
Dimensional Analysis 

and Similarity 
Introduction 
Motivation. In this chapter we discuss the planning, presentation, and 

interpretation of experimental data. We shall try to convince you that such 

data are best presented in dimensionless form. Experiments which might 

result in tables of output, or even multiple volumes of tables, might be 

reduced to a single set of curves—or even a single curve—when suitably 

nondimensionalized. The technique for doing this is dimensional analysis. 

In the last lecture  presented gross control-volume balances of mass, 

momentum, and energy which led to estimates of global parameters: mass 

flow, force, torque, total heat transfer. In the last lecture  presented 

infinitesimal balances which led to the basic partial differential equations of 

fluid flow and some particular solutions. These two chapters covered 

analytical techniques, which are limited to fairly simple geometries and 

well-defined boundary conditions. Probably one-third of fluid-flow 

problems can be attacked in this analytical or theoretical manner. 

The other two-thirds of all fluid problems are too complex, both 

geometrically and physically, to be solved analytically. They must be tested 

by experiment. Their behavior is reported as experimental data. Such data 

are much more useful if they are expressed in compact, economic form. 

Graphs are especially useful, since tabulated data cannot be absorbed, nor 

can the trends and rates of change be observed, by most engineering 

eyes. These are the motivations for dimensional analysis. The technique is 

traditional in fluid mechanics and is useful in all engineering and physical 

sciences, with notable uses also seen in the biological and social sciences. 

Dimensional analysis can also be useful in theories, as a compact way to 

present an analytical solution or output from a computer model. Here we 

concentrate on the presentation of experimental fluid-mechanics data. 

Basically, dimensional analysis is a method for reducing the number and 

complexity of experimental variables which affect a given physical 

phenomenon, by using a sort of compacting technique. If a phenomenon 

depends upon n dimensional variables, dimensional analysis will reduce the 

problem to only k dimensionless variables, where the reduction n - k = 1, 2, 

3, or 4, depending upon the problem complexity. Generally n - k equals the 

number of different dimensions (sometimes called basic or primary or 

fundamental dimensions) which govern the problem. In fluid mechanics, the 

four basic dimensions are usually taken to be mass M, length L, time T, and 

temperature θor an MLTθ system for short. Sometimes one uses an FLTθ 



system, with force F replacing mass. Although its purpose is to reduce 

variables and group them in dimensionless form, dimensional analysis has 

several side benefits. The first is enormous savings in time and money. 

Suppose one knew that the force F on a particular body immersed in a 

stream of fluid depended only on the body length L, stream velocity V, fluid 

density ρ, and fluid viscosity µ, that is, 
 

 

F = f(L, V, ρ, µ) 
 

The Principle of Dimensional Homogeneity 
Historically, the first person to write extensively about units and dimensional 

reasoning in physical relations was Euler in 1765. Euler’s ideas were far 

ahead of his time, as were those of Joseph Fourier, whose 1822 book 

Analytical Theory of Heat outlined what is now called the principle of 

dimensional homogeneity and even developed some similarity rules for heat 

flow. There were no further significant advances until Lord Rayleigh’s book 

in 1877, Theory of Sound, which proposed a “method of dimensions” and 

gave several examples of dimensional analysis. The final breakthrough 

which established the method as we know it today is generally credited to E. 

Buckingham in 1914 

    (If an equation truly expresses a proper relationship between variables in a 

physical process, it will be dimensionally homogeneous; i.e., each of its 

additive terms will have the same dimensions). 
 

The Pi Theorem 
There are several methods of reducing a number of dimensional variables 

into a smaller number of dimensionless groups. The scheme given here was 

proposed in 1914 by Buckingham  and is now called the Buckingham pi 

theorem. The name pi comes from the mathematical notation _, meaning a 

product of variables. The dimensionless groups found from the theorem are 

power products denoted by II1, II2, II3, etc. The method allows the pis to be 

found in sequential order without resorting to free exponents. The first part 

of the pi theorem explains what reduction in variables to expect: 

If a physical process satisfies the PDH and involves n dimensional variables, 

it can be reduced to a relation between only k dimensionless variables or 

II’s. The reduction j = n - k equals the maximum number of variables which 

do not form a pi among themselves and is always less than or equal to the 

number of dimensions describing the variables. 

 



Typically, six steps are involved: 

 

1. List and count the n variables involved in the problem. If any important 

variables are missing, dimensional analysis will fail. 

2. List the dimensions of each variable according to {MLTθ} or {FLTθ}. A 

list is given in Table. 

3. Find j. Initially guess j equal to the number of different dimensions 

present, and look for j variables which do not form a pi product. If no luck, 

reduce j by 1 and look again. With practice, you will find j rapidly. 

4. Select j scaling parameters which do not form a pi product. Make sure 

they please you and have some generality if possible, because they will then 

appear in every one of your pi groups. Pick density or velocity or length. Do 

not pick surface tension, e.g., or you will form six different independent 

Weber-number parameters and thoroughly annoy your colleagues. 

5. Add one additional variable to your j repeating variables, and form a 

power product. Algebraically find the exponents which make the product 

dimensionless. Try to arrange for your output or dependent variables (force, 

pressure drop, torque, power) to appear in the numerator, and your plots will 

look better. D this sequentially, adding one new variable each time, and you 

will find all n -j = k desired pi products.  

6. Write the final dimensionless function, and check your work to make sure 

all pi groups are dimensionless. 

 
 


