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Heat Transfer (Q) Data Sheet
S 

PROBLEM 1.1 

The outer surface of a 0.2m-thick concrete wall is kept at a temperature of –5°C, while the 
inner surface is kept at 20°C. The thermal conductivity of the concrete is 1.2 W/(m K). 
Determine the heat loss through a wall 10 m long and 3 m high. 

GIVEN 

10 m long, 3 m high, and 0.2 m thick concrete wall 
Thermal conductivity of the concrete (k) = 1.2 W/(m K) 
Temperature of the inner surface (Ti) = 20°C 
Temperature of the outer surface (To) = –5°C 

FIND 

The heat loss through the wall (qk)

ASSUMPTIONS 

One dimensional heat flow 
The system has reached steady state 

SKETCH 
L = 0.2 m

T
i
= 20°C

T
o

= – 5°C

qk

L
=

10
m

H = 3 m

SOLUTION 

The rate of heat loss through the wall is given by Equation (1.2) 

qk = A K
L

(ΔT)

qk = ( )(10m)(3m) 1.2 W/(m K)
0.2m

 (20°C – (–5°C)) 

qk = 4500 W 

COMMENTS 

Since the inside surface temperature is higher than the outside temperature heat is transferred from the 
inside of the wall to the outside of the wall. 
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PROBLEM 1.2 

The weight of the insulation in a spacecraft may be more important than the space 
required. Show analytically that the lightest insulation for a plane wall with a specified 
thermal resistance is that insulation which has the smallest product of density times 
thermal conductivity. 

GIVEN 

Insulating a plane wall, the weight of insulation is most significant 

FIND 

Show that lightest insulation for a given thermal resistance is that insulation which has the smallest 
product of density (ρ) times thermal conductivity (k)

ASSUMPTIONS 

One dimensional heat transfer through the wall 
Steady state conditions 

SOLUTION 

The resistance of the wall (Rk), from Equation (1.13) is 

Rk = L
A k

where  
L = the thickness of the wall 
A = the area of the wall 

The weight of the wall (w) is 
w = ρ A L

Solving this for L

L = w
Aρ

Substituting this expression for L into the equation for the resistance 

Rk = 2
w
k Aρ

∴ w = ρ k Rk A2

Therefore, when the product of ρ k for a given resistance is smallest, the weight is also smallest. 

COMMENTS 

Since ρ and k are physical properties of the insulation material they cannot be varied individually. 
Hence in this type of design different materials must be tried to minimize the weight. 

PROBLEM 1.3 

A furnace wall is to be constructed of brick having standard dimensions 22.5 cm × 11 cm 
× 7.5 cm. Two kinds of material are available. One has a maximum usable temperature 
of 1040°C and a thermal conductivity of 1.7 W/(m K), and the other has a maximum 
temperature limit of 870°C and a thermal conductivity of 0.85 W/(m K). The bricks cost 
the same and can be laid in any manner, but we wish to design the most economical wall 
for a furnace with a temperature on the hot side of 1040°C and on the cold side of 
200°C. If the maximum amount of heat transfer permissible is 950 W/m2 for each square 
foot of area, determine the most economical arrangements for the available bricks. 
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GIVEN 

Furnace wall made of 22.5 cm × 11 cm × 7.5 cm bricks of two types 
Type 1 bricks  Maximum useful temperature (T1, max) = 1040°C 

  Thermal conductivity (k1) = 1.7 W/(m K) 
Type 2 bricks  Maximum useful temperature (T2, max) = 870°C 

  Thermal conductivity (k2) = 0.85 W/(m K) 
Bricks cost the same 
Wall hot side temperature (Thot) = 1040°C and wall cold side temperature (Tcold) = 200°C 
Maximum permissible heat transfer (qmax/A) = 950 W/m2

FIND 

The most economical arrangement for the bricks 

ASSUMPTIONS 

One-dimensional, steady state heat transfer conditions 
Constant thermal conductivities 
The contact resistance between the bricks is negligible 

SKETCH 
Type 2 Bricks

Tmax = 200°C

T12 870°C£

Tmax = 1040°C

Type 1 Bricks

SOLUTION 

Since the type 1 bricks have a higher thermal conductivity at the same cost as the type 2 bricks, the 
most economical wall would use as few type 1 bricks as possible. However, there should be thick 
enough layer of type 1 bricks to keep the type 2 bricks at 870°C or less. 
For one-dimensional conduction through type 1 bricks (from Equation 1.2) 

qk = k A
L

ΔT

maxq
A

 = 1

1

k
L

 (Thot – T12)

where L1 is the minimum thickness of the type 1 bricks. 
Solving for L1

L1 = 1

max

k
q

A

 (Thot – T12)

L1 = 2
1.7 W/(m K)
950 W/m

 (1040 – 870)K = 0.3042 m = 30.42 cm 
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This thickness can be achieved by using 4 layers of type 1 bricks using the 7.5 cm dimension. 
Similarly, for one-dimensional conduction through type 2 bricks 

L2 = 2

max

k
q

A

 (T12 – Tcold)

L2 = 2
0.85 W/(m K)

950 W/m
 (870 – 200)K = 0.6 m = 60 cm 

This thickness can be achieved with 8 layers of type 2 bricks using the 7.5 cm dimension.  
Therefore, the most economical wall would be built using 4 layers of type 1 bricks and 8 layers of 
type 2 bricks with the three inch dimension of the bricks used as the thickness. 

PROBLEM 1.4 

To measure thermal conductivity, two similar 1-cm-thick specimens are placed in an 
apparatus shown in the accompanying sketch. Electric current is supplied to the  
6-cm by 6-cm guarded heater, and a wattmeter shows that the power dissipation is 10 
watts (W). Thermocouples attached to the warmer and to the cooler surfaces show 
temperatures of 322 and 300 K, respectively. Calculate the thermal conductivity of the 
material at the mean temperature in W/(m K). 

GIVEN 

Thermal conductivity measurement apparatus with two samples as shown 
Sample thickness (L) = 1 cm = 0.01 cm 
Area = 6 cm × 6 cm = 36 cm2 = 0.0036 m2

Power dissipation rate of the heater (qh) = 10 W 
Surface temperatures  Thot = 322 K   

Tcold = 300 K 

FIND 

The thermal conductivity of the sample at the mean temperature in W/(m K) 

ASSUMPTIONS 

One dimensional, steady state conduction 
No heat loss from the edges of the apparatus 

SKETCH 

Guard Ring and InsulationSE

Heater

Wattmeter

Similar Specimen

Thot

Tcold
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SOLUTION 

By conservation of energy, the heat loss through the two specimens must equal the power dissipation
of the heater. Therefore the heat transfer through one of the specimens is qh/2.
For one dimensional, steady state conduction (from Equation (1.3) 

qk = k A
L

ΔT = 
2
hq

Solving for the thermal conductivity 

k = 2
hq L

A TΔ

k = 2
(5 W)(0.01m)

(0.0036 m )(322K 300 K)−

k = 0.63 W/(m K)

COMMENTS 

In the construction of the apparatus care must be taken to avoid edge losses so all the heat generated
will be conducted through the two specimens. 

PROBLEM 1.5 

To determine the thermal conductivity of a structural material, a large 15 cm-thick slab
of the material was subjected to a uniform heat flux of 2500 W/m2, while thermocouples
embedded in the wall 2.5 cm apart were read over a period of time. After the system had
reached equilibrium, an operator recorded the readings of the thermocouples as shown
below for two different environmental conditions. 

Distance from the surface (cm) Temperature (°C) 

Test 1: 
0
5
10
15

Test 2: 
0
5
10
15

40
65
97
132

95
130
168
208

From these data, determine an approximate expression for the thermal conductivity as a
function of temperature between 40 and 208°C. 

GIVEN 

Thermal conductivity test on a large, 15 cm slab 
Thermocouples are embedded in the wall, 2.5 cm apart 
Heat flux (q/A) = 2500 W/m2

Two equilibrium conditions were recorded (shown in Table above) 
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FIND 

An approximate expression for thermal conductivity as a function of temperature between 40 and
208°C. 

ASSUMPTIONS 

One-dimensional conduction

SKETCH 

5 10 15Distance (cm)

Thermocouples

0

SOLUTION 

The thermal conductivity can be calculated for each pair of adjacent thermocouples using the equation
for one-dimensional conduction 

q = k A T
L

Δ

Solving for k

k = q L
A TΔ

This will give a thermal conductivity for each pair of adjacent thermocouples which are assigned to the
average temperature of the pair of thermocouples. As an example, for the first pair of thermocouples
in Test 1, the thermal conductivity (ko) is 

ko = 
–2

2
o o

5 10 m(2500 W/m )
65 C 40 C

×
−

 = 5 W/(m K) 

The average temperature for this pair of thermocouples is 

Tavg = 40 65
2
+  = 52.5 °C 

The average temperature and the thermal conductivity for all other pairs of thermocouples are given in
the table below. 

n (°C)  Thermal Conductivity W/(m K) 

 1 52.5 5 
 2 81 3.9 
 3 114.5 3.57 
 4 112.5 3.38 
 5 149 3.29 
 6 188 3.125 
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These points are displayed graphically. 

Temperature (°C)

k
(W/(mK))

100 150 2003

4

5

Mean Variation of
with Temperature

k

We will use the best fit quadratic function to represent the relationship between thermal conductivity
and temperature 

k (T)  = a + b T + c T 2

The constants a, b, and c can be found using a least squares fit. 
Let the experimental thermal conductivity at data point n be designated as kn. A least squares fit of the
data can be obtained as follows 
The sum of the squares of the errors is 

S = 2[ ( )]n n
N

k k T−

 S = 2 2 2 2 22 2 2 2n n n n n n nk a k N a ab T b k T ac T b T− − + − + +

   2 3 2 4– 2 2n n n nc k T bc T c T+ +

By setting the derivatives of S (with respect to a, b, and c) equal to zero, the following equations
result

N a + Σ Tnb + Σ Tn
2 c = Σ kn

Σ Tn a + Σ Tn
2 b + Σ Tn

3 c = Σ kn Tn

Σ Tn
2 a + Σ Tn

3 b + Σ Tn
4 c = Σ kn Tn

2

For this problem 
Σ Tn = 697.5 

Σ Tn
2 = 9.263 × 104

Σ Tn
3 = 1.3554 × 107

Σ Tn
4 = 2.125 × 109

Σ kn = 22.41 
Σ kn Tn = 2445.12 

Σ kn Tn
2 = 3.124 × 104

 Solving for a, b, and c
a = 6.9722 
b = – 4.7213 × 10–2

c = 1.443 × 10–4
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Therefore the expression for thermal conductivity as a function of temperature between 40 and 208°C is

k (T)  = 6.9722 – 4.7213 × 10–2 T + 1.443 × 10–4 T 2

This is plotted in the following graph 
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K
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COMMENTS 

Note that the derived empirical expression is only valid within the temperature range of the experi-
mental data. 

PROBLEM 1.6 

A square silicone chip 7 mm by 7 mm in size and 0.5 mm thick is mounted on a 
plastic substrate with its front surface cooled by a synthetic liquid flowing over it.
Electronic circuits in the back of the chip generate heat at a rate of 5 watts that have
to be transferred through the chip. Estimate the steady state temperature difference
between the front and back surfaces of the chip. The thermal conductivity of silicone
is 150 W/(m K). 

