1-x^2)^{m/2} \cdot \frac{d^m}{dx^m} Q_n(x)
$$

The MATLAB `legendre(n,x)` function computes the associated Legendre functions of the first kind of degree $n$, and order $m = 0, 1, 2, \ldots, n$ evaluated for each element of $x$.

The solutions of the differential equation

$$
x^2 \frac{d^2y}{dx^2} + (1-x)\frac{dy}{dx} + ny = 0
$$

are known as Laguerre polynomials and are denoted as $L_n(x)$. These polynomials are satisfy the orthogonality principle. They are computed with the Rodrigues’ formula

$$
L_n(x) = e^x \frac{d^n}{dx^n}(x^n e^{-x})
$$

The Chebyshev polynomials are solutions of the differential equations

$$
(1-x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} + n^2y = 0
$$
The solutions of the first differential equation are referred to as Chebyshev polynomials of the first kind and are denoted as \( y = T_n(x) \). The solutions of the second are the Chebyshev polynomials of the second kind; these are denoted as \( y = U_n(x) \). Both kinds comprise a set of orthogonal functions.

- The \( T_n(x) \) polynomials are derived from the relations

\[
T_n(x) = \cos(n \cos^{-1} x) \quad \text{for} \quad |x| \leq 1
\]

\[
T_n(x) = \cosh(n \cosh^{-1} x) \quad \text{for} \quad |x| > 1
\]

These polynomials exhibit equiripple amplitude characteristics over the range \(-1 \leq x \leq 1\), that is, within this range, they oscillate with the same ripple as shown in Figure 15.6. This property is the basis for the Chebyshev approximation in the design of Chebyshev type electric filters.
15.6 Exercises

1. Use the appropriate series of the Bessel functions $J_n(x)$ to compute the following values using the first 4 terms of the series and check your answers with MATLAB or Excel.
   a. $J_0(3)$  
   b. $J_1(2)$  
   c. $J_{1/2}(\pi/6)$  
   d. $J_{-1/2}(\pi/3)$

2. Use the appropriate Legendre polynomials $P_n(x)$ or $P_n^m(x)$ and Rodrigues’s formulas to compute the following, and check your answers with MATLAB.
   a. $P_1(x)|_{x=0.5}$  
   b. $P_2(x)|_{x=0.75}$  
   c. $P_3(x)|_{x=0.25}$
   d. $P_2^2(x)|_{x=0.5}$  
   e. $P_2^3(x)|_{x=0.5}$  
   f. $P_3^2(x)|_{x=0.25}$

3. Compute the Legendre polynomial $g(x)$ representing the waveform $f(x)$ of the figure below. The first 5 terms of $P_n(x)$, i.e., $P_0(x)$ through $P_4(x)$ will be sufficient. Then, use MATLAB or Excel to plot $g(x)$ and compare with $f(x)$.

![Diagram of waveform](image-url)
1.7 Solutions to Exercises

1. 
   a. 
   \[ J_0(x) = 1 - \frac{x^2}{2^2 \cdot (1!)^2} + \frac{x^4}{2^4 \cdot (2!)^2} - \frac{x^6}{2^6 \cdot (3!)^2} \bigg|_{x = 3} = 1 - \frac{9}{4} + \frac{81}{64} - \frac{729}{2304} = -0.3008 \]
   b. 
   \[ J_1(x) = \frac{x}{2} - \frac{x^3}{2^2 \cdot 4} + \frac{x^5}{2^4 \cdot 6} - \frac{x^7}{2^6 \cdot 8} \bigg|_{x = 2} = 1 - \frac{8}{16} + \frac{32}{384} - \frac{128}{18432} = 0.5764 \]
   c. 
   \[ J_{1/2}(x) = \left[ \frac{2}{\sqrt{\pi x}} \sin \right]_{x = \pi/6} = \left[ \frac{2}{\sqrt{\pi (\pi/6)}} \sin(\pi/6) \right] = \frac{\sqrt{12}}{\pi} \cdot \frac{1}{2} = \frac{2\sqrt{3}}{2\pi} = \frac{\sqrt{3}}{\pi} = 0.5513 \]
   d. 
   \[ J_{-1/2}(x) = \left[ \frac{2}{\sqrt{\pi x}} \cos \right]_{x = \pi/3} = \left[ \frac{2}{\sqrt{\pi (\pi/3)}} \cos(\pi/3) \right] = \frac{\sqrt{6}}{\pi} \cdot \frac{1}{2} = \frac{\sqrt{6}}{2\pi} = 0.3898 \]

Check with MATLAB:

\texttt{besselj(0,3), besselj(1,2), besselj(0.5,\pi/6), besselj(-0.5,\pi/3)}

\texttt{ans =}
\texttt{ -0.2601}

\texttt{ans =}
\texttt{ 0.5767}

\texttt{ans =}
\texttt{ 0.5513}

\texttt{ans =}
\texttt{ 0.3898}

We observe that the first value returned by MATLAB above is significantly different from that we obtained from the series. This is because our computation was based on the first 4 terms of the series. Had we taken also the fifth term our answer would have been \(-0.2563\) and this is much closer to the value obtained with MATLAB.

2. 

We will use the relations of (15.34) and (15.62). They are repeated below for convenience.
Chapter 15  Bessel, Legendre, and Chebyshev Functions

\[ P_0(x) = 1 \quad P_1(x) = x \]
\[ P_2(x) = \frac{1}{2}(3x^2 - 1) \quad P_3(x) = \frac{1}{2}(5x^3 - 3x) \]
\[ P_4(x) = \frac{1}{8}(35x^4 - 30x^2 + 3) \quad P_5(x) = \frac{1}{8}(63x^5 - 70x^3 + 15x) \]

\[
P_n^m(x) = (-1)^m (1-x^2)^{m/2} \frac{d^m}{dx^m} P_n(x)
\]

a. \[ P_1(x)|_{x=0.5} = x = 0.5 \]

b. \[ P_2(x)|_{x=0.75} = \frac{1}{2}(3x^2 - 1) \bigg|_{x=0.75} = 0.5(3 \times (0.75)^2 - 1) = 0.3438 \]

c. \[ P_3(x)|_{x=0.25} = \frac{1}{2}(5x^3 - 3x) \bigg|_{x=0.25} = 0.5(5 \times (0.25)^3 - 3 \times 0.25) = -0.3359 \]

d. \[ P_4^2(x)|_{x=0.5} = (-1)^2 (1-x^2)^{2/2} \frac{d^2}{dx^2} P_4(x) \bigg|_{x=0.5} = (1-x^2) \cdot \frac{d^2}{dx^2} x \bigg|_{x=0.5} = 0 \]

We recall that if \( m > n \), then \( P_n^m(x) = 0 \).

e. \[ P_2^3(x)|_{x=-0.5} = 0 \]

This is because \( m > n \). In other words,

\[
\frac{d^3}{dx^3} P_2(x) = \frac{d^3}{dx^3} \left\{ \frac{1}{2}(3x^2 - 1) \right\} = 0
\]

f. \[ P_3^2(x)|_{x=0.25} = (-1)^2 (1-x^2)^{2/2} \frac{d^2}{dx^2} P_3(x) \bigg|_{x=0.25} = (1-x^2) \frac{d^2}{dx^2} \left\{ \frac{1}{2}(5x^3 - 3x) \right\} \bigg|_{x=0.25}
\]
\[ = (1-0.25^2) \cdot \frac{1}{2} \cdot \frac{d}{dx} (15x^2 - 3) \bigg|_{x=0.25} = 0.4688(30x) \bigg|_{x=0.25} = 3.5160 \]

Check with MATLAB:
a. 
\[m=0:1; y=zeros(2,2); y(:,1)=m'; y(:,2)=legendre(1,0.5);\]
\[\text{fprintf('m Legendre \n'); fprintf('%2.0f \t %7.4f \n',y')}\]
\[
\begin{array}{c|c}
m & \text{Legendre} \\
\hline
0 & 0.5000 \\
1 & -0.8660 \\
\end{array}
\]

b. 
\[m=0:2; y=zeros(3,2); y(:,1)=m'; y(:,2)=legendre(2,0.75);\]
\[\text{fprintf('m Legendre \n'); fprintf('%2.0f \t %7.4f \n',y')}\]
\[
\begin{array}{c|c}
m & \text{Legendre} \\
\hline
0 & 0.3438 \\
1 & -1.4882 \\
2 & 1.3125 \\
\end{array}
\]

c. 
\[m=0:3; y=zeros(4,2); y(:,1)=m'; y(:,2)=legendre(3,0.25);\]
\[\text{fprintf('m Legendre \n'); fprintf('%2.0f \t %7.4f \n',y')}\]
\[
\begin{array}{c|c}
m & \text{Legendre} \\
\hline
0 & -0.3359 \\
1 & 0.9985 \\
2 & 3.5156 \\
3 & -13.6160 \\
\end{array}
\]

d. 
\[m=0:1; y=zeros(2,2); y(:,1)=m'; y(:,2)=legendre(1,0.5);\]
\[\text{fprintf('m Legendre \n'); fprintf('%2.0f \t %7.4f \n',y')}\]
\[
\begin{array}{c|c}
m & \text{Legendre} \\
\hline
0 & 0.5000 \\
1 & -0.8660 \\
\end{array}
\]

