Introduction and Review

Organic Chemistry, 5th Edition L. G. Wade, Jr.

ORGANIC CHEMISTRY

STUDY OF CARBON-CONTAINING COMPOUNDS

Classification of Matter

CLASSIFICATION OF MATTER

FIRE AGE - BASED ON COMBUSTION

COMBUSTIBLES - FUELS FROM ANIMALS AND PLANTS

OIL, WOOD, FAT

NON-COMBUSTIBLES -DIDNÕ BURN; PUT OUT FIRES SAND, WATER, ROCKS

BERZILIUS' DEFINITIONS ORGANIC COMPOUNDS

CHARACTERISTIC PRODUCTS OF LIVING ORGANISMS

SUBSTANCES LIKE SUGAR AND OLIVE OIL

INORGANIC COMPOUNDS

PRODUCTS FROM NON-LIVING ENVIRONMENT

SUBSTANCES LIKE WATER AND IRON

Vital Force Theory

INORGANIC MATERIALS COULD BE CONVERTED TO ORGANIC MATERIALS IN THE PRESENCE OF A VITAL FORCE FOUND ONLY IN LIVING BODIES.

Woehler's urea synthesis 1828

Ammonium isocyanate + heat -----> urea

NH₄CNO

 NH_2CONH_2

"I have been able to make urea without aid of kidney of man or dog.

Post 1828

- •Over 18,000 million compounds have been synthesized
 - Pharmaceuticals
 - Biochemicals
 - Plastics
 - Agrichemicals

•Paints

Why so many organic?

FORMS COVALENT BONDS WITH NON-METALS

H O N X P S Se

FORMS COVALENT BONDS WITH MANY METALS

Li Mg Al Cd Fe

AND

WITH ITSELF

C^{CH}C^{CH}C

CHAINS

CHAINS WITH BRANCHES

No limit

RINGS

9

Atomic Structure

protons, neutrons, and electrons

isotopes

 ${}^{12}_{6}\mathbf{C}$ ${}^{14}_{6}\mathbf{C}$

Atomic Orbitals

2s orbital (spherical)

Electronic Configurations

- Aufbau principle: Place electrons in lowest energy orbital first.
- Hund's rule: Equal energy orbitals are halffilled, then filled.

lectuer 1 .. Assist. Prof. Dr. Mohanad Mousa Kareem

Relative orbital energies

energy
$$\uparrow \downarrow_{2s}$$
 $\uparrow 2p_x$ $\uparrow 2p_y$ $-2p_y$
 $\uparrow \downarrow_{2s}$
 $\uparrow \downarrow_{1s}$

Table 1-1

TABLE I-I Electronic Configurations of the Elements of the First and Second Rows

Element	Configuration	Valence Electrons
Н	$1s^1$	1
He	$1s^2$	2
Li	$1s^2 2s^1$	1
Be	$1s^2 2s^2$	2
В	$1s^2 2s^2 2p_x^1$	3
С	$1s^2 2s^2 2p_x^1 2p_y^1$	4
Ν	$1s^2 2s^2 2p_x^1 2p_y^1 2p_z^1$	5
0	$1s^2 2s^2 2p_x^2 2p_y^1 2p_z^1$	6
F	$1s^2 2s^2 2p_x^2 2p_y^2 2p_z^1$	7
Ne	$1s^2 2s^2 2p_x^2 2p_y^2 2p_z^2$	8

Bond Formation

- Ionic bonding: electrons are transferred.
- Covalent bonding: electron pair is shared.

Lewis Structures

Bonding electrons

Nonbonding electrons or lone pairs

O:C:O

Satisfy the octet rule! =>

The octet rule is a chemical rule of thumb that reflects observation that atoms of main-group elements tend to combine in such a way that each atom has eight electrons in its valence shell, giving it the same electronic configuration as a noble gas.

TIPS

Neutral atoms

Carbon 4 bonds (double bonds count as 2 triple bonds count as 3) and NO lone pairs.

Nitrogen 3 bonds and one lone pair Oxygen 2 bonds and two lone pairs BORON 3 bonds BUT no lone pairs

EXAMPLES

 C_2H_3N

C_3H_6O isomer problem

Dipole Moment

Amount of electrical charge x bond length.

- Charge separation shown by electrostatic potential map (EPM).
- Red indicates a partially negative region and blue indicates a partially positive region.

Electronegativity and Bond Polarity

Greater $\triangle EN$ means greater polarity

EXAMPLES OF BOND POLARITY

C-----N

Br-----Cl

Calculating Formal Charge

- For each atom in a valid Lewis structure:
- Count the number of valence electrons
- Subtract all its nonbonding electrons
- Subtract half of its bonding electrons

3

Ionic Structures

Na $O-CH_3$ or Na⁺ $O-CH_3$

Resonance - More than one Lewis Diagram

Consider writing Lewis structure for NO₃-²
 The real structure is a resonance hybrid.
 All the bond lengths are the same.
 Each oxygen has a -1/3 electrical charge.

Resonance Rules

Must be legitimate Lewis structures

Pentavalent nitrogen atom!!

Resonance structures?

Only electrons can be moved (usually lone pairs or pi electrons).

Nuclei positions and bond angles remain the same.

The number of unpaired electrons remains the same

NO NO

DELOCALIZATION OF CHARGE USUALLY IS STABILIZING

Delocalization of charge results in fractional charges at alternate atoms

Major Resonance Form

- has as many octets as possible.
- has as many bonds as possible.
- has the negative charge on the most electronegative atom.
- has as little charge separation as possible.

Major Contributor?

major

minor, carbon does not have octet.

Chemical Formulas

 Full structural formula (no lone pairs shown)

Line-angle formula

- Condensed structural formula
- Molecular formula
- Empirical formula

Brønsted-Lowry Acids and Bases

- Acids can donate a proton.
- Bases can accept a proton.
- Conjugate acid-base pairs.

Amphoterism - ability to behave as an acid or base

Acid and Base Strength

- Acid dissociation constant, K_a
- Base dissociation constant, $K_{\rm b}$

lectuer 1

- For conjugate pairs, $(K_a)(K_b) = K_w$
- Spontaneous acid-base reactions proceed from stronger to weaker.

EXAMPLES

Will NaOH neutralize phenol (C_6H_5OH)?

NaOH +
$$C_6H_5OH$$
 \longrightarrow HOH + C_6H_5ONa
pKa = 10 pKa = 15.7 YES!!
Stronger acid Weaker acid
 $_^{-}OH$ + C_6H_5OH \longrightarrow HOH + $C_6H_5O^{-}$

Determining Relative Acidity

Electronegativity

Size

Resonance stabilization of conjugate base

=>

Electronegativity

As the bond to H becomes more polarized, H becomes more positive and the bond is easier to break.

Size

- As size increases, the H is more loosely held and the bond is easier to break.
- A larger size also stabilizes the anion.

Resonance

- Delocalization of the negative charge on the conjugate base will stabilize the anion, so the substance is a stronger acid.
- More resonance structures usually mean greater stabilization.