GIVEN 

A 0.007 m by 0.007 m silicone chip
Thickness of the chip (L) = 0.5 mm = 0.0005 m
Heat generated at the back of the chip ( Gq ) = 5 W
The thermal conductivity of silicon (k) = 150 W/(m K) 

FIND 

The steady state temperature difference (ΔT)

ASSUMPTIONS 

One dimensional conduction (edge effects are negligible) 
The thermal conductivity is constant 
The heat lost through the plastic substrate is negligible

SKETCH 

Substrate

0.5

CNIP

7 mm

7 mm
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SOLUTION 

For steady state the rate of heat loss through the chip, given by Equation (1.3), must equal the rate of
heat generation 

qk = A k
L

 (ΔT) = Gq

Solving this for the temperature difference 

ΔT = GL q
k A

ΔT = 
( )

(0.0005) (5W)
150 W/(m K) (0.007 m)(0.007 m)

ΔT = 0.34°C

PROBLEM 1.7 

A warehouse is to be designed for keeping perishable foods cool prior to transportation
to grocery stores. The warehouse has an effective surface area of 1860 m2 exposed to an
ambient air temperature of 32°C. The warehouse wall insulation (k = 0.17 W/(m K) is  
7.5 cm thick. Determine the rate at which heat must be removed from the warehouse to
maintain the food at 4°C. 

GIVEN 

Cooled warehouse
Effective area (A) = 1860 m2

Temperatures  Outside air = 32°C 
 Food inside = 4°C 

Thickness of wall insulation (L) = 7.5 cm 
Thermal conductivity of insulation (k) = 0.17 W/(m K) 

FIND 

Rate at which heat must be removed (q)

ASSUMPTIONS 

One dimensional, steady state heat flow 
The food and the air inside the warehouse are at the same temperature 
The thermal resistance of the wall is approximately equal to the thermal resistance of the wall

insulation alone 

SKETCH 
L = 7.5 cm

Warehouse

T• = 32°C Ti = 4°Cq



10

SOLUTION 

The rate at which heat must be removed is equal to the rate at which heat flows into the warehouse.
There will be convective resistance to heat flow on the inside and outside of the wall. To estimate the
upper limit of the rate at which heat must be removed these convective resistances will be neglected.
Therefore the inside and outside wall surfaces are assumed to be at the same temperature as the air
inside and outside of the wall. Then the heat flow, from Equation (1.2), is 

q = k A
L

ΔT

q = ( ) 2

–2
0.17 W/(m K) (1860 m )

7.5  10  m×
 (32 – 4) 

q = 118 kW 

PROBLEM 1.8 

With increasing emphasis on energy conservation, the heat loss from buildings has
become a major concern. For a small tract house the typical exterior surface areas and 
R-factors (area × thermal resistance) are listed below 

Element Area (m2) R-Factors = Area × Thermal Resistance [(m2 K/W)] 

Walls 150 2.0 
Ceiling 120 2.8 
Floor 120 2.0 
Windows 20 0.1 
Doors 5 0.5 

(a) Calculate the rate of heat loss from the house when the interior temperature is 22°C
and the exterior is –5°C. 

(b) Suggest ways and means to reduce the heat loss and show quantitatively the effect
of doubling the wall insulation and the substitution of double glazed windows
(thermal resistance = 0.2 m2 K/W) for the single glazed type in the table above. 

GIVEN 

Small house 
Areas and thermal resistances shown in the table above
Interior temperature = 22°C 
Exterior temperature = –5°C 

FIND 

(a) Heat loss from the house (qa)
(b) Heat loss from the house with doubled wall insulation and double glazed windows (qb). Suggest

improvements. 

ASSUMPTIONS 

All heat transfer can be treated as one dimensional 
Steady state has been reached 
The temperatures given are wall surface temperatures 
Infiltration is negligible 
The exterior temperature of the floor is the same as the rest of the house 
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SOLUTION 

(a) The rate of heat transfer through each element of the house is given by Equations (1.33) and 
(1.34)

q = 
th

T
R
Δ

The total rate of heat loss from the house is simply the sum of the loss through each element: 

 q  = ΔT
wall ceiling floor windows doors

1 1 1 1 1
AR AR AR AR AR
A A A A A

+ + + +

q = (22°C – –5°C) 

2 2 2 2 2

2 2 2 2 2

1 1 1 1 1
2.0 (m K)/W 2.8 (m K)/W 2.0 (m K)/W 0.5 (m K)/W 0.5 (m K)/W

150 m 120 m 120 m 20 m 5 m

+ + + +

q = (22°C – –5°C) (75 + 42.8 + 60 + 200 + 10) W/K 

q = 10,500 W 

(b) Doubling the resistance of the walls and windows and recalculating the total heat loss: 

q  = (22°C – –5°C) 

2 2 2 2 2

2 2 2 2 2

1 1 1 1 1
4.0 (m K)/W 2.8 (m K)/W 2.0 (m K)/W 0.2 (m K)/W 0.5 (m K)/W

150 m 120 m 120 m 20 m 5 m

+ + + +

 q = (22°C – –5°C) (37.5 + 42.8 + 60 + 100 + 10) W/K 

q = 6800 W 

Doubling the wall and window insulation led to a 35% reduction in the total rate of heat loss. 

COMMENTS 

Notice that the single glazed windows account for slightly over half of the total heat lost in case (a)
and that the majority of the heat loss reduction in case (b) is due to the double glazed windows.
Therefore double glazed windows are strongly suggested. 

PROBLEM 1.9 

Heat is transferred at a rate of 0.1 kW through glass wool insulation (density = 100
kg/m3) of 5 cm thickness and 2 m2 area. If the hot surface is at 70°C, determine the
temperature of the cooler surface. 
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GIVEN 

Glass wool insulation with a density (ρ) = 100 kg/m3

Thickness (L) = 5 cm = 0.05 m 
Area (A) = 2 m2

Temperature of the hot surface (Th) = 70°C 
Rate of heat transfer (qk) = 0.1 kW = 100 W 

FIND 

The temperature of the cooler surface (Tc)

ASSUMPTIONS 

One dimensional, steady state conduction 
Constant thermal conductivity 

SKETCH 
L = 0.05 m

Glass Wool

qk = 100 W

Tc = ?
Th = 70°C

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 11
The thermal conductivity of glass wool at 20°C (k) = 0.036 W/(m K) 

SOLUTION 

For one dimensional, steady state conduction, the rate of heat transfer, from Equation (1.2), is 

qk = 
A k
L

 (Th – Tc)

Solving this for Tc

Tc = Th – kq L
A k

Tc = 70°C –
( )2

(100 W)(0.05m)
(2 m ) 0.036 W/m K

Tc = 0.6°C 

PROBLEM 1.10 

A heat flux meter at the outer (cold) wall of a concrete building indicates that the heat
loss through a wall of 10 cm thickness is 20 W/m2. If a thermocouple at the inner surface
of the wall indicates a temperature of 22°C while another at the outer surface shows
6°C, calculate the thermal conductivity of the concrete and compare your result with the
value in Appendix 2, Table 11. 

GIVEN 

Concrete wall 
Thickness (L) = 100 cm = 0.1 m
Heat loss (q/A) = 20 W/m2

Surface temperature  Inner (Ti) = 22°C 
 Outer (To) = 6°C 
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FIND 

The thermal conductivity (k) and compare it to the tabulated value

ASSUMPTIONS 

One dimensional heat flow through the wall 
Steady state conditions exist 

SKETCH 
L = 0.1 m

qk

To = 6°CTi = 22°C

SOLUTION 

The rate of heat transfer for steady state, one dimensional conduction, from Equation (1.2), is 

qk = k A
L

 (Thot – Tcold)

Solving for the thermal conductivity 

k = 
( )

k

i o

q L
A T T−

k = 
2

2
o o
0.1m(20 W/m )

22 C 6 C−
 = 0.125 W/(m K) 

This result is very close to the tabulated value in Appendix 2, Table 11 where the thermal
conductivity of concrete is given as 0.128 W/(m K). 

PROBLEM 1.11 

Calculate the heat loss through a 1-m by 3-m glass window 7 mm thick if the inner
surface temperature is 20°C and the outer surface temperature is 17°C. Comment on the
possible effect of radiation on your answer. 

GIVEN 

Window: 1 m by 3 m
Thickness (L) = 7 mm = 0.007 m
Surface temperature  Inner (Ti) = 20°C  

 Outer (To) = 17°C 

FIND 

The rate of heat loss through the window (q)

ASSUMPTIONS 

One dimensional, steady state conduction through the glass
Constant thermal conductivity 
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SKETCH 
L = 0.007 m

qk

To = 17°CTi = 20°C

Glass

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 11
Thermal conductivity of glass (k) = 0.81 W/(m K) 

SOLUTION 

The heat loss by conduction through the window is given by Equation (1.2)

qk = k A
L

 (Thot – Tcold)

qk = ( )0.81 W/(m K) (1m) (3m)
(0.007 m)

 (20°C – 17°C) 

qk = 1040 W 

COMMENTS 

Window glass is transparent to certain wavelengths of radiation, therefore some heat may be lost by
radiation through the glass. 
During the day sunlight may pass through the glass creating a net heat gain through the window.

PROBLEM 1.12 

If in Problem 1.11 the outer air temperature is –2°C, calculate the convective heat
transfer coefficient between the outer surface of the window and the air assuming
radiation is negligible. 
Problem 1.11: Calculate the heat loss through a 1 m by 3 m glass window 7 mm thick if
the inner surface temperature is 20°C and the outer surface temperature is 17°C.
Comment on the possible effect of radiation on your answer. 

GIVEN 

Window: 1 m by 3 m
Thickness (L) = 7 mm = 0.007 m
Surface temperatures  Inner (Ti) = 20°C  

 Outer (To) = 17°C 
The rate of heat loss = 1040 W (from the solution to Problem 1.11) 
The outside air temperature = –2°C 

FIND 

The convective heat transfer coefficient at the outer surface of the window ( ch )

ASSUMPTIONS 

The system is in steady state and radiative loss through the window is negligible 
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SKETCH 
L = 0.007 m

To = 17°CTi = 20°C

qk

T•0 = –2°C

qc

SOLUTION 

For steady state the rate of heat transfer by convection (Equation (1.10)) from the outer surface must
be the same as the rate of heat transfer by conduction through the glass 

qc = ch A ΔT = qk

Solving for ch

ch  = 
( )

k

o

q
A T T∞−

ch  = o o
1040W

(1m)(3m)(17 C 2 C)− −

ch  = 18.2 W/(m2 K) 

COMMENTS 

This value for the convective heat transfer coefficient falls within the range given for the free
convection of air in Table 1.4.

PROBLEM 1.13 

Using Table 1.4 as a guide, prepare a similar table showing the order of magnitudes of
the thermal resistances of a unit area for convection between a surface and various
fluids. 

GIVEN 

Table 1.4— The order of magnitude of convective heat transfer coefficient ( ch )

FIND 

The order of magnitudes of the thermal resistance of a unit area (A Rc)

SOLUTION 

The thermal resistance for convection is defined by Equation (1.14) as 

Rc = 1

ch A

Therefore the thermal resistances of a unit area are simply the reciprocal of the convective heat
transfer coefficient 

A Rc = 1

ch
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As an example, the first item in Table 1.4 is ‘air, free convection’ with a convective heat transfer
coefficient of 6–30 W/(m2 K). Therefore the order of magnitude of the thermal resistances of a unit
area for air, free convection is 

2
1

30 W/(m K)
 = 0.03 2(m K)/W  to 2

1
6 W/(m K)

 = 0.17 2(m K)/W

The rest of the table can be calculated in a similar manner 

Order of Magnitude of Thermal Resistance of a Unit Area for Convection 

 Fluid W/(m2 K) 
Air, free convection 0.03–0.2 
Superheated steam or air, 0.003–0.03 

 forced convection
Oil, forced convection 0.0006–0.02 
Water, forced convection 0.0002–0.003 

 Water, boiling 0.00002–0.0003 
 Steam, condensing 0.000008–0.0002 

COMMENTS 

The extremely low thermal resistance in boiling and condensation suggests that these resistances can
often be neglected in a series thermal network. 