Here, the \texttt{legendre(n,x)} function computes the associated Legendre functions of degree \(n\) and order \(m\) = 0, 1, ..., \(n\), evaluated for each element of \(x\). For this example, \(m > n\), that is, \(m = 2\) and \(n = 1\) and the statement \(m=0:2\) is not accepted. For this reason we’ve used \(m=0:1\).

e. 
\[m=0:2; y=zeros(3,2); y(:,1)=m'; y(:,2)=legendre(2,-0.5);\]
\[\text{fprintf('m Legendre \n'); fprintf('%2.0f \t %7.4f \n',y')}\]
\[\text{As in (d) above } m > n \text{ and MATLAB returns}\]
m Legendre
0  -0.1250
1   1.2990
2   2.2500

m=0:3; y=zeros(4,2); y(:,1)=m'; y(:,2)=legendre(3,0.25);
fprintf('
'); fprintf('m	  Legendre 
'); fprintf('%2.0f	 %7.4f 
',y')
m Legendre
0  -0.3359
1   0.9985
2   3.5156
3 -13.6160

3.

\[ B_n = \frac{2n+1}{2} \int_{-1}^{1} f(x) P_n(x) dx \]

For this exercise \( f(x) = 0 \) for \(-1 \leq x \leq 0\) and thus

\[ B_n = \frac{2n+1}{2} \int_{0}^{1} f(x) P_n(x) dx \]

Then,

\[ B_0 = \frac{1}{2} \int_{0}^{1} x \cdot P_0(x) \cdot dx = \frac{1}{2} \cdot \frac{x^2}{2} \bigg|_{0}^{1} = \frac{1}{4} \]

\[ B_1 = \frac{3}{2} \int_{0}^{1} x \cdot P_1(x) \cdot dx = \frac{3}{2} \cdot \frac{x^3}{3} \bigg|_{0}^{1} = \frac{1}{2} \]

\[ B_2 = \frac{5}{2} \int_{0}^{1} x \cdot \frac{1}{2}(3x^2-1) dx = \frac{5}{4} \int_{0}^{1} (3x^3-x) dx = \frac{5}{4} \left( \frac{3x^4}{4} - \frac{x^2}{2} \right) \bigg|_{0}^{1} = \frac{5}{16} \]

\[ B_3 = \frac{7}{2} \int_{0}^{1} x \cdot \frac{1}{2}(5x^3-3x) dx = \frac{7}{4} \int_{0}^{1} (5x^4-3x^2) dx = \frac{7}{4} \left( \frac{5x^5}{5} - \frac{3x^3}{3} \right) \bigg|_{0}^{1} = 0 \]

\[ B_4 = \frac{9}{2} \int_{0}^{1} x \cdot \frac{1}{8}(35x^4-30x^2+3) dx = \frac{9}{16} \int_{0}^{1} (35x^5 - 30x^3 + 3) dx \]

\[ = \frac{9}{16} \left( \frac{35x^6}{6} - \frac{30x^4}{4} + \frac{3x^2}{2} \right) \bigg|_{0}^{1} = -\frac{3}{32} \]
and by substitution into

\[ f(x) = B_0P_0(x) + B_1P_1(x) + B_2P_2(x) + \ldots + B_nP_n(x) = \sum_{n=0}^{\infty} B_nP_n(x) \]

we get

\[ f(x) = \frac{1}{4}P_0(x) + \frac{1}{2}P_1(x) + \frac{5}{16}P_2(x) + 0 \cdot P_3(x) - \frac{3}{32}P_4(x) \]
\[ = \frac{1}{4} \cdot 1 + \frac{1}{2} \cdot x + \frac{5}{16} \cdot \frac{1}{2} (3x^2 - 1) - \frac{3}{32} \cdot \frac{1}{8} (35x^4 - 30x^2 + 3) \]
\[ = \frac{1}{4} + \frac{x}{2} + \frac{15x^2}{32} - \frac{5}{32} - \frac{105x^4}{256} + \frac{90x^2}{256} - \frac{9}{256} \]

or

\[ f(x) = \frac{1}{256} (15 + 128x + 210x^2 - 105x^4) \]

we note that \( f(-1) = -8/256 \) and \( f(0) = 15/256 \). These values are close to zero. Also, \( f(1) = 248/256 \) and this value is close to unity.

We plot \( f(x) \) with the MATLAB code below.

```matlab
x=0:0.01:1; fx=(15+128.*x+210.*x.^2-105.*x.^4)/256; plot(x,fx); xlabel('x'); ylabel('f(x)'); grid
```

![Graph of f(x)](image.png)
NOTES
Chapter 16

Optimization Methods

This chapter introduces three methods for maximizing or minimizing some function in order to achieve the optimum solution. These methods are topics discussed in detail in a branch of mathematics called operations research that is concerned with financial and engineering economic problems. Our intent here is to introduce these methods with the basic ideas. We will discuss linear programming, dynamic programming, and network analysis and we will illustrate these with some simple but practical examples.

16.1 Linear Programming

In linear* programming we seek to maximize or minimize a particular quantity, referred to as the objective, which is dependent on a finite number of variables. These variables may or may not be independent of each another, and in most cases are subject to certain conditions or limitations referred to as constraints.

Example 16.1

The ABC Semiconductor Corporation produces microprocessors (\(\mu Ps\)) and memory (RAM) chips. The material types, A and B, required to manufacture the \(\mu Ps\) and RAMs and the profits for each are shown in Table 16.1.

<table>
<thead>
<tr>
<th>Parts of Material Types</th>
<th>(\mu Ps)</th>
<th>RAMs (1000s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semiconductor Material A</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Semiconductor Material B</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Profit</td>
<td>$25.00 per unit</td>
<td>$20.00 per 1000</td>
</tr>
</tbody>
</table>

Due to limited supplies of silicon, phosphorus and boron, its product mix at times of high consumer demand, is subject to limited supplies. Thus, ABC Semiconductor can only buy 450 parts of Material A, and 1000 parts of Material B. This corporation needs to know what combination of \(\mu Ps\) and RAMs will maximize the overall profit.

* A linear program is one in which the variables form a linear combination, i.e., are linearly related. All other programs are considered non-linear.
Chapter 16  Optimization Methods

Solution:

Since with Material A we can produce 3 μPs and 2 RAMs, and with Material B 5 μPs and 10 RAMs, the corporation is confronted with the following constraints:

\[ 3x + 2y \leq 450 \]
\[ 5x + 10y \leq 1000 \]

We now can state the problem as

\[ \text{Maximize } z = 25 \times \text{μP} + 20 \times \text{RAMs} \] \hspace{1cm} (16.1)

subject to the constraints

\[ 3x + 2y \leq 450 \]
\[ 5x + 10y \leq 1000 \] \hspace{1cm} (16.2)

Two additional constraints are \( x \geq 0 \), \( y \geq 0 \), and \( x \) and \( y \) must be integers.

For this example, there are only two variables, \( x \) and \( y \); therefore, a graphical solution is possible. We will solve this example graphically.

The \( x \) and \( y \) intercept corresponding to the above equations is shown in the plot of Figure 16.1 where the cross-hatched area indicates the feasible region.*

* The feasible region is the area which includes all points \((x, y)\) satisfying all constraints.

The equation of the straight line of the maximum profit is referred to as isoprofit line. This line will pass through one of the three corners denoted as \( a \), \( b \), and \( c \).
The isoprofit line that we are interested is described by the equation

\[ z = 25 \times \mu P + 20 \times RAM = \text{constant} \]

\[ = 25x + 20y = C \]  \hspace{1cm} (16.3)

We can express this equation in \( y = mx + b \) form, that is,

\[ y = \frac{-25}{20}x + \frac{C}{20} = -1.25x + k \] \hspace{1cm} (16.4)

where \( k \) is the \( y \)-intercept. Therefore, all possible isoprofit lines have the same slope, that is, are parallel to each another, and the highest isoprofit line passes through point \( b \).

