Chapter 2 Structure and Properties of Organic Molecules

Organic Chemistry, 5th Edition L. G. Wade, Jr.

Wave Properties of Electrons

- Standing wave vibrates in fixed location.
- Wave function, ψ , mathematical description of size, shape, orientation
- Amplitude may be positive or negative
- Node: amplitude is zero

Wave Interactions

Linear combination of atomic orbitals

between different atoms is bond formation

=>

- on the same atom is hybridization.
- Conservation of orbitals
- Waves that are in phase add together. Amplitude increases.
- Waves that are out of phase cancel out.

3

Sigma Bonding

- Electron density lies between the nuclei.
- A bond may be formed by s-s, p-p, s-p, or hybridized orbital overlaps.
- The bonding MO is lower in energy than the original atomic orbitals.
- The antibonding MO is higher in energy than the atomic orbitals.

=>

Δ

Cl₂: *p*-*p* overlap

Constructive overlap along the same axis forms a sigma bond.

HCl: s-p overlap

Question: Draw the predicted shape for the bonding molecular orbital and the antibonding molecular orbital of the HCI molecule.

Pi Bonding

- Pi bonds form <u>after sigma</u> bonds.
- Sideways overlap of parallel p orbitals.

Multiple Bonds

- A double bond (2 pairs of shared electrons) consists of a sigma bond and a pi bond.
- A triple bond (3 pairs of shared electrons) consists of a sigma bond and two pi bonds.

Molecular Shapes

Bond angles cannot be explained with simple s and p orbitals. Use VSEPR theory.

Valence shell electron pair repulsion (**VSEPR**) **theory** is a model used in chemistry to predict the geometry of individual molecules from the number of electron pairs surrounding their central atoms. It is also named the Gillespie-Nyholm**theory** after its two main developers.

Hybridized orbitals are lower in energy because electron pairs are farther apart.

HYBRIDIZATION

1) ONE COMBINES S AND P ORBITALS ON SAME ATOM

2) FOR ANY SECOND-ROW ELEMENTS (C. N, O) AN S ORBITAL MUST INCLUDED IN THE COMBINATION

3) THE NUMBER OF ORBITALS COMBINED = NUMBER OF SIGMA BONDS AND LONE PAIR ELECTRONS ON ATOM

4) THE RESULTING HYBRIDIZED ORBITALS ARE SEPARATED FROM EACH OTHER AS MUCH AS POSSIBLE

SP³

Case I - 4 sigma bonds

Tetrahedron Bond angle 109°

Consider methane

HINT: never put a bond between the two bonds in the plane of the paper.

lecture 2...Assist.Prof.Dr.Mohanad Mousa Kareem

12

3 Sigma bonds and one lone pair

Geometry? pyramidal WHY? See nucle, not electrons

lecture 2...Assist.Prof.Dr.Mohanad Mousa Kareem

:NH₃

13

Case 3

2 sigma bonds and 2 lone pair

Consider dimethyl ether CH₃OCH₃

trigonal planar: 120° bond angles.

Carbon has 3 sigma and one pi bond

sp Hybrid Orbitals

Combine one s 2 with one p 2 sigma orbital

Linear 180°

 $H-C \equiv N$:

Note: both C and N are sp hybridized

Sample Problems

- Predict the hybridization, geometry, and bond angle for each atom in the following molecules:
- Caution! You must start with a good Lewis structure!
- ► NH₂NH₂
- \blacktriangleright CH₃-C=C-CHO

$$CH_3 \longrightarrow C H_2 \longrightarrow C H_2 =>$$

Rotation around Bonds

- Single bonds freely rotate.
- Double bonds cannot rotate unless the bond is broken.

Isomerism

- Molecules which have the same molecular formula, but differ in the arrangement of their atoms, are called isomers.
- Constitutional (or structural) isomers differ in their bonding sequence.
- Stereoisomers differ only in the arrangement of the atoms in space. =>

19

STEREOISOMERS

different structures but are alike with respect to which atoms are attached to which other atoms.