PROBLEM 1.14 

A thermocouple (0.8-mm-OD wire) is used to measure the temperature of quiescent gas
in a furnace. The thermocouple reading is 165°C. It is known, however, that the rate of
radiant heat flow per meter length from the hotter furnace walls to the thermocouple
wire is 1.1 W/m and the convective heat transfer coefficient between the wire and the gas
is 6.8 W/(m2 K). With this information, estimate the true gas temperature. State your
assumptions and indicate the equations used. 

GIVEN 

Thermocouple (0.8 mm OD wire) in a furnace
Thermocouple reading (Tp) = 165°C 
Radiant heat transfer to the wire (qr/L) = 1.1 W/m
Heat transfer coefficient ( ch ) = 6.8 W/(m2 K) 

FIND 

Estimate the true gas temperature (TG)

ASSUMPTIONS 

The system is in equilibrium 
Conduction along the thermocouple is negligible 
Conduction between the thermocouple and the furnace wall is negligible 
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SKETCH 

Thermocouple
qc

TP

TG

Furnace Wall

SOLUTION 

Equilibrium and the conservation of energy require that the heat gain of the probe by radiation if equal
to the heat lost by convection. 
The rate of heat transfer by convection is given by Equation (1.10)

qc =  ch A Δ T = ch π D L (Tp – TG)

For steady state to exist the rate of heat transfer by convection must equal the rate of heat transfer by
radiation

qc = qr

ch π D L (Tp – TG) = rq
L

L

TG = Tp – 

r

c

q
L

L
h D Lπ

 TG = 165°C – ( )2
(1.1W/m)

6.8 W/(m K) (0.0008m)π

TG = 101°C 

COMMENTS 

This example illustrates that care must be taken in interpreting experimental measurements. In this
case a significant correction must be applied to the thermocouple reading to obtain the true gas
temperature. Can you suggest ways to reduce the correction? 

PROBLEM 1.15 

Water at a temperature of 77°C is to be evaporated slowly in a vessel. The water is in a
low pressure container which is surrounded by steam. The steam is condensing at 107°C.
The overall heat transfer coefficient between the water and the steam is 1100 W/(m2 K).
Calculate the surface area of the container which would be required to evaporate water
at a rate of 0.01 kg/s. 

GIVEN 

Water evaporated slowly in a low pressure vessel surrounded by steam 
Water temperature (Tw) = 77°C 
Steam condensing temperature (Ts) = 107°C 
Overall transfer coefficient between the water and the steam (U) = 1100 W/(m2 K) 
Evaporation rate ( )wm = 0.01 kg/s 

FIND 

The surface area (A) of the container required 
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ASSUMPTIONS 

Steady state prevails 
Vessel pressure is held constant at the saturation pressure corresponding to 77°C

SKETCH 
Water Vapor, = 0.01 kg/smw

Saturated Steam, = 107 °CTs

Water
77°C

Condensate

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 13
The heat of vaporization of water at 77°C (hfg) = 2317 kJ/kg

SOLUTION 

The heat transfer required to evaporate water at the given rate is 
q = wm hfg

For the heat transfer between the steam and the water
q = U A ΔT = wm hfg

Solving this for the transfer area 

A = w fgm h
U TΔ

A = ( )2 o o
(0.01kg/s) (2317 kJ/kg) (1000J/kJ)

1100 W/(m K) (107 C 77 C)−

A = 0.70 m2

PROBLEM 1.16 

The heat transfer rate from hot air at 100°C flowing over one side of a flat plate with
dimensions 0.1 m by 0.5 m is determined to be 125 W when the surface of the plate is
kept at 30°C. What is the average convective heat transfer coefficient between the plate
and the air? 

GIVEN 

Flat plate, 0.1 m by 0.5 m, with hot air flowing over it 
Temperature of plate surface (Ts) = 30°C 
Air temperature (T∞) = 100°C 
Rate of heat transfer (q) = 125 W 

FIND 

The average convective heat transfer coefficient, hc, between the plate and the air

ASSUMPTION 

Steady state conditions exist 
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SKETCH 

qc = 125 W

Air

T• = 100°C
Ts = 30°C

SOLUTION 

For convection the rate of heat transfer is given by Equation (1.10)

qc = ch A ΔT

qc = ch A (T∞ – Ts)

Solving this for the convective heat transfer coefficient yields 

ch  = 
( )

c

s

q
A T T∞ −

ch  = o o
125W

(0.1m)(0.5m)(100 C 30 C)−

ch  = 35.7 W/(m2 K) 

COMMENTS 

One can see from Table 1.4 (order of magnitudes of convective heat transfer coefficients) that this
result is reasonable for free convection in air. 

Note that since T∞ > Ts heat is transferred from the air to the plate. 

PROBLEM 1.17 

The heat transfer coefficient for a gas flowing over a thin flat plate 3 m long and  
0.3 m wide varies with distance from the leading edge according to 

ch  (x) = 10 ×
1– 24 W/(m K)

If the plate temperature is 170°C and the gas temperature is 30°C, calculate (a) the
average heat transfer coefficient, (b) the rate of heat transfer between the plate and the
gas and (c) the local heat flux 2 m from the leading edge. 

GIVEN 

Gas flowing over a 3 m long by 0.3 m wide flat plate 
Heat transfer coefficient (hc) is given by the equation above
The plate temperature (TP) = 170°C 
The gas temperature (TG) = 30°C 

FIND 

(a) The average heat transfer coefficient ( ch )
(b) The rate of heat transfer (qc)
(c) The local heat flux at x = 2 m (qc (2)/A)

ASSUMPTIONS 

Steady state prevails 
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SKETCH 

TP = 170°C

Gas

TG = 30°C

3 m

0.3 m

x

SOLUTION 

(a) The average heat transfer coefficient can be calculated by 

ch  = 
0

1 ( )
L

ch x dx
L

 = 
31 3
44 4

0 0

1 10 4 10 410 | 3
3 3 3

LL

L L
−

× = × =

ch  = 10.13 W/(m2 K) 

(b) The total convective heat transfer is given by Equation (1.10)

qc = ch A (TP – TG)

qc = ( )210.13 W/(m K)  (3 m) (0.3 m) (170°C – 30°C) 

qc = 1273 W 

(c) The heat flux at x = 2 m is 

( )q x
A

 = hc(x) (TP – TG) = 10 × 
1
4

−
 (TP – TG)

(2)q
A

 = 10
1
4(2)

−
 (170°C – 30°C) 

(2)q
A

 = 1177 W/m2

COMMENTS 

Note that the equation for hc does not apply near the leading edge of the plate since hc approaches
infinity as x approaches zero. This behavior is discussed in more detail in Chapter 6. 

PROBLEM 1.18 

A cryogenic fluid is stored in a 0.3 m diameter spherical container in still air. If the
convective heat transfer coefficient between the outer surface of the container and the
air is 6.8 W/(m2 K), the temperature of the air is 27°C and the temperature of the
surface of the sphere is –183°C, determine the rate of heat transfer by convection. 

GIVEN 

A sphere in still air 
Sphere diameter (D) = 0.3 m
Convective heat transfer coefficient ch  = 6.8 W/(m2 K) 
Sphere surface temperature (Ts) = –183°C 
Ambient air temperature (T∞) = 27°C 
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FIND 

Rate of heat transfer by convection (qc)

ASSUMPTIONS 

Steady state heat flow 

SKETCH 

Ts = – 183°C

T
�

= 27°C

SOLUTION 

The rate of heat transfer by convection is given by

qc = ch A ΔT

qc = ch  (π D2) (T∞ – Ts)

qc = ( )26.8W/(m K) π (0.3 m)2 [27°C – (–183°C)] 

qc = 404 W 

COMMENTS 

Condensation would probably occur in this case due to the low surface temperature of the sphere. A
calculation of the total rate of heat transfer to the sphere would have to take the rate on condensation
and the rate of radiative heat transfer into account. 

PROBLEM 1.19 

A high-speed computer is located in a temperature controlled room of 26°C. When the
machine is operating its internal heat generation rate is estimated to be 800 W. The
external surface temperature is to be maintained below 85°C. The heat transfer
coefficient for the surface of the computer is estimated to be 10 W/(m2 K). What surface
area would be necessary to assure safe operation of this machine? Comment on ways to
reduce this area. 

GIVEN 

A high-speed computer in a temperature controlled room
Temperature of the room (T∞) = 26°C 
Maximum surface temperature of the computer (Tc) = 85°C
Heat transfer coefficient (U) = 10 W/(m K) 
Internal heat generation ( )Gq  = 800 W 

FIND 

The surface area (A) required and comment on ways to reduce this area

ASSUMPTIONS 

The system is in steady state 
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SKETCH 

Tc = 85°C

T• = 26°C
Room

Computer

SOLUTION 

For steady state the rate of heat transfer from the computer (given by Equation (1.33)) must equal the
rate of internal heat generation 

q = U A ΔT = Gq

Solving this for the surface area 

A = Gq
U TΔ

A = ( )2 o o
800W

10 W/(m K) (85 C 26 K)−
 = 1.4 m2

COMMENTS 

Possibilities to reduce this surface area include 
Increase the convective heat transfer from the computer by blowing air over it
Add fins to the outside of the computer 

PROBLEM 1.20 

In order to prevent frostbite to skiers on chair lifts, the weather report at most ski areas
gives both an air temperature and the wind chill temperature. The air temperature is
measured with a thermometer that is not affected by the wind. However, the rate of heat
loss from the skier increases with wind velocity, and the wind-chill temperature is the
temperature that would result in the same rate of heat loss in still air as occurs at the
measured air temperature with the existing wind. 
Suppose that the inner temperature of a 3 mm thick layer of skin with a thermal
conductivity of 0.35 W/(m K) is 35°C and the ambient air temperature is –20°C. Under
calm ambient conditions the heat transfer coefficient at the outer skin surface is about  
20 W/(m2 K) (see Table 1.4), but in a 40 mph wind it increases to 75 W/(m2 K). (a) If
frostbite can occur when the skin temperature drops to about 10°C, would you advise
the skier to wear a face mask? (b) What is the skin temperature drop due to wind chill? 

GIVEN 

Skier’s skin exposed to cold air 
Skin thickness (L) = 3 mm = 0.003 m 
Inner surface temperature of skin (Tsi) = 35°C
Thermal conductivity of skin (k) = 0.35 W/(m K) 
Ambient air temperature (T∞) = –20°C
Convective heat transfer coefficients  Still air (hc0) = 20 W/(m2 K) 

 40 mph air (hc40) = 75 W/(m2 K)
Frostbite occurs at an outer skin surface temperature (Tso) = 10°C 
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FIND 

(a) Will frostbite occur under still or 40 mph wind conditions? 
(b) Skin temperature drop due to wind chill. 

ASSUMPTIONS 

Steady state conditions prevail 
One dimensional conduction occurs through the skin
Radiative loss (or gain from sunshine) is negligible 

SKETCH 

T
�

= –20°C
q Tso

Skin

Tsi = 35°C
T

�
= ?