The coordinates of point \( b \) in Figure 16.1 are found by simultaneous solution of

\[ 3x + 2y = 450 \]
\[ 5x + 10y = 1000 \] \hspace{1cm} (16.5)

Using MATLAB for the solution of (16.5) we get

\[ \text{syms } x \text{ y} \]
\[ [x \ y]=\text{solve}(3*x+2*y-450, 5*x+10*y-1000) \]
\[ x = 125 \]
\[ y = 75/2 \]

Of course, these values must be integers, so we accept the values \( x = 125 \), and \( y = 37 \). Then, by substitution into (16.1),

\[ z_{\text{max}} = 25 \times 125 + 20 \times 37 = \$3865 \] \hspace{1cm} (16.6)

and the isoprofit line can be drawn from the equation

\[ 25x + 20y = 3865 \] \hspace{1cm} (16.7)

by first letting \( x = 0 \), then, \( y = 0 \). Then, we obtain the points

\[ x = \frac{3865}{25} = 154.6 \]

and

\[ y = \frac{3865}{20} = 193.25 \]

This is shown as a dotted line on the plot of Figure 16.1.

It was possible to solve this problem graphically because it is relatively simple. In most cases, how-
However, we cannot obtain the solution by graphical methods and therefore, we must resort to algebraic methods such as the *simplex method*. This and other methods are described in operations research textbooks.

We can find the optimum solution to this type of problems with Excel’s Solver feature. The procedure is included in the spreadsheet of Figure 16.2.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><strong>Optimization - Maximum Profit for Example 16.1</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1. Enter zeros in B12 and B13</td>
<td>2. In B15 enter =25<em>B12+20</em>B13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3. In B17 enter =3<em>B12+2</em>B13 and in B18 =5<em>B12+10</em>B13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4. From the <em>Tools</em> drop menu select <em>Solver</em>. Use <em>Add-Ins</em> if necessary to add it.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5. On the Solver Parameters screen enter the following:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Set Target Cell: B15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Equal to: Max</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>By Changing Cells: B12:B13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Click on Add and enter Constraints:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>B12=integer, Add B13=integer, Add B12&gt;=0, Add B13&gt;=0,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Add B17&lt;=450, Add B18&lt;=1000, OK, Solve</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>x(µPs)=</td>
<td>124</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>y(RAMs)=</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Maximum Profit=</td>
<td>$3,860</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Semiconductor Material A=</td>
<td>448</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Semiconductor Material B=</td>
<td>1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Note: Contents of A12:A18 are typed-in for information only</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Figure 16.2. Spreadsheet for solution of Example 16.1 with Excel’s solver*

### 16.2 Dynamic Programming

*Dynamic Programming* is based on R. Bellman’s *Principle of Optimality* which states that:

An optimum policy has the property that whatever the initial state and the initial decisions are, the remaining decisions must constitute an optimum policy with regard to the state resulting from the first decision.

Figure 16.3 represents a *line graph*, where the nodes *a* through *h* represent the states, and the choice of alternative paths when leaving a given state, is called a *decision*. The alternative paths are represented by the line segments *ab*, *ac*, *bd*, and so on.
We assume that all segments are directed from left to right, and each has a value assigned to it which we will refer to as the cost. Thus, there is a cost associated with each segment, and it is usually denoted with the letter \( J \). For example, for the path \( a, c, f, \) and \( h \), the cost is

\[
J_{ah} = J_{ac} + J_{cf} + J_{fh}
\]  

(16.8)

The costs for the other possible paths are defined similarly.

For the line graph of Figure 16.3, the objective is to go from state \( a \) to state \( h \) with minimum cost. Accordingly, we say that the optimum path policy for this line graph is

\[
J_{\text{min}} = \min \{ (J_{ac} + J_{cf} + J_{fh}), (J_{ac} + J_{ce} + J_{eh}), (J_{ab} + J_{bd} + J_{dh}), (J_{ab} + J_{bg} + J_{gh}) \}
\]  

(16.9)

Now, let us suppose that the initial state is \( a \), and the initial decision has been made to go to state \( b \). Then, the path from \( b \) to \( h \) must be selected optimally, if the entire path from \( a \) to \( h \) is to be optimum (minimum in this case).

Let the minimum cost from state \( b \) to \( h \) be denoted as \( g_b \). Then,

\[
g_b = \min \{ (J_{bd} + J_{dh}), (J_{bg} + J_{gh}) \}
\]  

(16.10)

Likewise, if the initial decision is to go from state \( a \) to \( c \), the path from state \( c \) to \( h \) must be optimum, that is,

\[
g_c = \min \{ (J_{cf} + J_{fh}), (J_{ce} + J_{eh}) \}
\]  

(16.11)

The optimum path policy of (16.9) can now be expressed in terms of (16.10) and (16.11) as

\[
g_a = J_{\text{min}} = \min \{ (J_{ab} + g_b), (J_{ac} + g_c) \}
\]  

(16.12)

This relation indicates that to obtain the minimum cost we must minimize:
Chapter 16  Optimization Methods

1. The part which is related to the present decision, in this case, costs $J_{ab}$ and $J_{ac}$.
2. The part which represents the minimum value of all future costs starting with the state which results from the first decision.

Example 16.2

Find the minimum cost route from state $a$ to state $m$ for the line graph of Figure 16.4. The line segments are directed from left to right and the costs are indicated beside each line segment.

![Figure 16.4. Line graph for Example 16.2](image)

**Solution:**

We observe that at states $h$, $k$, $d$, and $f$ have no alternative paths since the lines are directed from left to right. Therefore, we make the first decision at state $e$. Then,

$$g_e = \min \{ (3 + g_h), (5 + g_k) \} = \min \{ (3 + 5), (5 + 4) \} = 8 \quad (e \rightarrow h \rightarrow m) \quad (16.13)$$

Next, we make decisions at states $b$ and $c$.

$$g_b = \min \{ (9 + g_d), (6 + g_e) \} = \min \{ (9 + 6), (6 + 8) \} = 14 \quad (b \rightarrow e) \quad (16.14)$$

$$g_c = \min \{ (4 + g_e), (6 + g_f) \} = \min \{ (4 + 8), (6 + 8) \} = 12 \quad (c \rightarrow e) \quad (16.15)$$

The final decision is at state $a$ and thus

$$g_a = \min \{ (5 + g_b), (3 + g_c) \} = \min \{ (5 + 14), (3 + 12) \} = 15 \quad (a \rightarrow c) \quad (16.16)$$
Therefore, the minimum cost is 15 and it is achieved through path $a \rightarrow c \rightarrow e \rightarrow h \rightarrow m$, as shown in Figure 16.5.

**Example 16.3**

On the line graph of Figure 16.6, node $A$ represents an airport in New York City and nodes $B$ through $L$ several airports throughout Europe and Asia. All flights originate at $A$ and fly eastward. A salesman must leave New York City and be in one of the airports $H, J, K$, or $L$ at the shortest possible time. The encircled numbers represent waiting times in hours at each airport. The numbers in squares show the hours he must travel by an automobile to reach his destination, and the numbers beside the line segments indicated the flight times, also in hours. Which airport should he choose ($H, J, K$, or $L$) to minimize his total travel time, and in how many hours after departure from $A$ will he reach his destination?
Solution:

The hours that the salesman must travel by automobile to reach his destination are

\[ g_H = 3, \ g_J = 2, \ g_K = 4, \text{ and } g_L = 3 \]  \hspace{1cm} (16.17)

The first decisions are made at \( D, E, \text{ and } F \). Then,

\[ g_D = 2 + \min\{(5 + g_H), (4 + g_J)\} = 2 + \min\{(5 + 3), (4 + 2)\} = 2 + 6 = 8 \]

\[ D \rightarrow J \]  \hspace{1cm} (16.18)

\[ g_E = 4 + \min\{(3 + g_J), (4 + g_K)\} = 4 + \min\{(3 + 2), (4 + 4)\} = 4 + 5 = 9 \]

\[ E \rightarrow J \]  \hspace{1cm} (16.19)

\[ g_F = 3 + \min\{(6 + g_K), (7 + g_L)\} = 3 + \min\{(6 + 4), (7 + 3)\} = 3 + 10 = 13 \]

\[ F \rightarrow K \text{ or } F \rightarrow L \]  \hspace{1cm} (16.20)

The next decisions are made at \( B, \text{ and } C \) where we find that

\[ g_B = 4 + \min\{(4 + g_D), (2 + g_E)\} = 4 + \min\{(4 + 8), (2 + 9)\} = 4 + 11 = 15 \]

\[ B \rightarrow E \]  \hspace{1cm} (16.21)

\[ g_C = 3 + \min\{(7 + g_E), (5 + g_F)\} = 3 + \min\{(7 + 9), (5 + 13)\} = 3 + 16 = 19 \]

\[ C \rightarrow E \]  \hspace{1cm} (16.22)

The final decision is made at \( A, \text{ where we find} \)

\[ g_A = \min\{(8 + g_B), (6 + g_C)\} = \min\{(8 + 15), (6 + 19)\} = 23 \]

\[ A \rightarrow B \]  \hspace{1cm} (16.23)

Therefore, the minimum cost (minimum time from departure to arrival at destination) is 23 hours and it is achieved through path \( A \rightarrow B \rightarrow E \rightarrow J \), as shown in Figure 16.7.