ARISES WHEN THERE IS RESTRICTED ROTATION

Pi BOND Two different groups attached to both carbons in pi bond

RING Two different groups attached to two ring carbons

EXAMPLES - RINGS

Bond Dipole Moments

- are due to differences in electronegativity.
- depend on the amount of charge and distance of separation.

In debyes,

 $\mu = 4.8 \times \delta$ (electron charge) x d(angstroms)

Molecular Dipole Moments

- Depend on bond polarity and bond angles.
- Vector sum of the bond dipole moments.
- Lone pairs of electrons contribute to the dipole moment.

Intermolecular Forces

Strength of attractions between molecules influence m.p., b.p., and solubility; esp. for solids and liquids.

=>

- Classification depends on structure.
 - Dipole-dipole interactions
 - London dispersions
 - Hydrogen bonding

26

Dipole-Dipole Forces

- Between polar molecules
- Positive end of one molecule aligns with negative end of another molecule.
- Lower energy than repulsions, so net force is attractive.
- Larger dipoles cause higher boiling points and higher heats of vaporization.

=>

London Dispersions

- Between nonpolar molecules
- Temporary dipole-dipole interactions
- Larger atoms are more polarizable.
- Branching lowers b.p. because of decreased surface contact between molecules.

 CH_3 — CH_2 — CH_2 — CH_2 — CH_3 *n*-pentane, b.p. = $36^{\circ}C$ CH_3 $CH_3 - CH - CH_2 - CH_3$ isopentane, b.p. = 28°C

Dispersions

random temporary dipoles when separated

correlated temporary dipoles when in contact

Hydrogen Bonding

- Strong dipole-dipole attraction
- Organic molecule <u>must</u> have N-H or O-H.
- The hydrogen from one molecule is strongly attracted to a lone pair of electrons on the other molecule.
- O-H more polar than N-H, so stronger hydrogen bonding =>

H Bonds

Boiling Points and Intermolecular Forces $CH_3 - O - CH_3$ $CH_3 - CH_2 - OH$ dimethyl ether, b.p. = $-25^{\circ}C$ ethanol, b.p. = 78° C CH₃CH₂CH₂-N-H $H_3C - N - CH_3$ $CH_3CH_2 - N - CH_3$ Ĥ' ethylmethylamine, b.p. 37°C propylamine, b.p. 49°C trimethy lamine, b.p. 3.5°C $CH_3 - CH_2 - NH_2$ $CH_3 - CH_2 - OH$ => ethanol, b.p. = $78^{\circ}C$ ethyl amine, b.p. 17°C

Solubility

- Like dissolves like
- Polar solutes dissolve in polar solvents.
- Nonpolar solutes dissolve in nonpolar solvents.
- Molecules with similar intermolecular forces will mix freely.

Classes of Compounds

- Classification based on functional group
- Three broad classes
 - Hydrocarbons
 - Compounds containing oxygen
 - Compounds containing nitrogen

39

=>

Hydrocarbons

- Alkane: single bonds, sp³ carbons
- Cycloalkane: carbons form a ring
- Alkene: double bond, sp² carbons
- Cycloalkene: double bond in ring
- Alkyne: triple bond, sp carbons
- Aromatic: contains a benzene ring

Compounds Containing Oxygen

- Alcohol: R-OH
- Ether: R-O-R'
- Aldehyde: RCHO
- Ketone: RCOR'

Cyclic ethers and ketones

THF (tetrahydrofuran)

cyclopentanone

42

Carboxylic Acids and Their Derivatives

Carboxylic Acid: RCOOH Acid Chloride: RCOCl Ester: RCOOR' Amide: RCONH₂ NH_2 43

OH

OCH₃

lecture 2...Assist.Prof.Dr.Mohanad Mousa Kareem

Cyclic esters

Cyclic ester

(cyclic ether and cyclic ketone)

Compounds Containing Nitrogen

- Amines: RNH_2 , RNHR', or R_3N
- Amides: RCONH₂, RCONHR, RCONR₂
- Nitrile: RCN

$CH_3 - C \equiv N$

45