



# Medical physics module semester 1

Session 2

Lec.1

## **Physics of diagnostic X-ray**

By: Lect. Dr. Nadia Hussein



# **Objectives**



- Definition of x-ray
- The main parts of X-ray unit with x-ray production.
- How X-rays absorbed.
- Biological effects of radiation.
- Application of X-ray in medicine.



# Is form of electromagnetic radiation similar to visible light but with shorter wave length.

#### THE ELECTROMAGNETIC SPECTRUM





Source of electron filament or cathode.
Evacuated space to speed electrons.
High positive potential to accelerate electrons.
Target or anode which the electrons hit to produce X-Ray.







## **X-ray production**

X-rays are generated via interactions of the accelerated electrons with electrons of *tungsten* nuclei within the tube anode.



# Characteristic X-ray generation



This is filled by an outer shell electron with a loss of energy emitted as an X-ray photon.





# **The Principle of Generation of X-ray**







#### Type X-Ray

# There are two types of X-ray generated characteristic radiation and bremsstrahlung radiation.





 Since there are two types of x-rays are produced in the x-ray tube, hence the x-ray spectra consist of line spectra (known as characteristic lines) and continuous spectrum as shown in Figure 6.3.







# Also may an electron falls from L level to the K level is called Kα and from M shell called Kβ X-ray





Bremsstrahlung/Braking X-ray generation

When an electron passes near the nucleus it is slowed and its path is deflected. Energy lost is emitted as a bremsstrahlung X-ray photon.





# The intensity of X-Ray beam depends on the atomic number of the target.

For higher atomic number, the more efficiently X-Ray produced.











All x-ray tubes use tungsten Z = 74 melting point 3400 C<sup>0</sup>

Target should have high melting point since the heat produced when the electrons are stopped in the surface of the target.





#### So to avoid over heating

Use line –focus principle Rotating anode 3600 rpm.











#### Obj.3 How X-Rays are absorbed

X-rays are not absorbed equally well by all materials if they were, they would not be very useful in diagnosis.





Heavy elements such as calcium are much better absorbers of X-ray than light elements such as carbon ,oxygen and hydrogen







The soft tissue, fat, muscle all absorb about equally and difficult to distinguish from each other in X-ray





**Attenuation of X**ray **Mean reduction** due to absorption and scattering of some photon







# The intensity of X-ray beam decrease exponentially







$$\check{\alpha} = \check{\alpha} \check{\eta} - \check{\omega}$$

Where e = 2.718 x = Thickness of attenuator µ= Linear attenuation coefficient (depend of energy of photon)





### The Half Value Layer (HVL)

#### For X-ray beam is the thickness of a given material that reduce the beam intensity by one half



# All of photon energy is given to electron which then escapes from the atom .





# HVL is related to attenuation coefficient by:

 $HVL = 0.693/\mu$ 



X- Ray loses energy in three ways :1- Photoelectric effect



So this photo electron uses some of its energy to get away from nucleus This occur in intense electric field Occur in high Z materials (iodine)



#### **2- Compton effect**



An X-ray photon collides with a loosely-bound outer electron so collide with other electron. At the collision the electron gains some energy and the remainder given to Compton travelling in a different direction of original X-ray



#### **3- Pair production**



An X-ray photon with an energy greater than (1.02 *MeV*) enters the intense electric field at the nucleus. It may be converted into particles, a positron and an electron.











#### Obj.4

### **Biological effects of radiation X-ray can cause:**

- Immediate effects (radiation sickness)
- Long term effects which may occur many years (cancer)
- Several generations later(genetic effects)





#### **Uses in medicine**

# Diagnostic ..Imaging ..X-ray..CT scan .