Figure 16.7. Line graph showing the minimum cost for Example 16.3
Example 16.4

A start-up, high-technology company, has $4,000,000 to invest in three different products A, B and C. Investments in each product are assumed to be multiples of $1,000,000 and the company may allocate all the money to just one product or split it between these three products. The expected profits are shown in Table 16.2.

### TABLE 16.2 Amounts invested and return on investment for each product

<table>
<thead>
<tr>
<th>Investments</th>
<th>Amount Invested</th>
<th>$1,000,000</th>
<th>$2,000,000</th>
<th>$3,000,000</th>
<th>$4,000,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Return on Investment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product A</td>
<td>0</td>
<td>$2,000,000</td>
<td>$5,000,000</td>
<td>$6,000,000</td>
<td>$7,000,000</td>
</tr>
<tr>
<td>Product B</td>
<td>0</td>
<td>$1,000,000</td>
<td>$3,000,000</td>
<td>$6,000,000</td>
<td>$7,000,000</td>
</tr>
<tr>
<td>Product C</td>
<td>0</td>
<td>$1,000,000</td>
<td>$4,000,000</td>
<td>$5,000,000</td>
<td>$8,000,000</td>
</tr>
</tbody>
</table>

How should the money be allocated so that company will realize the maximum profit?

**Solution:**

This problem can also be solved with linear programming methods but we will use the so called tabular form of solution. Let

\[ p_i(x) \quad i = A, B, C \]  \hspace{1cm} (16.24)

denote the profits in millions from product \( i \), when \( x \) units of dollars are invested in it. For simplicity, we express the profits in millions, and we enter these in Table 16.3.

### TABLE 16.3 Modified Table 16.2

<table>
<thead>
<tr>
<th>( x )</th>
<th>( p(x) )</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>( p_A(x) )</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>( p_B(x) )</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>( p_C(x) )</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

Our objective is to maximize the total profit \( z \) that represents the sum of the profits from each product, subject to the constraint that the amount invested does not exceed four million dollars. In other words is, we want to

\[
\text{maximize } z = p_A(x) + p_B(x) + p_C(x) \]  \hspace{1cm} (16.25)
subject to the constraint

\[ x_A + x_B + x_C \leq 4 \quad (16.26) \]

where \( x_A, x_B, \) and \( x_C \), are the amounts to be invested in products A, B and C respectively.

The computations are done in three stages, one per product. We start by allocating units (millions) to Product C (Stage C), but since we do not know what units were allocated to the previous products A and B, we must consider all possibilities.

We let \( v_j(u) \) denote the value of the optimum profit that can be achieved, where the subscript \( j \) indicates the number or stage assigned to the product, i.e., A for Product A, B for Product B, and C for Product C, and \( u \) represents the number of money units. Also, we let \( d_j(u) \) be the decision that is being made to achieve the optimum value from \( v_j(u) \).

At Stage C, \( j = C \), and \( u = 4 \), i.e., 4 millions assumed to be allocated to Product C.

The possibilities that we allocate 0 or 1 or 2 or 3 or 4 units (millions) to Product C, and the corresponding returns are, from Table 16.3,

\[ v_C(4) = \max \{ p_C(0), p_C(1), p_C(2), p_C(3), p_C(4) \} = \max \{ 0, 1, 4, 5, 8 \} = 8 \quad (16.27) \]

with decision

\[ d_C(4) = 8 \quad (16.28) \]

that is, the maximum appears in the fourth position since the left most is the zero position.

The next possibility is that one unit was invested in either Product A or Product B, by a previous decision. In this case, do not have 4 units to invest in Product C; we have three or less.

If we invest the remaining three units in Product C, the optimum value \( v_C(3) \) is found from

\[ v_C(3) = \max \{ p_C(0), p_C(1), p_C(2), p_C(3) \} = \max \{ 0, 1, 4, 5 \} = 5 \quad (16.29) \]

with decision

\[ d_C(3) = 5 \quad (16.30) \]

If we have only two units left, and we invest them in Product C, we obtain the maximum from

\[ v_C(2) = \max \{ p_C(0), p_C(1), p_C(2) \} = \max \{ 0, 1, 4 \} = 4 \quad (16.31) \]

with decision

\[ d_C(2) = 4 \quad (16.32) \]

With only one unit left to invest, we have
Dynamic Programming

\[ v_C(1) = \max\{p_C(0), p_C(1)\} = \max\{0, 1\} = 1 \]  
(16.33)

with decision

\[ d_C(1) = 1 \]  
(16.34)

Finally, with no units left to invest in Product C,

\[ v_C(0) = \max\{p_C(0)\} = \max\{0\} = 0 \]  
(16.35)

with decision

\[ d_C(0) = 0 \]  
(16.36)

With these values, we construct Table 16.4.

**TABLE 16.4 Optimum profit and decisions made for Stage C**

<table>
<thead>
<tr>
<th></th>
<th>(u)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Stage C</td>
<td>(v_C(u))</td>
</tr>
<tr>
<td></td>
<td>(d_C(u))</td>
</tr>
<tr>
<td>Stage B</td>
<td>(v_B(u))</td>
</tr>
<tr>
<td></td>
<td>(d_B(u))</td>
</tr>
<tr>
<td>Stage A</td>
<td>(v_A(u))</td>
</tr>
<tr>
<td></td>
<td>(d_A(u))</td>
</tr>
</tbody>
</table>

Next, we consider Stage B, and since we do not know what units were allocated to Product A (Stage A), again we must consider all possibilities.

With \(j = B\) and \(u = 4, 3, 2, 1\) and 0, we have

\[ v_B(4) = \max\{p_B(0) + v_C(4-0), p_B(1) + v_C(4-1), p_B(2) + v_C(4-2), p_B(3) + v_C(4-3), p_B(4) + v_C(4-4)\} \]  
(16.37)

This expression says that if zero units were invested in Product B, it is possible that all four units were invested in Product C, or if one unit was invested in Product B, it is possible that 3 units were invested in Product C, and so on. Inserting the appropriate values, we get

\[ v_B(4) = \max\{0 + 8, 1 + 5, 3 + 4, 6 + 1, 7 + 0\} = 8 \]  
(16.38)

with decision

\[ d_B(4) = 0 \]  
(16.39)
since the maximum value is the zero position term.

Using a similar reasoning, we have

\[ v_B(3) = max\{p_B(0) + v_C(3 - 0), p_B(1) + v_C(3 - 1), p_B(2) + v_C(3 - 2), p_B(3) + v_C(3 - 3)\} \]  \hspace{1cm} (16.40)

or

\[ v_B(3) = max\{0 + 5, 1 + 4, 3 + 1, 6 + 0\} = 6 \]  \hspace{1cm} (16.41)

with decision

\[ d_B(3) = 3 \]  \hspace{1cm} (16.42)

Also,

\[ v_B(2) = max\{p_B(0) + v_C(2 - 0), p_B(1) + v_C(2 - 1), p_B(2) + v_C(2 - 2)\} \]  \hspace{1cm} (16.43)

or

\[ v_B(2) = max\{0 + 4, 1 + 1, 3 + 0\} = 4 \]  \hspace{1cm} (16.44)

with decision

\[ d_B(2) = 0 \]  \hspace{1cm} (16.45)

\[ v_B(1) = max\{p_B(0) + v_C(1 - 0), p_B(1) + v_C(1 - 1)\} \]  \hspace{1cm} (16.46)

or

\[ v_B(1) = max\{0 + 1, 1 + 0\} = 1 \]  \hspace{1cm} (16.47)

with decision

\[ d_B(1) = 0 \]  \hspace{1cm} (16.48)

if we consider the zero position term, or

\[ d_B(1) = 1 \]  \hspace{1cm} (16.49)

if we consider the first position term.

Also,

\[ v_B(0) = max\{p_B(0) + v_C(0 - 0)\} \]  \hspace{1cm} (16.50)

or

\[ v_B(0) = max\{0 + 0\} = 0 \]  \hspace{1cm} (16.51)

with decision

\[ d_B(0) = 0 \]  \hspace{1cm} (16.52)

Next, we update the previous table to include the Stage B values. These are shown in Table 16.5.
Finally, with $j = A$ and $u = 4$ *

\[
v_A(4) = \max\{ p_A(0) + v_B(4 - 0), p_A(1) + v_B(4 - 1), p_A(2) + v_B(4 - 2), p_A(3) + v_B(4 - 3), p_A(4) + v_B(4 - 4) \} \tag{16.53}
\]

or

\[
v_A(4) = \max\{ 0 + 8, 2 + 6, 5 + 4, 6 + 1, 7 + 0 \} = 9 \tag{16.54}
\]

with decision

\[
d_A(4) = 2 \tag{16.55}
\]

We complete the table by entering the values of Stage A in the last two rows as shown in Table 16.6. The only entries are in the last column, and this is always the case since in deriving $v_A(4)$ and $d_A(4)$, all possibilities have been considered.