SOLUTION 

The thermal circuit for this system is shown below 

Tsi Tso T•

Rk Rc

(a) The rate of heat transfer is given by 

q = 
total

T
R
Δ  = 

k c

T
R R

Δ
+

 = 
1

si

c

T T
L

k A h A

∞−

+

∴ q
A

 = 
1

si

c

T T
L
k h

∞−

+

The outer surface temperature of the skin in still air can be calculated by examining the conduction
through the skin layer 

qk = k A
L

 (Tsi – Tso)

Solving for the outer skin surface temperature 

Tso = Tsi – kq L
A k

The rate of heat transfer by conduction through the skin must be equal to the total rate of heat transfer,
therefore

Tso = Tsi – 1
si

c

T T L
L k
K h

∞−

+
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Solving this for still air 

 (Tso)still air = 35°C – 
o o

2

2

35 C ( 20 C) 0.003m
0.003m 1 0.25W/(m K)

0.25W/(m K) 20 W/(m K)

− −

+

 (Tso)still air = 24°C
For a 40 mph wind 

 (Tso)40 mph = 35°C – 
o o

2

2

35 C ( 20 C) 0.003m
0.003m 1 0.25W/(m K)

0.25W/(m K) 75W/(m K)

− −

+

 (Tso)40 mph = 9°C 
Therefore, frostbite may occur under the windy conditions. 
(b) Comparing the above results we see that the skin temperature drop due to the wind chill was

15°C. 

PROBLEM 1.21 

Using the information in Problem 1.20, estimate the ambient air temperature that could 
cause frostbite on a calm day on the ski slopes. 
From Problem 1.20 
Suppose that the inner temperature of a 3 mm thick layer of skin with a thermal
conductivity of 0.35 W/(m K) is a temperature of 35°C. Under calm ambient conditions
the heat transfer coefficient at the outer skin surface is about 20 W/(m2 K).
Frostbite can occur when the skin temperature drops to about 10°C. 

GIVEN 

Skier’s skin exposed to cold air 
Skin thickness (L) = 3 mm = 0.003 m 
Inner surface temperature of skin (Tsi) = 35°C
Thermal conductivity of skin (k) = 0.35 W/(m K) 
Convective heat transfer coefficient in still air ( ch ) = 20 W/(m2 K) 
Frostbite occurs at an outer skin surface temperature (Tso) = 10°C

FIND 

The ambient air temperature (T∞) that could cause frostbite

ASSUMPTIONS 

Steady state conditions prevail 
One dimensional conduction occurs through the skin 
Radiative loss (or gain from sunshine) is negligible 

SKETCH 

Tso = 10°Cqc

Skin

T• = ?

qk

Tsi = 35°C
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SOLUTION 

The rate of conductive heat transfer through the skin at frostbite conditions is given by Equation (1.2)

qk = k A
L

 (Tsi – Tso)

The rate of convective heat transfer from the surface of the skin, from equation (1.10), is

qc = ch A (Tso – T∞)

These heat transfer rates must be equal 
qk = qc

k A
L

 (Tsi – Tso) = ch A (Tso – T∞)

Solving for the ambient air temperature 

T∞ = Tso 1
c

k
h L

+  – Tsi
c

k
h L

  T∞ = 10°C 2
0.25W/(m K)1

20 W/(m K) (0.003m)
+  – 35°C 

   2
0.25W/(m K)

20 W/(m K) (0.003m)

T∞ = –94°C

PROBLEM 1.22 

Two large parallel plates with surface conditions approximating those of a blackbody
are maintained at 816 and 260°C, respectively. Determine the rate of heat transfer by
radiation between the plates in W/m2 and the radiative heat transfer coefficient in
W/(m2 K). 

GIVEN 

Two large parallel plates, approximately black bodies
Temperatures T1 = 816°C 

 T2 = 260°C 

FIND 

(a) Rate of radiative heat transfer (qr/A) in W/m2

(b) Radiative heat transfer coefficient (hr) in W/(m2 K)

ASSUMPTIONS 

Steady state prevails 
Edge effects are negligible 

SKETCH 

qr

T1 = 816 °C
T2 = 260 °C
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PROPERTIES AND CONSTANTS 

From Appendix 2, Table 5: Stefan-Boltzmann constant (σ) = 5.7 × 10–8 W/(m2 K4)

SOLUTION 

(a) The rate of heat transfer is given by Equation (1.16)

rq
A

 = σ (T1
4 – T2

4)

rq
A

 = (5.7 × 10–8 W/(m2 K4)) [(1089 K)4 – (533 K)4]

rq
A

 = 75.56 (kW)/m2

(b) Let hr represent the radiative heat transfer coefficient

qr = hr A ΔT

∴ hr = rq
A

1
TΔ

 = 
4 2

o
7.556 10  W/m

(816 260) C
×
−

hr = 136 W/(m2 K)  

COMMENTS 

Note that absolute temperatures must be used in the radiative heat transfer equation, whereas hr is
based on the assumption that the rate of heat transfer is proportional to the temperature difference.
Hence hr cannot be applied to any other temperatures than those specified. 

PROBLEM 1.23 

A spherical vessel 0.3 m in diameter is located in a large room whose walls are at 27°C
(see sketch). If the vessel is used to store liquid oxygen at –183°C and the surface of the
storage vessel as well as the walls of the room are black, calculate the rate of heat
transfer by radiation to the liquid oxygen in watts. 

GIVEN 

A black spherical vessel of liquid oxygen in a large black room 
Liquid oxygen temperature (To) = –183°C = 90 K 
Sphere diameter (D) = 0.3 m 
Room wall temperature (Tw) = 27°C = 300 K 

FIND 

The rate of radiative heat transfer to the liquid oxygen in W

ASSUMPTIONS 

Steady state prevails 
The temperature of the vessel wall is the same as the temperature of the oxygen 
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SKETCH 

Tw = 300 K

Liq. OX
–183°C

To = 90 K

qr

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 5: The Stefan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4)

SOLUTION 

The net radiative heat transfer to a black body in a black enclosure is given by Equation (1.16)
qr = A σ (T1

4 – T2
4)

qr = π D2 σ (Tw
4 – To

4)

Converting the net radiative heat transfer into SI units using the conversion factor given on the inside
front cover of the text 

qr = 133 W 

COMMENTS 

Note that absolute temperatures must be used in the radiative heat transfer equation.

PROBLEM 1.24 

Repeat Problem 1.23 but assume that the surface of the storage vessel has an absorptance
(equal to the emittance) of 0.1. Then determine the rate of evaporation of the liquid oxygen
in kilograms per second and pounds per hour, assuming that convection can be neglected.
The heat of vaporization of oxygen at –183°C is 213.3 kJ/kg. 
From Problem 1.23: A spherical vessel of 0.3 m in diameter is located in a large
room whose walls are at 27°C (see sketch). If the vessel is used to store liquid oxygen 
at –183°C and the surface of the storage vessel as well as the walls of the room are
black, calculate the rate of heat transfer by radiation to the liquid oxygen in watts. 

GIVEN 

A spherical vessel of liquid oxygen in a large black room
Emittance of vessel surface (ε) = 0.1 
Liquid oxygen temperature (To) = –183°C = 90 K
Sphere diameter (D) = 0.3 m 
Room wall temperature (Tw) = 27°C = 300 K 
Heat of vaporization of oxygen (hfg) = 213.3 kJ/kg

FIND 

(a) The rate of radiative heat transfer (qr) to the liquid oxygen in W 
(b) The rate of evaporation of oxygen (mo) in kg/s and 1b/h 
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ASSUMPTIONS 

Steady state prevails 
The temperature of the vessel wall is equal to the temperature of the oxygen
Convective heat transfer is negligible 

SKETCH 

Tw = 300 K

Liq. OX
–183°C

To = 90 K

qr

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 5: The Stefan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4)

SOLUTION 

(a) The net radiative heat transfer from a gray body in a black enclosure, from Equation (1.17) is

qr = A1 ε1 σ (T1
4 – T2

4)

qr = π D2 ε σ (To
4 – Tw

4)

qr = π (0.3 m)2 (0.1) (5.67 × 10–8 [W/(m2 K4)] [(90 K)4 – (300 K)4)]

qk = –12.9 W 

(b) The rate of evaporation of oxygen is given by 

om  = r

fg

q
h

om  = ( )(12.9 W) J/Ws
(213.3 kJ/kg) (1000 J/kJ)

om  = 6.05 × 10–5 kg/s 

COMMENTS 

Note that absolute temperatures must be used in the radiative heat transfer equation. 
The negative sign in the rate of heat transfer indicates that the sphere is gaining heat from the
surrounding wall. 
Note that the rate of heat transfer by radiation can be substantially reduced (see Problem 1.23) by
applying a surface treatment, e.g., applying a metallic coating with low emissivity. 

PROBLEM 1.25 

Determine the rate of radiant heat emission in watts per square meter from a blackbody
at (a) 150°C, (b) 600°C, (c) 5700°C. 

GIVEN 

A blackbody 
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FIND 

The rate of radiant heat emission (qr) in W/m2 for a temperature of 
 (a) T = 150°C = 423 K 
 (b) T = 600°C = 873 K 
 (c) T = 5700°C = 5973 K 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 5: The Stefan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4)

SOLUTION 

The rate of radiant heat emission from a blackbody is given by Equation (1.15)

qr = σ A1 T1
4

rq
A

 = σ T 4

(a) For T = 423 K 

rq
A

 = [5.67 × 10–8 W/(m2 K4)] (423K)4

rq
A

 = 1820 W/m2

(b) For T = 873 K 

rq
A

 = [5.67 × 10–8 W/(m2 K4)] (873 K)4

rq
A

 = 32,900 W/m2

(c) For T = 5973 K 

rq
A

 = [(5.67 × 10–8 W/(m2 K4)] (5974 K)4

rq
A

 = 7.2 × 107 W/m2

COMMENTS 

Note that absolute temperatures must be used in radiative heat transfer equations. 
The rate of heat transfer is proportional to the absolute temperature to the fourth power, this results in
a rapid increase in the rate of heat transfer with increasing temperature. 

PROBLEM 1.26 

The sun has a radius of 7 × 108 m and approximates a blackbody with a surface
temperature of about 5800 K. Calculate the total rate of radiation from the sun and the
emitted radiation flux per square meter of surface area. 

GIVEN 

The sun approximates a blackbody
Surface temperature (Ts) = 5800 K
Radius (r) = 7 × 108 m 
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FIND 

(a) The total rate of radiation from the sun (qr)
(b) The radiation flux per square meter of surface area (qr/A) 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 5: The Stefan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4)

SOLUTION 

The rate of radiation from a blackbody, from Equation (1.15), is 

qr = σ A T 4

qr = [5.67 × 10–8 W/(m2 K4)] [4π (7 × 108 m)2] (5800 K)4

qr = 4.0 × 1026 W 

The flux per square meter is given by 

rq
A

 = σ T 4

rq
A

 = [5.67 × 10–8 W/(m2 K4)] (5800 K)4

rq
A

 = 6.4 × 107 W/m2

COMMENTS 

The solar radiation flux impinging in the earth’s atmosphere is only 1400 W/m2. Most of the radiation
from the sun goes into space. 

PROBLEM 1.27 

A small gray sphere having an emissivity of 0.5 and a surface temperature of 537°C is
located in a blackbody enclosure having a temperature of 37°C. Calculate for this
system: (a) the net rate of heat transfer by radiation per unit of surface area of the
sphere, (b) the radiative thermal conductance in W/K if the surface area of the sphere is
95 cm2, (c) the thermal resistance for radiation between the sphere and its surroundings, 
(d) the ratio of thermal resistance for radiation to thermal resistance for convection if
the convective heat transfer coefficient between the sphere and its surroundings is 11
W/(m2 K), (e) the total rate of heat transfer from the sphere to the surroundings, and (f)
the combined heat transfer coefficient for the sphere. 

GIVEN 

Small gray sphere in a blackbody enclosure
Sphere emissivity (εs) = 0.5 
Sphere surface temperature (T1) = 537°C = 810 K
Enclosure temperature (T2) = 37°C = 310 K 
The surface area of the sphere (A) is 95 cm2

The convective transfer coefficient ( ch ) = 11 W/(m2 K) 
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FIND 

(a) Rate of heat transfer by radiation per unit surface area 
(b) Radiative thermal conductance (Kr) in W/K 
(c) Thermal resistance for radiation (Rr)
(d) Ratio of the radiative and conductive resistance 
(e) Total rate of heat transfer (qT) to the surroundings 
(f) Combined heat transfer coefficient ( crh )

ASSUMPTIONS 

Steady state prevails 
The temperature of the fluid in the enclosure is equal to the enclosure temperature

SKETCH 

Gray sphere: = 310 KTs

qr

es = 0.5

Enclosure: = 810 KTe

ee = 1.0

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 5: The Stefan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4)

SOLUTION 

(a) For a gray body radiating to a blackbody enclosure the net heat transfer is given by Equation (1.17)
qr = A1 ε1 σ (T1

4 – T2
4)

rq
A

 = (0.5) (5.67 × 10–8 W/(m2 K4)) [(810 K)4 – (310 K)4]

rq
A

 = 11.94 kW/m2

(b) The radiative thermal conductance must be based on some reference temperature. Let the
reference temperature be the enclosure temperature. Then, from Equation (1.21), the radiative
thermal conductance is 

Kr = 
4 4

1 1 2 1 1

1 2

( )A T T

T T

σ−
′

−

−

f
 where f1–2 = εs

Kr = 
–4 2 8 2 4 4 4(95 10 m )(0.5) (5.67 10 W /(m K ))[(810K) (310K) ]

810K 310K

−× × −
−

Kr = 0.227 W/K 
(c) The thermal resistance for radiation is given by 

Rr = 1

rK
 = 1

0.227(W/K)
 = 4.4 K/W 

(d) The convective thermal resistance is given by Equation (1.14)

Rc = 1

ch A
 = 2 –4 2

1
(11W/(m K))(95 10 m )×

 = 9.57 K/W 
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Therefore the ratio of the radiative to the convective resistance is 

r

c

R
R

 = 4.4K/W
9.57 K/W

 = 0.46 

(e) The radiative and convective resistances are in parallel, therefore the total resistance, from Figure
1.18, is

Rtotal = (9.57) (4.4)
9.57 4.4

c r

c r

R R
R R

=
+ +

 = 3.01 K/W 

The total heat transfer is given by 

qT = 
total

T
R
Δ  = 810K 310K

3.01K/W
−  = 166.1 W 

(f) The combined heat transfer coefficient can be calculated from

qT = crh AΔ T

∴ crh  = Tq
A TΔ

 = –4 2
166.1W

(95 10 m ) (810K 310K)× −

crh  = 34.97 W/(m2 K) 

COMMENTS 

Note that absolute temperatures must be used in the radiative heat transfer equations.
Both heat transfer mechanisms are of the same order of magnitude in this situation. 

PROBLEM 1.28 

A spherical communications satellite 2 m in diameter is placed in orbit around the earth.
The satellite generates 1000 W of internal power from a small nuclear generator. If the
surface of the satellite has an emittance of 0.3 and is shaded from solar radiation by the
earth, estimate the surface temperature. 

GIVEN 

Spherical satellite
Diameter (D) = 2 m 
Heat generation = 1000 W
Emittance (ε) = 0.3 

FIND 

The surface temperature (Ts)

ASSUMPTIONS 

The satellite radiates to space which behaves as a blackbody enclosure at 0 K
The system is in steady state 
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SKETCH 

T2 = 0 K
D = 2 m

qr

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 5: The Stefan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4)

SOLUTION 

From Equation (1.17), the rate of the heat transfer from a gray body in a blackbody enclosure is

qr = A1 ε1 σ (T1
4 – T2

4)

Solving this for the surface temperature 

T1 = 

1
4

1 1

rq
A ε σ

 = 

1
4

2
1

rq
Dπ ε σ

For steady state the rate of heat transfer must equal the rate of internal generation, therefore the
surface temperature is 

T1 = 

1
4

2 8 2 4
1000 W

(2m) (0.3)5.67 10 W/(m K )π −×
 = 262 K = –11°C 

PROBLEM 1.29 

A long wire 0.7 mm in diameter with an emissivity of 0.9 is placed in a large quiescent
air space at 270 K. If the wire is at 800 K, calculate the net rate of heat loss. Discuss your
assumptions. 

GIVEN 

Long wire in still air 
Wire diameter (D) = 0.7 mm 
Wire temperature (Ts) = 800 K 
Emissivity (ε) = 0.9 
Air temperature (T∞) = 270 K 

FIND 

The net rate of heat loss 

ASSUMPTIONS 

The enclosure around the wire behaves as a blackbody enclosure at the temperature of the air
The natural convection heat transfer coefficient is 17 W/(m2 K) (From Table 1.4)
Steady state conditions prevail 
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SKETCH 

Length = L

qr

T• = 270 K

qc Wire surface temp ( ) = 800 KTs

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 5: The Stefan-Boltmann constant (σ) = 5.67 × 10–8 W/(m2 K4)

SOLUTION 

The total rate of heat loss from the wire is the sum of the convective (Equation (1.10)) and radiative
(Equation (1.17)) losses 

qtotal = ch A (Ts – T∞) + A ε σ (Ts
4 – T∞

4)

qtotal = (17 W/(m2 K)) π (0.7 × 10–3) L (800 K – 270 K) 
  + π (0.7 × 10–3) L (0.9) (5.67 × 10–8) [(800 K)4 – (270 K)4]

totalq
L

= 65 W/m = 65 W per m of wire length 

COMMENTS 

The radiative heat transfer is about twice the magnitude of the convective transfer. 
The enclosure is more likely a gray body, therefore the actual rate of loss will be smaller than we have
calculated.
The convective heat transfer coefficient may differ by a factor of two or three from our assumed
value. 

PROBLEM 1.30 

Wearing layers of clothing in cold weather is often recommended because dead-air
spaces between the layers keep the body warm. The explanation for this is that the heat
loss from the body is less. Compare the rate of heat loss for single 2 cm-thick layer of
wool [k = 0.04 W/(m K)] with three 0.67 cm layers separated by 1.5 mm air gaps. The
thermal conductivity of air is 0.024 W/(m K). 

GIVEN 

Wool insulation 
Thermal conductivities  Wool (kw) = 0.04 W/(m K)  

 Air (ka) = 0.024 W/(m K) 

FIND 

Compare the rate of heat loss for a single 2 cm layer of wool to that of three 0.67 cm layers separated
by 0.165 cm layers of air 

ASSUMPTIONS 

Heat transfer can be approximated as one dimensional, steady state conduction 
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SKETCH 

Single layer

2 cm

qka

3 Layers

0.67 cm

qkb

0.165 cm

SOLUTION 

The thermal resistance for the single thick layer, from Equation (1.3), is 

Rka = 
w

L
k A

 = 2
0.02m

(0.04 W /(m K))( m )A
 = 1

A
 0.5 K/W 

(A is the area of the body covered by wool) 
The rate of conductive heat transfer is 

qka = 
ka

T
R
Δ  = 1 0.5K/W

T K

A

Δ  = ΔT (K) A (m2) 2W 

The thermal resistance for three thin layers equals sum of the resistances of the wool and the air
between the layers 

  Rkb = w a

w a

L L
k A k A

+

  = ( )
2

(3layers) 0.0067 m/layer
(m )(0.04 W/(m K))A

 + ( )
2

(2layers) 0.0015m/layer
(m )(0.024W/(mK))A

  = 1
A

 [0.5 + 0.125] = 2
1

(m )A
 0.625 K/W 

The rate of conductive heat transfer for the three layer situation is 

qkb = 
kb

T
R
Δ  = 

2

(K)
1 0.625K/W

(m )

T

A

Δ  = ΔT (K) A(m2) 1.6 W 

Comparing the rate of heat loss for the two situations 

∴  kb

ka

q
q

 = 1.6 W
2.0 W

 = 0.8 

Therefore, for the same temperature difference, the heat loss through the three layers of wool is only
80% of the heat loss through the single layer. 
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PROBLEM 1.31 

A section of a composite wall with the dimensions shown below has uniform 
temperatures of 200°C and 50°C over the left and right surfaces, respectively. If the
thermal conductivities of the wall materials are: kA = 70 W/(m K), kB = 60 W/(m K), 
kc = 40 W/(m K) and kD = 20 W/(m K), determine the rate of heat transfer through this
section of the wall and the temperatures at the interfaces. 

GIVEN 

A section of a composite wall
Thermal conductivities kA = 70 W/(m K)  

 kB = 60 W/(m K) 
 kC = 40 W/(m K)  
 kD = 20 W/(m K) 

Surface temperatures  Left side (TAs) = 200°C  
 Right side (TDs) = 50°C 

FIND 

(a) Rate of heat transfer through the wall (q)
(b) Temperature at the interfaces 

ASSUMPTIONS 

One dimensional conduction 
The system is in steady state 
The contact resistances between the materials is negligible

SKETCH 

TDs = 50°C

TAs = 200°C

2 cm 2.5 cm 4 cm

A

B

C

6 cm

3 cm

3 cm

D

6
c
m

SOLUTION 

The thermal circuit for the composite wall is shown below 

TAs TABC TBCD TDs

RC

RA RD

RB

(a) Each of these thermal resistances has a form given by Equation (1.3) 

Rk = L
Ak
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Evaluating the thermal resistance for each component of the wall 

RA = A

A A

L
A k

 = 0.02m
(0.06m)(0.06m)[70 W/(m K)]

 = 0.0794 K/W 

RB = B

B B

L
A k

 = 0.025m
(0.03m)(0.06m)[60 W/(m K)]

 = 0.2315 K/W 

RC = C

C C

L
A k

 = 0.025m
(0.03m)(0.06m)[40 W/(m K)]

 = 0.3472 K/W 

RD = D

D D

L
A k

 = 0.04m
(0.06m)(0.06m)[20 W/(m K)]

 = 0.5556 K/W 

The total thermal resistance of the wall section, from Section 1.5.1, is

Rtotal = RA + B C

B C

R R
R R+

 + RD

Rtotal = 0.0794 + (0.2315)(0.3472)
0.2315 0.3472+

 + 0.5556 K/W 

Rtotal = 0.7738 K/W 

The total rate of heat transfer through the composite wall is given by 

q = 
total

T
R
Δ  = 

o o200 C 50 C
0.7738K/W

−
 = 194 W 

(b) The average temperature at the interface between material A and materials B and C (TABC) can be
determined by examining the conduction through material A alone 

qka = As ABC

A

T T
R
−

 = q

Solving for TABC

TABC = TAs – q RA = 200°C – (194 W) (0.0794 K/W) = 185°C 
The average temperature at the interface between material D and materials B and C (TBCD) can be
determined by examining the conduction through material D alone 

qkD = BCD Ds

D

T T
R

−
 = q

Solving for TBCD

TBCD = TDs + q RD = 50°C + (194 W) (0.5556 K/W) = 158°C

PROBLEM 1.32 

Repeat the Problem 1.31 including a contact resistance of 0.1 K/W at each of the
interfaces. 
Problem 1.31: A section of a composite wall with the dimensions shown in the schematic
diagram below has uniform temperatures of 200°C and 50°C over the left and right
surfaces, respectively. If the thermal conductivities of the wall materials are: kA = 70
W/(m K), kB = 60 W/(m K), kC = 40 W/(m K), and kD = 20 W/(m K), determine the rate
of heat transfer through this section of the wall and the temperatures at the interfaces. 
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GIVEN 