Table 16.6 indicates that the maximum profit is realized with $v_A(4) = 9$, that is, 9 units, and thus the maximum profit is $9,000,000$.

To determine the investment allocations to achieve this profit, we start with $d_A(4) = 2$; this tells us that we should allocate 2 units to Product A, and the given table shows that 2 units ($2,000,000$) invested in this product will return $5,000,000$.

* Since this is the first stage, all 4 units can be allocated to the Product A or some of these can be allocated to Products B and C. Therefore, $v_A(4)$ considers all possibilities.
We now have two units left to invest in Products B and C. To find out where we should invest these units, we consider the decision at Stage B. Since two out of the four units have already been invested, we have \( d_B(4 - 2) = d_B(2) \), and by reference to the Table 16.6, we see that \( d_2(2) = 0 \). This tells us that we should not invest any units in Product B if only two units are left. The decision at Stage C yields \( d_C(4 - 0 - 2) = d_C(2) \), and from Table 16.6, \( d_C(2) = 2 \). This indicates that we should invest the remaining two units to Product C where we can get a return of $4,000,000.

In summary, to obtain the maximum profit of $9,000,000, we should allocate:

1. two units to Product A to earn $5,000,000
2. zero units to Product B to earn $0
3. two units to Product C to earn $4,000,000

### 16.3 Network Analysis

A network, as defined here, is a set of points referred to as nodes and a set of lines referred to as branches. Thus, Figure 16.8 is a network with 5 nodes \( A, B, C, D \) and \( E \), and 6 branches \( AB, AC, AD, BD, BE, \) and \( CD \).

![Figure 16.8. A typical network](image)
Branches can be either *directed* (or *oriented*), if they have a direction assigned to them, that is, one-way, or two-way. If no direction is assigned, they are considered to be two-way. Thus, the branches $BD$ and $BE$ in Figure 16.8, are directed but the others are not.

A network is said to be *connected*, if there is a path (branch) connecting each pair of nodes. Thus, the network shown in Figure 16.8 is connected.

![Network](image)

*Figure 16.9. A network which is connected*

The network of Figure 16.9 is also connected. However, the network of Figure 16.10 is not connected since the branch $CD$ is removed.

![Network](image)

*Figure 16.10. A network which is not connected*

A *tree* is a *connected network* which has $n$ branches and $n + 1$ nodes. For example, the network of Figure 16.11 is a tree network.

![Network](image)

*Figure 16.11. A tree network*

*Network analysis* is a method that is used to solve *minimum span problems*. In such problems, we seek to find a tree which contains all nodes, and the sum of the costs (shortest total distance) is a minimum.

**Example 16.5**

Figure 16.12 represents a network for a project that requires telephone cable be installed to link 7 towns. The towns are the nodes, the branches indicate possible paths, and the numbers beside the
branches, show the distance (not to scale) between towns in kilometers. Find the minimal spanning tree, that is, the least amount of telephone cable required to link each town.

Solution:

For convenience, we redraw the given network with dotted lines as shown in Figure 16.13, and we arbitrarily choose $A$ as the starting node.

We observe that there are 3 branches associated with node $A$, i.e., $AB$, $AD$, and $AC$. By inspection, or from the expression

$$\min\{AB = 3, AD = 5, AC = 4\} = AB = 3$$

we find that branch $AB$ is the shortest. We accept this branch as the first branch of the minimum span tree and we draw a solid line from Node $A$ to Node $B$ as shown in Figure 16.14.
Next, we consider all branches associated with Nodes A and B. We find that the minimum of these is

\[\min\{AD = 5, AC = 4, BD = 5, BE = 8\} = AC = 4\]  \hspace{1cm} (16.57)

and thus, AC is connected to the network as shown in Figure 16.15.

![Figure 16.15. Network of Example 16.5 with the second connection](image)

We continue by considering all branches associated with Nodes A, B and C, and we find that the shortest is

\[\min\{AD = 5, BE = 8, BD = 5, CD = 4, CF = 10\} = CD = 4\]  \hspace{1cm} (16.58)

and we add branch CD to the network shown in Figure 16.16. The dotted lines AD and BD have been removed since we no longer need to consider branch AD and BD, because Nodes B and D are already connected; otherwise, we will not have a tree network.

![Figure 16.16. Network of Example 16.5 with the third connection](image)

Next, considering all branches associated with Nodes B, C, and D and we find that the shortest is

\[\min\{BE = 8, DE = 6, DG = 7, DF = 5, CF = 10\} = DF = 5\]  \hspace{1cm} (16.59)

and the network now is connected as shown in Figure 16.17.
Continuing, we get

$$\min \{BE = 8, DE = 6, DG = 7\} = DE = 6$$  \hspace{1cm} (16.60)$$

and the network is connected as shown in Figure 16.18

The last step is to determine the shortest branch to Node $G$. We find that

$$\min \{EG = 5, DG = 7, FG = 2\} = FG = 2$$  \hspace{1cm} (16.61)$$

and the complete minimum span tree is shown in Figure 16.19.

Figure 16.19 shows that the minimum distance is $3 + 4 + 4 + 6 + 5 + 2 = 24$ kilometers.
16.4 Summary

- Linear programming is a procedure we follow to maximize or minimize a particular quantity, referred to as the objective, which is dependent on a finite number of variables. These variables may or may not be independent of each another, and in most cases are subject to certain conditions or limitations referred to as constraints.

- Dynamic Programming is based on R. Bellman’s Principle of Optimality which states that an optimum policy has the property that whatever the initial state and the initial decisions are, the remaining decisions must constitute an optimum policy with regard to the state resulting from the first decision.

- A network, as defined in this chapter, is a set of points referred to as nodes and a set of lines referred to as branches.

- A tree is a connected network which has $n$ branches and $n + 1$ nodes.

- Network analysis is a method that is used to solve minimum span problems. In such problems, we seek to find a tree which contains all nodes, and the sum of the costs (shortest total distance) is a minimum.
16.5 Exercises

1. A large oil distributor can buy Grade A oil which contains 7% lead for $25.00 per barrel from one oil refinery company. He can also buy Grade B oil which contains 15% lead for $20.00 per barrel from another oil refinery company. The Environmental Protection Agency (EPA) requires that all oil sold must not contain more than 10% lead. How many barrels of each grade of oil should he buy so that after mixing the two grades can minimize his cost while at the same time meeting EPA’s requirement? Solve this problem graphically and check your answers with Excel's Solver.

2. Use dynamic programming to find the minimum cost route from state $a$ to state $m$ for the line graph shown below. The line segments are directed from left to right and the costs are indicated beside each line segment.

3. Repeat Example 16.3 for the line graph shown below.

4. A salesman has 4 hours available to visit 4 of his customers. He will earn the commissions shown on the table below for various visiting times. Compute the optimal allocation of time that he should spent with his customers so that he will maximize the sum of his commissions. Consider only integer number of visiting hours, and ignore travel time from customer to cus-
Exercises

tomer. The third row (zero hours) indicates the commission that he will receive if he just calls instead of visiting them.

<table>
<thead>
<tr>
<th>Visit Time (Hours)</th>
<th>Customer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>$20</td>
</tr>
<tr>
<td>1</td>
<td>$45</td>
</tr>
<tr>
<td>2</td>
<td>$65</td>
</tr>
<tr>
<td>3</td>
<td>$75</td>
</tr>
<tr>
<td>4</td>
<td>$83</td>
</tr>
</tbody>
</table>

5. Repeat Example 16.5 for the network shown below.
16.6 Solutions to Exercises

1. Let \( x \) be the number of barrels of Grade A oil and \( y \) be the number of barrels of Grade B oil. The objective is to minimize \( z = 25.00x + 20.00y \) or, for simplicity,

\[
z = 25x + 20y \quad (1)
\]

We want to minimize (1) because it represents a cost, not a profit.

Each barrel to be sold must not contain more than 10\% lead and since Grade A contains 7\% and Grade B 15\%, we must have

\[
0.07x + 0.15y \leq 0.10 \quad (2)
\]

The oil of Grade A and Grade B used in each barrel to be sold must be equal to unity. Thus,

\[
x + y = 1 \quad (3)
\]

Moreover, \( x \) and \( y \) cannot be negative numbers, therefore

\[
x \geq 0 \quad y \geq 0 \quad (4)
\]

The problem then can be stated as:

Minimize (1) subject to the constraints of (2), (3), and (4). To determine the feasible region we plot (2) and (3) where the \( x \) and \( y \) crossings are found by first setting \( x = 0 \) and then \( y = 0 \). Thus from (2), if \( x = 0 \), \( y = 0.10/0.15 = 2/3 \) and if \( y = 0 \), \( x = 0.10/0.07 = 10/7 \). Likewise, from (3), if \( x = 0 \), \( y = 1 \), and if \( y = 0 \), \( x = 1 \).