Composite wall 
Thermal conductivities kA = 70 W/(m K) 

kB = 60 W/(m K) 
kC = 40 W/(m K) 
kD = 20 W/(m K) 

 Right side (TDs) = 50°C
Contact resistance at each interface (Ri) = 0.1 K/W

FIND 

(a) Rate of heat transfer through the wall (q)
(b) Temperatures at the interfaces

ASSUMPTIONS 

One dimensional conduction 
The system is in steady state 

SKETCH 

TDs = 50°C

TAs = 200°C

2 cm 2.5 cm 4 cm

A

B

C

6 cm

3 cm

3 cm

D

6
c
m

SOLUTION 

The thermal circuit for the composite wall with contact resistances is shown below 

TIA TIBC TZBC TZD

RC

Ri Ri

RB

TAs

RA

TDs

RD

The values of the individual resistances, from Problem 1.31, are 

RA = 0.0794 K/W RB = 0.2315 K/W RC = 0.3472 K/W RD = 0.5556 K/W

(a) The total resistance for this system is 

Rtotal = RA + Ri + B C

B C

R R
R R+

 + Ri + RD

Rtotal = 0.0794 + 0.1 + (0.2315)(0.3472)
0.2315 0.3472+

 + 0.1 + 0.5556 K/W

Rtotal = 0.9738 K/W 
The total rate of heat transfer through the composite wall is given by 

q = 
total

T
R
Δ  = 200 C 50°C

0.9738K/W
° −  = 154 W 
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(b) The average temperature on the A side of the interface between material A and material B and C
(T1A) can be determined by examining the conduction through material A alone 

q = 1As A

A

T T
R
−

Solving for T1A

T1A = TAs – q RA = 200°C – (154 W) (0.0794 K/W) = 188°C 

The average temperature on the B and C side of the interface between material A and materials B and 
C (T1BC) can be determined by examining the heat transfer through the contact resistance 

q = 1 1A BC

i

T T
R
−

Solving for T1BC

T1BC = T1A – q Ri = 188°C – (154 W) (0.1 K/W) = 172°C 

The average temperature on the D side of the interface between material D and materials B and C
(T2D) can be determined by examining the conduction through material D alone 

q = 2D Ds

D

T T
R
−

Solving for T2D

T2D = TDs + q RD = 50°C + (154 W) (0.5556 K/W) = 136°C 

The average temperature on the B and C side of the interface between material D and materials B and 
C (T2BC) can be determined by examining the heat transfer through the contact resistance 

q = 2 2BC D

i

T T
R
−

Solving for T2BC

T2BC = T2D + q Ri = 136°C + (154 W) (0.1 K/W) = 151°C 

COMMENTS 

Note that the inclusion of the contact resistance lowers the calculated rate of heat transfer through the
wall section by about 20%. 

PROBLEM 1.33 

Repeat the Problem 1.32 but assume that instead of surface temperatures, the given
temperatures are those of air on the left and right sides of the wall and that the convective 
heat transfer coefficients on the left and right surfaces are 6 and 10 W/(m2 K), respectively. 
Problem 1.32: Repeat the Problem 1.31 including a contact resistance of 0.1 K/W at each
of the interfaces. 
Problem 1.31: A section of a composite wall with the dimensions shown in the schematic
diagram below has uniform temperatures of 200°C and 50°C over the left and right
surfaces, respectively. If the thermal conductivities of the wall materials are: kA = 70
W/(m K), kB = 60 W/(m K), kC = 40 W/(m K), and kD = 20 W/(m K), determine the rate
of heat transfer through this section of the wall and the temperatures at the interfaces. 
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GIVEN 

Composite wall 
Thermal conductivities kA = 70 W/(m K)  

 kB = 60 W/(m K) 
 kC = 40 W/(m K)  
 kD = 20 W/(m K) 

Air temperatures  Left side (TA∞) = 200°C  
 Right side (TD∞) = 50°C

Contact resistance at each interface (Ri) = 0.1 K/W
Convective heat transfer coefficients  Left side ( cAh ) = 6 W/(m2 K) 

 Right side ( cDh ) = 10 W/(m2 K) 

FIND 

(a) Rate of heat transfer through the wall (q)
(b) Temperatures at the interfaces 

ASSUMPTIONS 

One dimensional, steady state conduction 

SKETCH 

TD• = 50°C

TA = 200°C•

2 cm 2.5 cm 4 cm

A

B

C

6 cm

3 cm

3 cm

D

6
c
m

SOLUTION 

The thermal circuit for the composite wall with contact resistances and convection from the outer
surfaces is shown below 

TIA TIBC TZBC TZD

RC

Ri Ri

RB

TAs

RA

TDs

RD

TA•

RCA

TD•

RCD

The values of the individual conductive resistances, from Problem 1.31, are 
RA = 0.0794 K/W RB = 0.2315 K/W RC = 0.3472 K/W RD = 0.5556 K/W

The values of the convective resistances, using Equation (1.14), are 

RcA = 1

cAh A
 = 2

1
[6 W/(m K)](0.06m)(0.06m)

 = 46.3 K/W 

RcD = 1

cDh A
 = 2

1
[10 W/(m K)](0.06m)(0.06m)

 = 27.8 K/W 
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(a) The total resistance for this system is 

Rtotal = RcA + RA + Ri + B C

B C

R R
R R+

 + Ri + RD + RcD

Rtotal = 46.3 + 0.0794 + 0.1 + (0.2315)(0.3472)
0.2315 0.34472+

+ 0.1 + 0.5556 + 27.8 K/W
Rtotal = 75.1 K/W 

q = 
total

T
R
Δ  = 200 50

75.1K/W
C C° − °  = 2.0 W 

(b) The surface temperature on the left side of material A (TAs) can be determined by examining the
convection from the surface of material A

q = A As

cA

T T
R

∞ −

Solving for TAs
TAs = TA∞ – q RcA = 200°C – (2 W) (46.3 K/W) = 107.4°C 

The average temperature on the A side of the interface between material A and material B and C (T1A)
can be determined by examining the conduction through material A alone 

q = 1As A

A

T T
R
−

Solving for T1A
T1A = TAs – q RA = 107.4°C – (2 W) (0.0794 K/W) = 107.2°C 

The average temperature on the B and C side of the interface between material A and materials B and 
C (T1BC) can be determined by examining the heat transfer through the contact resistance 

q = 1 1A BC

i

T T
R
−

Solving for T1BC
T1BC = T1A – q Ri = 107.2°C – (2 W) (0.1 K/W) = 107.0°C 

The surface temperature on the D side of the wall (TDs) can be determined by examining the
convection from that side of the wall 

q = Ds D

cD

T T
R

∞−

Solving for TDs
TDs = TD∞ + q RcD = 50°C + (2 W) (27.8 K/W) = 105.6°C 

The average temperature on the D side of the interface between material D and materials B and C
(T2D) can be determined by examining the conduction through material D alone 

q = 2D Ds

D

T T
R
−

Solving for T2D
T2D = TDs + q RD = 105.6°C + (2 W) (0.5556 K/W) = 106.7°C

The average temperature on the B and C side of the interface between material D and materials B and 
C (T2BC) can be determined by examining the heat transfer through the contact resistance 

q = 2 2BC D

i

T T
R
−

Solving for T2BC T2BC = T2D + q Ri = 106.7°C + (2 W) (0.1 K/W) = 106.9°C 
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COMMENTS 

Note that the addition of the convective resistances reduced the rate of heat transfer through the wall
section by a factor of 77. 

PROBLEM 1.34 

Mild steel nails were driven through a solid wood wall consisting of two layers, each  
2.5 cm thick, for reinforcement. If the total cross-sectional area of the nails is 0.5% of
the wall area, determine the unit thermal conductance of the composite wall and the 
per cent of the total heat flow that passes through the nails when the temperature
difference across the wall is 25°C. Neglect contact resistance between the wood layers. 

GIVEN 

Wood wall 
Two layers 0.025 m thick each 
Nail cross sectional area of nails = 0.5% of wall area
Temperature difference (ΔT) = 25°C 

FIND 

(a) The unit thermal conductance (k/L) of the wall 
(b) Percent of total heat flow that passes through the wall

ASSUMPTIONS 

One dimensional heat transfer through the wall 
Steady state prevails 
Contact resistance between the wall layers is negligible

SKETCH 

PROPERTIES AND CONSTANTS 

From Appendix 2, Tables 10 and 11
Thermal conductivities  Wood (Pine) (kw) = 0.15 W/(m K) 

 Mild steel (1% C) (ks) = 43 W/(m K) 

SOLUTION 

(a) The thermal circuit for the wall is 

T1

Rs

Rw

T2
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The individual resistances are 

Rw = w

w w

L
A k

 = 
wall

0.05m
(0.995 [0.15W/(m K)]A

 = 2
wall

1
0.335 (K m )/WA

Rs = s

s s

L
A k

 = 
wall

0.05m
(0.005 [43W/(m K)]A

 = 2
wall

1
0.233 (K m )/WA

The total resistance of the wood and steel in parallel is 

Rtotal = w s

w s

R R
R R+

 = 2

wall

1 (0.335)(0.233) (K m )/W
0.335 0.233A +

 = 
wall

1
A

0.1374 2(K m )/W

The unit thermal conductance (k/L) is:

k
L

 = 
total wall

1
R A

 = 2
1

0.1374(K m )/W
 = 7.3 W/(K m2)

(b) The total heat flow through the wood and nails is given by 

qtotal =
total

T
R
Δ  = 

2

wall

25
1 0.1374(K m )/W

C

A

°

∴ total

wall

q
A

 = 182 W/m2

The heat flow through the nails alone is 

qnails = 
nails

T
R
Δ  = 

2

wall

25
1 0.233(K m )/W

C

A

°

∴ nails

wall

q
A

 = 107 W/m2

Therefore the percent of the total heat flow that passes through the nails is 

Percent of heat flow through nails = 107
182

× 100 = 59% 

PROBLEM 1.35 
Calculate the rate of heat transfer through the composite wall in Problem 1.34 if the
temperature difference is 25°C and the contact resistance between the sheets of wood is 
0.005 m2 K/W. 
Problem 1.34: To reinforce a solid wall consisting of two layers, each 2.5 cm thick, mild
steel nails were driven through it. If the total cross sectional area of the nails is 0.5% of
the wall area, determine the unit thermal conductance of the composite wall and the
percent of the total heat flow that passes through the nails when the temperature
difference across the wall is 25°C. Neglect contact resistance between the wood layers. 

GIVEN 
Wood wall  Two layers 0.025 m thick each, nailed together
Nail cross sectional area of nails = 0.5% of wall area 
Temperature difference (ΔT) = 20°C 
Contact resistance (A Ri) = 0.005 (m2 K)/W
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FIND 
The rate of heat transfer through the wall 

ASSUMPTIONS 

One dimensional heat transfer through the wall
Steady state prevails 

SKETCH 

PROPERTIES AND CONSTANTS 

From Appendix 2, Tables 10 and 11
Thermal conductivities  

Wood (Pine) (kw) = 0.15 W/(m K) 
Mild steel (1% C) (ks) = 43 W/(m K) 

SOLUTION 

The thermal circuit for the wall with contact resistance is shown below. 