The isoprofit line passes through point \( b \) and its coordinates are found by simultaneous solu-
tion of (2) and (3). For convenience, we use the following MATLAB code:

```matlab
syms x y; [x,y]=solve(0.07*x+0.15*y−0.10, x+y−1)
```

\[ x = \frac{5}{8} \]
\[ y = \frac{3}{8} \]

Therefore, the distributor should buy Grade A oil at the ratio \( x = \frac{5}{8} \) and Grade B at the ratio \( y = \frac{3}{8} \) and by substitution into (1)

\[ z = 25 \times \frac{5}{8} + 20 \times \frac{3}{8} = \frac{185}{8} = $23.125 \]

and this represents his cost per barrel. The isoprofit line is

\[ z = 25x + 20y = 23.125 \]

and the \( y \)-intercept is found by setting \( x \) in the equation above to zero and we find that

\[ y \text{-intercept} = \frac{23.125}{20} = 1.1563 \]

Check with Excel’s Solver:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><strong>Optimization - Minimum Cost for Exercise 16.1</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1. Enter zeros in B12 and B13</td>
<td>2. In B15 enter ( =25 \times B12+20 \times B13 )</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3. In B17 enter ( =0.07 \times B12+0.15 \times B13 ) and in B18 ( =B12+B13 )</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4. From the Tools drop menu select Solver. Use Add-Ins if necessary to add it.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5. On the Solver Parameters screen enter the following:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td><strong>Set Target Cell:</strong> B15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td><strong>Equal to:</strong> Min</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td><strong>By Changing Cells:</strong> B12:B13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td><strong>Click on Add and enter Constraints:</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>B12&gt;=0, Add B13&gt;=0,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Add B17&lt;=0.10, Add B18=1, OK, Solve</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Grade A= 0.625002</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Grade B= 0.374999</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Minimum Cost= $23.125</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Lead Content= 0.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Grade A + Grade B= 1.000001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Note: Contents of A12:A18 are typed-in for information only</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.

Since the segments are directed from left to right, state \( e \) is the first node where a decision must be made and thus

\[
g_e = \min\{3 + g_h, 4 + g_k\} = \min\{3 + 4, 4 + 5\} = 7
\]

Therefore, the best route from state \( e \) to state \( m \) passes through state \( h \). Next,

\[
g_b = \min\{8 + g_d, 5 + g_e\} = \min\{8 + 5, 5 + 7\} = 12
\]

and

\[
g_c = \min\{4 + g_e, 6 + g_f\} = \min\{4 + 7, 6 + 7\} = 11
\]

Finally,

\[
g_a = \min\{3 + g_b, 5 + g_c\} = \min\{3 + 12, 5 + 11\} = 15
\]

Thus, the best (shortest) path is \( a \rightarrow b \rightarrow e \rightarrow h \rightarrow m \)

3.

The numbers in circles represent the waiting time at these nodes.

Last stage: \( g_H = 2, \ g_J = 2, \ g_K = 3, \text{ and } g_L = 4 \)
Next stage to the left:

\[ g_D = 1 + \min\{6 + g_H, 4 + g_J\} = 1 + 6 = 7 \quad \text{from } D \text{ to } J \]

\[ g_E = 3 + \min\{4 + g_F, 5 + g_K\} = 3 + 6 = 9 \quad \text{from } E \text{ to } J \]

\[ g_F = 4 + \min\{7 + g_K, 6 + g_L\} = 4 + 10 = 14 \quad \text{from } F \text{ to } K \text{ or } F \text{ to } L \]

Next to initial stage:

\[ g_B = 5 + \min\{2 + g_D, 4 + g_E\} = 5 + 9 = 14 \quad \text{from } B \text{ to } D \]

\[ g_C = 2 + \min\{7 + g_E, 1 + g_F\} = 2 + 15 = 17 \quad \text{from } C \text{ to } F \]

Initial stage:

\[ g_A = 0 + \min\{3 + g_B, 5 + g_C\} = 17 \quad \text{from } A \text{ to } B \]

Therefore, minimum path is from \( A \to B \to D \to J \) and the numerical minimum cost is 17.

4.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Exercise 16.4 - Solution</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A salesman has 4 hours available to visit of his customers. He will earn the commissions shown on</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>the table below for various visiting times. Compute the optimal allocation of time that he should spend</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>with his customers so that he will maximize the sum of his commissions. Consider only integer number</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>of visiting hours, and ignore travel time from customer to customer. The third row (zero hours)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>indicates the commission that he will receive if he just calls instead of visiting them.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Visit Time</td>
<td>Customer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>(Hours)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>$20</td>
<td>$40</td>
<td>$40</td>
<td>$80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>$45</td>
<td>$45</td>
<td>$52</td>
<td>$91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>$65</td>
<td>$57</td>
<td>$62</td>
<td>$95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>3</td>
<td>$75</td>
<td>$61</td>
<td>$71</td>
<td>$97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>4</td>
<td>$83</td>
<td>$69</td>
<td>$78</td>
<td>$98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Solution</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>We will follow the same method as in Example 16.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>It is convenient to rearrange the table as shown below.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

continued on the next page
### Chapter 16  Optimization Methods

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td></td>
<td></td>
<td>u</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>f(x) ( x )</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>( f_1(x) )</td>
<td>20</td>
<td>45</td>
<td>65</td>
<td>75</td>
<td>83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>( f_2(x) )</td>
<td>40</td>
<td>45</td>
<td>57</td>
<td>61</td>
<td>69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>( f_3(x) )</td>
<td>40</td>
<td>52</td>
<td>62</td>
<td>71</td>
<td>78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td>( f_4(x) )</td>
<td>80</td>
<td>91</td>
<td>95</td>
<td>97</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>( m_4(4) = \max(B26,C26,D26,E26,F26) )</td>
<td>98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>( m_4(3) = \max(B26,C26,D26,E26) )</td>
<td>97</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>( m_4(2) = \max(B26,C26,D26) )</td>
<td>95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>( m_4(1) = \max(B26,C26) )</td>
<td>91</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>( m_4(1) = \max(B26) )</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The values of \( m_4(u) \) and \( d_4(u) \) are entered in the table below.

34						
35						
36						
37						
38	\( m_4(u) \)	80	91	95	97	
39	\( d_4(u) \)	0	1	2	3	
40	\( m_3(u) \)	120	132	143	153	162
41	\( d_3(u) \)	0	1	1	2	3
42	\( m_2(u) \)	160	172	183	193	202
43	\( d_2(u) \)	0	0	0	0	0
44	\( m_1(u) \)					248
45	\( d_1(u) \)					2
46						
47	Next, we compute the values of \( m_3(u) \) and \( d_3(u) \)					
48						
49	\( m_3(4) = \max[f_3(0)+m_4(4-0), f_3(1)+m_4(4-1), f_3(2)+m_4(4-2), f_3(3)+m_4(4-3), f_3(4)+m_4(4-4)] \)					
50	\( \max(B25+F38,C25+E38,D25+D38,E25+C38,F25+B38) \)	162				
51						
52	\( m_3(3) = \max[f_3(0)+m_4(3-0), f_3(1)+m_4(3-1), f_3(2)+m_4(3-2), f_3(3)+m_4(3-3)] \)					
53	\( \max(B25+E38,C25+D38,D25+C38,E25+B38) \)	153				
54						
55	\( m_3(2) = \max[f_3(0)+m_4(2-0), f_3(1)+m_4(2-1), f_3(2)+m_4(2-2)] \)					
56	\( \max(B25+D38,C25+D38,D25+C38,E25+B38) \)	143				
57						
58	\( m_3(1) = \max[f_3(0)+m_4(1-0), f_3(1)+m_4(1-1)] \)					
59	\( \max(B25+C38,C25+B38) \)	132				
60						
61	\( m_3(0) = \max[f_3(0)+m_4(0-0)] \)					
62	\( \max(B25+B38) \)	120				

continued on the next page.
These values are now added to the table above, Rows 40 and 41.