T1 T2

1/2 Kw Ri 1/2 Rw

Rs

From Problem 1.34, the thermal resistance of the wood and the nails are 

Rw = 
wall

1
A

 0.335 (K m2)/W Rs =
wall

1
A

 0.233  (K m2)/W

The combined resistance of the wood and the contact resistance in series is 

Rwi = Rw + Ri = Rw + 1
A

 (A Ri) = 
wall

1
A

2 20.355 (K m )/W 0.005 (K m )/W+

Rwi =  
wall

1
A

 0.360 (K m2)/W

The total resistance equals the combined resistance of the wood and the contact resistance in parallel
with the resistance of the nails 

Rtotal = wi s

wi s

R R
R R+

 = 
wall

1
A

2(0.360) (0.233) (K m )/W
0.360 0.233+

=
wall

1
A

 = 0.1415 (K m2)/W

Therefore the rate of heat flow through the wall is: 

q = 
2total

wall

25 C
1 0.1415 (K m )/W

T
R

A

Δ °= ∴ 
wall

q
A

 = 172 W/m2
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COMMENTS 
In this case the inclusion of the contact resistance lowered the calculated rate of heat transfer by only
3% because most of the heat is transferred through the nails (see Problem 1.34). 

PROBLEM 1.36 

Heat is transferred through a plane wall from the inside of a room at 22°C to the outside 
air at –2°C. The convective heat transfer coefficients at the inside and outside surfaces
are 12 and 28 W/(m2 K), respectively. The thermal resistance of a unit area of the wall is 
0.5 m2 K/W. Determining the temperature at the outer surface of the wall and the rate of
heat flow through the wall per unit area. 

GIVEN 

Heat transfer through a plane wall
Air temperature  Inside wall (Ti) = 22°C 

 Outside wall (To) = –2°C 
Heat transfer coefficient  Inside wall ( cih ) = 12 W/(m2 K) 

 Outside wall ( coh ) = 28 W/(m2 K) 
Thermal resistance of a unit area (A Rw) = 0.5 (m2 K)/W 

FIND 

(a) Temperature of the outer surface of the wall (Two)
(b) Rate of heat flow through the wall per unit area (q/A)

ASSUMPTIONS 

One dimensional heat flow 
Steady state has been reached 

SKETCH 
Two

Ti = 22°C q

Twi

To = –2°C

SOLUTION 

The thermal circuit for the wall is shown below 
Twi

Rw

Ti Two

Rco

To

Rci

The rate of heat transfer can be used to calculate the temperature of the outer surface of the wall,
therefore part (b) will be solved first. 
(b) The heat transfer situation can be visualized using the thermal circuit shown above. The total heat

transfer through the wall, from Equations (1.33) and (1.34), is 

q = total

total

T
R

Δ

The three thermal resistances are in series, therefore 

Rtotal = Rci + Rw + R∞
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Rtotal = 1

ciAh
 + 1wA R

A Ah∞
+

The heat flow through the wall is 

q =
1 1 1

i o

w
ci

T T

A R
A h h∞

−

+ +

∴ q
A

=
2

2 2

22°C ( 2°C)
1 10.5(m K)/W

12 W/(m K) 28W/(m K)

− −

+ +

q
A

 = 38.8 W/m2

(a) The temperature of the outer surface of the wall can be calculated by examining the convective
heat transfer from the outside of the wall (given by Equation (1.10))

cq
A

 = coh  (Two – To)

Solving for Two

Two = 1

co

q
A h

 + To = (38.8 W/m2
2

1
28W/(m K)

 + (–2°C) = – 0.6°C 

COMMENTS 

Note that the conductive resistance of the wall is dominant compared to the convective resistance.

PROBLEM 1.37 

How much fiberglass insulation [k = 0.035 W/(m K)] is needed to guarantee that the
outside temperature of a kitchen oven will not exceed 43°C? The maximum oven
temperature to be maintained by the convectional type of thermostatic control is 290°C,
the kitchen temperature may vary from 15°C to 33°C and the average heat transfer
coefficient between the oven surface and the kitchen is 12 W/(m2 K). 

GIVEN 

Kitchen oven wall insulated with fiberglass
Fiberglass thermal conductivity (k) = 0.035 W/(m K) 
Convective transfer coefficient on the outside of wall ( ch ) = 12 W/(m2 K) 
Maximum oven temperature (Ti) = 290°C 
Kitchen temperature (T∞) may vary: 15°C < T∞ < 33°C 

FIND 

Thickness of fiberglass (L) to keep the temperature of the outer surface of the oven (Two) at 43°C or
less

ASSUMPTIONS 

One dimensional, steady state heat transfer prevails 
The temperature of the inside of the wall (Twi) is the same as the oven temperature 
The thermal resistance of the metal wall of the oven is negligible 
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SKETCH 

Two = 43°C£

qk

L

15°C 33°CT•£ £

Twi 290°C£

qc

SOLUTION 

For steady state conditions, the heat transfer by conduction through the wall, from Equation (1.2),
must be equal to the heat transfer by convection from the outer surface of the wall, from Equation
(1.10)

qk = k A
L

 (Twi – Two) = qc = ch A (Two – T∞)

Solving for L

L = 
( )
( )

wi wo

c wo

k T T
h T T∞

−
−

By examination of the above equation, the greatest thickness required for a given Two will occur when
Twi and T∞ are at their maximum values 

L = 
o o

2 o o
0.035W/(m K)(290 C 43 C)

12 W/(m K)(43 C 33 C)
−

−
 = 0.072 m = 7.2 cm 

COMMENTS 

In a real design a slightly thicker layer of insulation should be chosen to provide a margin of safety in
case the convective heat transfer coefficient on the outside of the wall in some circumstances is less
than expected due to the location of the oven in the kitchen or other unforseen factors. 

PROBLEM 1.38 

A heat exchanger wall consists of a copper plate 2 cm thick. The heat transfer
coefficients on the two sides of the plate are 2700 and 7000 W/(m2K), corresponding to
fluid temperatures of 92 and 32°C, respectively. Assuming that the thermal conductivity
of the wall is 375 W/(m K), (a) compute the surface temperatures in °C, and (b) calculate
the heat flux in W/m2.

GIVEN 
Heat exchanger wall, thickness (L) = 2 cm = 0.02 m
Heat transfer coefficients hc1 = 2700 W/(m2K)  

hc2 = 7000 W/(m2K) 
Fluid temperatures Tf 1  = 92°C

 Tf 2  = 32°C 
Thermal conductivity of the wall (k) = 375 W/(m K) 

FIND 

(a) Surface temperatures (Tw1, Tw1) in °C 
(b) The heat flux (q/A) in W/m2
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ASSUMPTIONS 

One dimensional heat transfer prevails
The system has reached steady state
Radiative heat transfer is negligible 

SKETCH 

Tw2

Tf1 = 92°C

Tw1

Tf 2 = 32°Cq

SOLUTION 

The thermal circuit for the wall is shown below 
Tw1

Rw

Tf1 Tw2 Tf 2

Rc1 Rc2

The surface temperatures can only be calculated after the heat flux has been established, therefore
part (b) will be solved before part (a). 
(b) The resistances are in series, therefore the total resistance is 

Rtotal = 
3

1
1

i c
i

R R
=

= + Rw + Rc2

The total rate of heat transfer is given by Equation (1.33) and (1.34)

q = 
total

T
R
Δ  = 

1 2c w c

T
R R R

Δ
+ +

 = 1 2

1 2

1 1
c c

T T
L

h A kA h A

−

+ +

Therefore the heat flux (q/A) is 
q
A

 = 

2 2

92 32
1 0.02m 1

375W/(m K)2700 W/(m K) 7000 W/(m K)

−

+ +
 = 105.9 (kW)/m2

(a) Equation (1.10) can be applied to the convective heat transfer on the fluid 1 side 

cq
A

 = 1ch  (Tf 1  – Tw1)

Solving for Tw1

Tw1 = Tf 1  – 
1

1

c

q
A h

 = 92°C – (105.9 W/(m2K)) 2
1

2700 W/(m K)
 = 52.8°C 

Similarly, on the fluid 2 side 

cq
A

 = 2ch  (Tw2 – Tf2)

Tw2 = Tf 2  – 
2

1

c

q
A h

 = 32°C + (105.9 W/(m2K)) 2
1

7000 W/(m K)
 = 47.13°C 
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PROBLEM 1.39 

A submarine is to be designed to provide a comfortable temperature for the crew of no
less than 21°C. The submarine can be idealized by a cylinder 9 m in diameter and 61 m
in length. The combined heat transfer coefficient on the interior is about 14 W/(m2K),
while on the outside the heat transfer coefficient is estimated to vary from about  
57 W/(m2K) (not moving) to 847 W/(m2K) (top speed). For the following wall
constructions, determine the minimum size in kilowatts of the heating unit required if
the sea water temperatures vary from 1.1 to 12.8°C during operation. The walls of the
submarine are (a) 2 cm aluminium (b) 1.8 cm stainless steel with a 2.5 cm thick layer
fiberglass insulation on the inside and (c) of sandwich construction with a 1.8 cm
thickness of stainless steel, a 2.5 cm thick layer of fiberglass insulation, and a 0.6 cm
thickness of aluminium on the inside. What conclusions can you draw? 

GIVEN 
Submarine  Inside temperature (Ti) > 21°C
Can be idealized as a cylinder  Diameter (D) = 9 m 

 length (L) = 61 m 
Combined heat transfer coefficients  Inside ( cih ) = 14 W/(m2K) 

     Outside ( coh ): not moving = 57 W/(m2K) 
                                : top speed: 847 W/(m2K) 

Sea water temperature (To) varies: 1.1°C < To < 12.8°C 

FIND 

Minimum size of the heating unit (q) in kW for 
(a) 1.2 cm thick aluminium walls 
(b) 1.8 cm thick stainless steel with 2.5 cm of fiberglass insulation 
(c) Sandwich of 1.8 cm stainless steel, 2.5 cm of fiberglass insulation, and 0.6 cm of aluminium 

ASSUMPTIONS 
Steady state prevails 
Heat transfer can be approximated as heat transfer through a flat plate with the surface area of the

cylinder 
Constant thermal conductivities 
Contact resistance between the difference materials is negligible 

SKETCH 

L = 61 m

D = 9 m

21 °C

PROPERTIES AND CONSTANTS 

From Appendix 2, Tables 10, 11, and 12: The thermal conductivities are 

 Aluminium (ka)  = 236 W/(m K) at 0°C 
Stainless steel (ks)  = 14 W/(m K) at 20°C

Fiberglass insulation (kfg)  = 0.035 W/(m K) at 20°C 
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SOLUTION 

The thermal circuits for the three cases are shown below 

1.2 cm Aluminium

2.5 cm Fiberglass

2.5 cm Fiberglass
and

0.6 cm Aluminium

(a)

Stainless
steel

Stainless
steel

Ti

Ri Ra Ro

To

Ri Rss RFG Ro

Ti To

Ti To

Ri Rss RFG Ra Ro

(b)

(c)

1.8 cm

1.8 cm

The total surface area of the idealized submarine (A) is 

A = π DL + 2π
2

4
D  = (61 m)π (9 m) + 

2
π  (9 m)2 = 1850 m2

(a) For case (a) the total resistance is 

Rtotal =
3

1i=
Σ Ri = Ri + Ra + Ro = 1 1

aci co

L+ +
k Ah A h A

The heat transfer through the wall is 

q = 
total

T
R
Δ  = 

1 1
i o

a

aci co

T T
L

k Ah A h A

−

+ +

By examination of the above equation, the heater requirement will be the largest when To is at its
minimum value and hco is at its maximum value 

q = 
2

–2

2 2

(1850m )(21 1.1)K
1 1.2 10 m 1

(236 W/(m K))14 W/(m K) 847 W/(m K)

−
×+ +

q = 507 kW 

 (b) Similarly, for case (b), the total resistance is 

Rtotal = 
4

1i=
Σ Ri = Rs + Ra + Rfg + Ro = 1 1fgs

ci s fg co

LL
h A k A k A h A

+ + +

The size of heater needed is 

q = 
2

–2 –2

2 2

(1850m )(21 1.1)K
1 1.8 10 m 2.5 10 m 1

14 W/(m K) 0.035W/(m K)14 W/(m K) 847 W/(m K)

−
× ×+ + +

q = 46.7 kW 
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(c) The total resistance for case (c) is 

Rtotal = 
5

1i=
Σ Ri = Rs + Ra + Rfg + Ra + Ro = 1 fgs

ci s fg

LL
h A k A k A

+ + + 1a

a co

L
k A h A

+

The size of heater needed is 

q =
2

–2 –2 –2

2 2

(1850m )(21 1.1)K
1 1.8 10 m 2.5 10 m 0.6 10 1

14 W/(m K) 0.035 W/(m K) 236 W/(m K)14 W/(m K) 847 W/(m K)

−
× × ×+ + + +

q = 46.7 kW 

COMMENTS 

Neither the aluminium nor the stainless steel offers any appreciable resistance to heat loss.
Fiberglass or other low conductivity material is necessary to keep the heat loss down to a reasonable 
level. 