Similarly, we compute the values of \( m_2(u) \) and \( d_2(u) \).

\[
m_2(4) = \max[f_2(0) + m_3(4-0), f_2(1) + m_3(4-1), f_2(2) + m_3(4-2), f_2(3) + m_3(4-3), f_2(4) + m_3(4-4)]
\]

\[
\text{MAX}(B24+F40,C24+E40,D24+D40,E24+C40,F25+B40) = 202 \quad \text{with} \quad d_2(4) = 0
\]

\[
m_2(3) = \max[f_2(0) + m_3(3-0), f_2(1) + m_3(3-1), f_2(2) + m_3(3-2), f_2(3) + m_3(3-3)]
\]

\[
\text{MAX}(B24+E40,C24+D40,D24+C40,E24+B40) = 193 \quad \text{with} \quad d_2(3) = 0
\]

\[
m_2(2) = \max[f_2(0) + m_3(2-0), f_2(1) + m_3(2-1), f_2(2) + m_3(2-2)]
\]

\[
\text{MAX}(B24+D40,C24+C40,D24+B40) = 183 \quad \text{with} \quad d_2(2) = 0
\]

\[
m_2(1) = \max[f_2(0) + m_3(1-0), f_2(1) + m_3(1-1)]
\]

\[
\text{MAX}(B24+C40,C24+B40) = 172 \quad \text{with} \quad d_2(1) = 0
\]

\[
m_2(0) = \max[f_2(0) + m_3(0-0)]
\]

\[
\text{MAX}(B24+B40) = 160 \quad \text{with} \quad d_2(0) = 0
\]

Stage 1 is the last stage and there is only one state associated with it, \( u=4 \), and thus

\[
m_1(4) = \max[f_1(0) + m_2(4-0), f_1(1) + m_2(4-1), f_1(2) + m_2(4-2), f_1(3) + m_2(4-3), f_1(4) + m_2(4-4)]
\]

\[
\text{MAX}(B23+F42,C23+E42,D23+D42,E23+C42,F23+B42) = 248 \quad \text{with} \quad d_1(4) = 2
\]

These two values are the last entries into the table in Cells F44 and F45.

The table (Rows 36 through 45) indicates that, to achieve the maximum sum of commissions,

- the salesman should spend 2 hours with Customer #1 \( (d_1(4)=2) \), 0 hours with Customer #2 \( (d_2(4)=0) \), and for the remaining 2 hours he should spend 1 hour with Customer #3 and 1 hour with Customer #4.

Check:

- Customer #1, 2 hours = $65
- Customer #2, 0 hours = $40
- Customer #3, 1 hour = $52
- Customer #4, 1 hour = $91

Total = $248
5.

\[
\begin{align*}
\min[A \to B, A \to C] &= \min[30, 20] = 20 & A \to C \\
\min[A \to B, C \to D, C \to F] &= \min[30, 50, 40] = 30 & A \to B \\
\min[B \to D, B \to E, C \to D, C \to F] &= \min[40, 50, 50, 40] = 40 & \text{choose } B \to D \\
\min[B \to E, D \to E, D \to F, C \to F] &= \min[40, 90, 50, 40] = 40 & C \to F \\
\min[B \to E, D \to E, F \to E] &= \min[50, 90, 70] = 50 & B \to E
\end{align*}
\]

and thus the minimum distance is \(20 + 30 + 40 + 40 + 50 = 180 \text{ kilometers}\)
Numerical analysis is the branch of mathematics that is used to find approximations to difficult problems such as finding the roots of non-linear equations, integration involving complex expressions and solving differential equations for which analytical solutions do not exist. It is applied to a wide variety of disciplines such as business, all fields of engineering, computer science, education, geology, meteorology, and others.

Years ago, high-speed computers did not exist, and if they did, the largest corporations could only afford them; consequently, the manual computation required lots of time and hard work. But now that computers have become indispensable for research work in science, engineering and other fields, numerical analysis has become a much easier and more pleasant task.

This book is written primarily for students/readers who have a good background of high-school algebra, geometry, trigonometry, and the fundamentals of differential and integral calculus. A prior knowledge of differential equations is desirable but not necessary; this topic is reviewed in Chapter 5.

One can use Fortran, Pascal, C, or Visual Basic or even a spreadsheet to solve a difficult problem. It is the opinion of this author that the best applications programs for solving engineering problems are 1) MATLAB which is capable of performing advanced mathematical and engineering computations, and 2) the Microsoft Excel spreadsheet since the versatility offered by spreadsheets have revolutionized the personal computer industry. We will assume that the reader has no prior knowledge of MATLAB and limited familiarity with Excel.

We intend to teach the student/reader how to use MATLAB via practical examples and for detailed explanations he/she will be referred to an Excel reference book or the MATLAB User's Guide. The MATLAB commands, functions, and statements used in this text can be executed with either MATLAB Student Version 12 or later. Our discussions are based on a PC with Windows XP platforms but if you have another platform such as Macintosh, please refer to the appropriate sections of the MATLAB's User Guide that also contains instructions for installation.

MATLAB is an acronym for MATrix LABoratory and it is a very large computer application which is divided to several special application fields referred to as toolboxes. In this book we will be using the toolboxes furnished with the Student Edition of MATLAB. As of this writing, the latest release is MATLAB Student Version Release 13 and includes SIMULINK which is a

* These topics are discussed in Mathematics for Business, Science, and Technology by this author, Orchard Publications, ISBN 0-9709511-0-8. This text includes probability and other advanced topics which are supplemented by many practical applications using Microsoft Excel and MATLAB.
software package used for modeling, simulating, and analyzing dynamic systems. SIMULINK is
not discussed in this text; the interested reader may refer to the documentation which also
includes demo models with detailed explanations. Additional information including purchasing
may be obtained from The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098.
Phone: 508 647-7000, Fax: 508 647-7001, e-mail: info@mathwork.com and web site http://

The author makes no claim to originality of content or of treatment, but has taken care to present
definitions, statements of physical laws, theorems, and problems.

Chapter 1 is an introduction to MATLAB. The discussion is based on MATLAB Student Version
5 and it is also applicable to Version 6. Chapter 2 discusses root approximations by numerical
methods. Chapter 3 is a review of sinusoids and complex numbers. Chapter 4 is an introduction to
matrices and methods of solving simultaneous algebraic equations using Excel and MATLAB.
Chapter 5 is an abbreviated, yet practical introduction to differential equations, state variables,
state equations, eigenvalues and eigenvectors. Chapter 6 discusses the Taylor and Maclaurin
series. Chapter 7 begins with finite differences and interpolation methods. It concludes with
applications using MATLAB. Chapter 8 is an introduction to linear and parabolic regression.
Chapters 9 and 10 discuss numerical methods for differentiation and integration respectively.
Chapter 11 is a brief introduction to difference equations with a few practical applications.
Chapters 12 is devoted to partial fraction expansion. Chapters 13, 14, and 15 discuss certain
interesting functions that find wide application in science, engineering, and probability. This text
concludes with Chapter 16 which discusses three popular optimization methods.

New to the Second Edition

This is an extensive revision of the first edition. The most notable changes are the inclusion of
Fourier series, orthogonal functions and factorization methods, and the solutions to all end-of-
chapter exercises. It is in response to many readers who expressed a desire to obtain the solutions
in order to check their solutions to those of the author and thereby enhancing their knowledge.
Another reason is that this text is written also for self-study by practicing engineers who need a
review before taking more advanced courses such as digital image processing. The author has
prepared more exercises and they are available with their solutions to those instructors who adopt
this text for their class.

Another change is the addition of a rather comprehensive summary at the end of each chapter.
Hopefully, this will be a valuable aid to instructors for preparation of view foils for presenting the
material to their class.

The last major change is the improvement of the plots generated by the latest revisions of the

Orchard Publications
Fremont, California
www.orchardpublications.com
info@orchardpublications.com
Index

Symbols
% (percent) symbol in MATLAB 1-2
%d in MATLAB 2-21
%e in MATLAB 2-21
% in MATLAB 2-21
%u in MATLAB 2-21
=IF in Excel 2-24

A

abs(z) MATLAB function 1-22
absolute cell in Excel 2-19
absolutely convergent function 15-10
Add Trendline feature in Excel 2-7
adjoint of a matrix - see matrix
alternating currents 3-1
angle(z) MATLAB function 1-22
angular velocity 3-2
antidifference 7-11
approximations with Excel 2-7
AutoFill feature in Excel feature 2-9
axis([xmin xmax ymin ymax]) MATLAB function 1-12
B

Bairstow's method 2-17
Bessel functions
defined 15-1
modified 15-7
of order n 15-1
of negative order n 15-2
of the first kind 15-6
of the second kind 15-6
besselj(n,x) MATLAB function 15-3
beta function 13-17
beta(m,n) MATLAB function 13-19
beta distribution 13-20
beta function 13-17
beta(m,n) MATLAB function 13-19
BETADIST Excel function 13-20
Bisection method
for root approximation 2-19
box MATLAB command 1-11

C

Casorati's determinant 11-2
Casorati's determinant 11-2
Cayley-Hamilton theorem 5-30
characteristic equation
of a differential equation 5-8
of a difference equation 11-3
Chart type in Excel 2-10
Chart Wizard in Excel 2-10, 8-6
Chebyshev polynomials
of the first kind 15-21
of the second kind 15-21
Cholesky factorization 14-15
clc MATLAB command 1-2
clear MATLAB command 1-2
collect(s) MATLAB function 12-11
cofactor - see matrix
column vector 1-18
colored term in MATLAB 1-15
Comment line in MATLAB 1-2
curve fitting 8-1
cycle 3-2
cyclic frequency - see frequency
decimal format in MATLAB 2-21
deconv(p,q) MATLAB function 1-6
default in MATLAB
color 1-14
line 1-14
marker 1-14
demo in MATLAB 1-2
determinant - see matrix
diag[v,k] MATLAB function 14-16
diagonal elements - see matrix
diagonal of a matrix - see matrix
diff(s) MATLAB function 2-6
difference equation 11-1
difference operator 7-4, 11-1
differences 7-3
differential equation
classification of 5-2
degree of 5-3
most general solution 5-6
order of 5-2
numerical solution by the
Runge-Kutta method 9-5
type of 5-2
dipole 15-12
direct term in MATLAB 12-1
disp(x) MATLAB command 2-5
display formats in MATLAB 1-2

D
decibel 1-11
decimal format in MATLAB 2-21
deconv(p,q) MATLAB function 1-6, 7-8
default in MATLAB
color 1-14
line 1-14
marker 1-14
demo in MATLAB 1-2
determinant - see matrix
diag(v,k) MATLAB function 14-16
diagonal elements - see matrix
diagonal of a matrix - see matrix
diff(s) MATLAB function 2-6
difference equation 11-1
difference operator 7-4, 11-1
differences 7-3
- fmin(f,x1,x2) MATLAB function 1-26
  - forced response 5-7
- format MATLAB command 1-29
- format specifiers in MATLAB 2-21
- Fourier series
  - defined 6-1
  - exponential form 6-28
  - numerical evaluation 6-36
  - symmetry
    - even 6-7
    - in exponential series 6-30
    - in trigonometric series 6-7
    - odd 6-7
  - trigonometric form 6-7
- alternate 6-25
- fplot(fcn,lims) MATLAB command 1-26
- fprintf MATLAB command 7-27
- frequency
  - cyclic 3-3
  - defined 3-3
  - fundamental 6-1
  - radian 3-2
  - response 1-10
  - see also harmonics
- Frequency Modulation (FM) 15-4
- Frobenius - see method of
- full-wave rectifier with even symmetry 6-24
- function files in MATLAB 1-25, 2-4
- fundamental frequency - see frequency
- fundamental theorem of sum calculus 7-12
- fzero('function',x0) in MATLAB 12-18
- fzero(f,x) in MATLAB 1-25

G
- gamma distribution 13-15
- gamma function 13-1
- gamma(n) MATLAB function 13-3
- GAMMADIST Excel function 13-16
- GAMMALN Excel function 13-5
- GAMMALN(x) 13-5
- Gaussian elimination method 4-18, 14-9
- Genenbauer 15-22
- generalized factorial function 13-1
- generating function
  - for Bessel functions of the first kind
    of integer order 15-9
  - for Legendre polynomials 15-12
- Goal Seek Excel feature 2-16
- Gram-Schmidt orthogonalization procedure 14-7
- Gregory-Newton
  - backward interpolation method 7-20
  - forward interpolation method 7-19
  - see also interpolation
- grid MATLAB function 1-11
- gtext('string') MATLAB function 1-13, 32

H
- half-wave rectification 6-19
- half-wave symmetry 6-7
- harmonics 6-1
- help MATLAB command 1-2
- Hermitian matrix - see matrix
- Hertz 3-3
- identity matrix - see matrix
- imag(z) MATLAB function 1-22
- imaginary axis 3-10
- imaginary number 3-10
- improper integral 13-1
- improper rational function 12-1
- in-phase - see sinusoids
- input('string') MATLAB command 2-2
- interp1(x,y,xi,'method') MATLAB function 7-24
- interp2(x,y,z,xi,yi,'method') MATLAB function 7-24
- interpolation
  - cubic 7-24
  - cubic spline 7-24
  - linear 7-24
- nearest neighbor 7-24
- Newton’s divided difference 7-15
- with MATLAB 7-23
- see also Gregory-Newton
- inverse of a matrix - see matrix
- isopropof line 16-2
- j operator 3-11

J

L
- L’Hôpital’s rule 13-2
- Lagrange’s interpolation method 7-18
- lagging waveform 3-3
- Laguerre polynomials 15-20
- leading waveform 3-3
- least squares
  - curve 8-2
  - line 8-2
  - method 8-2
  - parabola 8-2
- Legendre equation 15-10
- associated 15-18
- Legendre functions
  - of the first kind 15-10
  - associated 15-18
  - of the second kind 15-11
- associated 15-18
- Legendre polynomials
  - algebraic form of 15-10, 15-16
  - trigonometric form of 15-17
- legendre(n,x) MATLAB function 15-18
- lims = MATLAB function 1-26
- line graph 16-4
- line spectrum 6-33
- linear factors 1-8
- linear interpolation - see interpolation
- linear programming 16-1
  - constraints 16-1
  - objective 16-1
  - simplex method 16-4
- linear regression - see regression
- Matrix Demos 1-2
- matrix
  - adjoint of 4-19
  - cofactor 4-12
  - conformable for addition 4-2
  - conformable for multiplication 4-4
  - conjugate of 4-8
  - defined 4-1
  - determinant 4-9
  - diagonal elements of 4-1
  - diagonal of 4-1, 4-6
  - elements of 4-1
  - Hermitian 4-9
  - identity 4-6
  - inverse of 4-21
  - left division in MATLAB 4-24
  - lower triangular 4-6
  - main diagonal of 4-1
  - main diagonal elements of 4-1
  - minor of determinant 4-12
  - multiplication 1-18
  - non-singular 4-20
  - scalar 4-6
  - singular 4-20
  - size of 4-7
- skew-Hermitian 4-9

M
- Maclaurin series 6-41, 7-6
- MATLAB Demos 1-2
- matrix
  - adjoint of 4-19
  - cofactor 4-12
  - conformable for addition 4-2
  - conformable for multiplication 4-4
  - conjugate of 4-8
  - defined 4-1
  - determinant 4-9
  - diagonal elements of 4-1
  - diagonal of 4-1, 4-6
  - elements of 4-1
  - Hermitian 4-9
  - identity 4-6
  - inverse of 4-21
  - left division in MATLAB 4-24
  - lower triangular 4-6
  - main diagonal of 4-1
  - main diagonal elements of 4-1
  - minor of determinant 4-12
  - multiplication 1-18
  - non-singular 4-20
  - scalar 4-6
  - singular 4-20
  - size of 4-7
- skew-Hermitian 4-9
symmetry - see Fourier series

**syms** MATLAB function 12-4

**T**

Taylor series 5-24, 6-40, 9-1

text(x,y,"string") MATLAB command 1-13

text(x,y,z,"string") MATLAB command 1-16

title("string") MATLAB command 1-11

trace of a matrix - see matrix

transpose of a matrix - see matrix

trapezoidal rule 10-1

Trendline feature in Excel 8-9

triangular waveform 6-19

trigonometric relations 3-5

two-dimensional plots 7-30

**U**

ultraspherical functions 15-22

undetermined coefficients - see method of

underdetermined system 8-3

unitary matrix - see matrix

upper triangular matrix - see matrix

**V**

variation of parameters - see method of

VLOOKUP Excel function 7-22

**W**

Wallis’s formulas 13-15

wave equation 5-3

Weber functions 15-7

**while end** in MATLAB 2-4

Wronskian determinant 5-10, 11-2

**X**

xlabel("string") MATLAB command 1-11

**Y**

ylabel("string") MATLAB command 1-11

**Z**

zero matrix - see matrix

zeros of a rational function 12-2

zlabel("string") MATLAB command 1-16
This text includes the following chapters:
• Introduction to MATLAB  • Root Approximations  • Sinusoids and Complex Numbers • Matrices and Determinants  • Review of Differential Equations  • Fourier, Taylor, and Maclaurin Series  • Finite Differences and Interpolation  • Linear and Parabolic Regression  • Solution of Differential Equations by Numerical Methods  • Integration by Numerical Methods  • Difference Equations  • Partial Fraction Expansion  • The Gamma and Beta Functions  • Orthogonal Functions and Matrix Factorizations  • Bessel, Legendre, and Chebyshev Polynomials  • Optimization Methods

Each chapter contains numerous practical applications supplemented with detailed instructions for using MATLAB and/or Microsoft Excel® to obtain quick solutions.

Students and working professionals will find Numerical Analysis Using MATLAB® and Spreadsheets, Second Edition, to be a concise and easy-to-learn text. It provides complete, clear, and detailed explanations of the principal numerical analysis methods and well known functions used in science and engineering. These are illustrated with many real-world examples.

Steven T. Karris is the president and founder of Orchard Publications. He earned a bachelor's degree in electrical engineering at Christian Brothers University, Memphis, Tennessee, a master's degree in electrical engineering at Florida Institute of Technology, Melbourne, Florida, and has done post-master work at the latter. He is a registered professional engineer in California and Florida. He has over 30 years of professional engineering experience in industry. In addition, he has over 25 years of teaching experience that he acquired at several educational institutions as an adjunct professor. He is currently with UC Berkeley Extension.