PROBLEM 1.40 

A simple solar heater consists of a flat plate of glass below which is located a shallow pan
filled with water, so that the water is in contact with the glass plate above it. Solar
radiation is passing through the glass at the rate of 490 W/m2. The water is at 92°C and
the surrounding air is 27°C. If the heat transfer coefficients between the water and the
glass and the glass and the air are 28 W/(m2K), and 7 W/(m2K), respectively, determine
the time required to transfer 1.1 MJ/m2 of surface to the water in the pan. The lower
surface of the pan may be assumed to be insulated. 

GIVEN 
A simple solar heater: shallow pan of water below glass, the water touches the glass
Solar radiation passing through glass (qr/A) = 490 W/m2

Water temperature (Tw) = 92°C 
Surrounding air temperature (T∞) = 27°C 
Heat transfer coefficients  Between water and glass ( cwh ) = 28 W/(m2K) 

 Between glass and air ( cah ) = 7 W/(m2K) 

FIND 
The time (t) required to transfer 11 (kJ)/m2 to the water 

ASSUMPTIONS 

One dimensional, steady state heat transfer prevails
The heat loss from the bottom of the pan is negligible
The radiative loss from the top of the glass is negligible
The thermal resistance of the glass is negligible 

SKETCH 

Water Tw = 92°C

qc qr

Glass plate
of area A
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SOLUTION 

The total thermal resistance between the water and the surrounding air is the sum of the two
convective thermal resistances 

Rtotal =
2

1i=
Σ Ri = Rcw + Rca = 1 1

cw cah A h A
+

Rtotal = 2 2 2
1 1 1

(28W/(m K)) (7 W/(m K)) (m )A A A
+ =  0.178 (m2K)/W 

The net rate of heat transfer to the water is 

totalq
A

 = 
total

cr rqq q T
A A A A R

Δ
= = =

totalq
A

 = 490 W/m2 – 
2

92°C 27°C
1 0.178 (K m )/WA
A

−

Totalq
A

 = 125 W/m2

At this rate, the time required to transfer 1.1 M J to the water per m2 area is 

t = total energy incident per unit area
heat flux

  = 
6 2

2
1.1 10 J/m

125W/m  
×  = 2.45 hours 

t = 2.45 hours 

PROBLEM 1.41 

A composite refrigerator wall is composed of 5 cm of corkboard sandwiched between a 
1.2 cm thick layer of oak and a 0.8 mm thickness of aluminium lining on the inner
surface. The average convective heat transfer coefficients at the interior and exterior
wall are 11 and 8.5 W/(m2K), respectively. (a) Draw the thermal circuit. (b) Calculate
the individual resistances of the components of this composite wall and the resistances at
the surfaces. (c) Calculate the overall heat transfer coefficient through the wall. (d) For
an air temperature inside the refrigerator of – 1°C and outside of 32°C, calculate the
rate of heat transfer per unit area through the wall. 

GIVEN 

Refrigerator wall: oak, corkboard, and aluminium
Thicknesses Oak (Lo) = 1.2 cm 

Corkboard (Lc) = 5 cm 
Aluminum (La) = 0.8 mm 

Convective heat transfer coefficients  Interior ( cih ) = 11 W/(m2K)  
 Exterior ( coh ) = 8.5 W/(m2K) 

Air temperature  Inside (Ti) = – 1°C;  
 Outside (To) = 32°C 
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FIND 

(a) Draw the thermal circuit 
(b) The individual resistances 
(c) Overall heat transfer coefficient (U)
(d) Rate of heat transfer per unit area (q/A)

ASSUMPTIONS 

One dimensional, steady state heat transfer 
Constant thermal conductivities 
Contact resistance between the different materials is negligible

SKETCH 

q

Corkboard; = 5 cmLc

Oak; = 1.2 cmLo

Ti = –1°C To = 32°C

Twi
Two

Aluminium; =La 0.8 mm

PROPERTIES AND CONSTANTS 

From Appendix 2, Tables 11 and 12, the thermal conductivities are 
 Oak (ko) = 0.2 W/(m K) at 20°C 
 Corkboard (kc) = 0.04 W/(m K) at 20°C 
 Aluminium (ka)  = 235 W/(m K) at 0°C

SOLUTION 

(a) The thermal circuit for the refrigerator wall is shown below
Ti To

Rci

Twi

Rka Rkc

Two

Rko Rco

(b) The resistance to convection from the inner and outer surfaces is given by Equation (1.14)

Rc = 1

ch A

This means 

Rci = 1

cih A
 = 2 2

1
(11W/(m K)) (m )A

 = 2
1

(m )A
 0.091 (K m2)/W

Rco = 1

coh A
 = 2 2

1
(8.5W/(m K)) (m )A

 = 2
1

(m )A
 0.117 (K m2)/W

The resistance to conduction through the components of the wall is given by Equation (1.3)

Rk = L
Ak

That is  

Rka = a

a

L
Ak

=
–3

2 2
(0.8 10 m) 1

(m )(235W/(m K)) (m )A A
×

= 3.4 × 10–6 (K m2)/W
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Rkc =  c

c

L
Ak

 = 
–2

2
5 10 m

(m )(0.04 W/(m K))A
×  = 2

1
(m )A

 1.25 (K m2)/W

Rko = o

o

L
Ak

 = 
–2

2
1.2 10 m

(m )(0.2 W/(m K))A
×  = 2

1
(m )A

 0.06 (K m2)/W

(c) The overall heat transfer coefficient satisfies Equation (1.34)

UA = 
total

1
R

∴ U = 
total

1 1
( )ci ka kc ko coA R A R R R R R

=
+ + + +

U = 6 2
1

(0.091 3.4 10 1.25 0.06 0.117) (K m )/W−+ × + + +

U = 0.66 W/(m2K) 

(d) The rate of heat transfer through the wall is given by Equation (1.33)
q
A

 = U ΔT = ( )20.66 W/(m K)  (32 + 1)K = 21.8 W/m2

COMMENTS 

The thermal resistance of the corkboard is more than three times greater than the sum of the other
resistances. The thermal resistance of the aluminum is negligible. 

PROBLEM 1.42 

An electronic device that internally generates 600 mW of heat has a maximum
permissible operating temperature of 70°C. It is to be cooled in 25°C air by attaching
aluminum fins with a total surface area of 12 cm2. The convective heat transfer
coefficient between the fins and the air is 20 W/(m2 K). Estimate the operating
temperature when the fins are attached in such a way that: (a) there exists a contact
resistance between the surface of the device and the fin array of approximately  
50 K/W, and (b) there is no contact resistance but the construction of the device is more
expensive. Comment on the design options. 

GIVEN 

An electronic device with aluminum fin array
Device generates heat at a rate ( Gq ) = 600 mW = 0.6 W
Surface area (A) = 12 cm2

Max temperature of device = 70°C 
Air temperature (T∞) = 25°C 
Convective heat transfer coefficient ( ch ) = 20 W/(m2 K) 

FIND 

Operating temperature (To) for 
(a) contact resistance (Ri) = 50 K/W 
(b) no contact resistance

ASSUMPTIONS 

One dimensional heat transfer
Steady state has been reached 
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The temperature of the device is uniform 
The temperature of the aluminum fins is uniform (the thermal resistance of the aluminum is 

negligible)
The heat loss from the edges and back of the device is negligible 

SKETCH 

q

Fins

Electronic Device

T• = 25°C

SOLUTION 

(a) The thermal circuit for the case with contact resistance is shown below 
T•

Rc Ri

To

The value of the convective resistance, from Equation (1.14), is 

Rc = 1

ch A
 = 2 2

1
[20 W/(m K)](0.0012m )

 = 41.7 K/W 

For steady state conditions, the heat loss from the device (q) must be equal to the heat generated by 
the device 

q = 
total

T
R
Δ  = o

c i

T T
R R

∞−
+

 = Gq

Solving for To

To = T∞ + Gq  (Rc + Ri) = 25°C + (0.6 W) (41.7 K/W + 50 K/W) = 80°C 

(b) Similarly, the operating temperature of the device with no contact resistance is 
To = T∞ + Gq Rc = 25°C + (0.6 W) (41.7 K/W) = 50°C 

COMMENTS 

The more expensive device with no contact resistance will have to be used to assure that the operating 
temperature does not exceed 70°C. 

PROBLEM 1.43 

To reduce the home heating requirements, modern building codes in many parts of the 
country require the use of double-glazed or double-pane windows, i.e., windows with 
two panes of glass. Some of these so called thermopane windows have an evacuated 
space between the two glass panes while others trap stagnant air in the space. 
(a) Consider a double-pane window with the dimensions shown in the following sketch. 
If this window has stagnant air trapped between the two panes and the convective heat 
transfer coefficients on the inside and outside surfaces are 4 W/(m2 K) and 15 W/(m2 K), 
respectively, calculate the overall heat transfer coefficient for the system. 
(b) If the inside air temperature is 22°C and the outside air temperature is –5°C, 
compare the heat loss through a 4 m2 double-pane window with the heat loss through a 
single-pane window. Comment on the effect of the window frame on this result. 
(c) The total window area of a home heated by electric resistance heaters at a cost of 
$.10/kWh is 80 m2. How much more cost can you justify for the double-pane windows if 
the average temperature difference during the six winter months when heating is 
required is about 15°C? 
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GIVEN 

Double-pane window with stagnant air in gap 
Convective heat transfer coefficients  Inside ( cih ) = 4 W/(m2 K) 

 Outside ( coh ) = 15 W/(m2 K) 
Air temperatures  Inside (Ti) = 22°C  

 Outside (To) = –5°C 
Single window area (Aw) = 4 m2

During the winter months, (ΔT) = 15°C 
Heating cost = $.1.0/kWh 
Total window area (AT) = 80 m2

FIND 

(a) The overall heat transfer coefficient 
(b) Compare heat loss of double- and single-pane window 

ASSUMPTIONS 

Steady state conditions prevail 
Radiative heat transfer is negligible 

SKETCH 

0.7 cm

T1i

2 cm

T1o

T2o

T2i

Ti = 22°C

PROPERTIES AND CONSTANTS 

From Appendix 2, Tables 11 and 27, the thermal conductivities are 
window glass (kg) = 0.81 W/(m K) at 20°C; dry air (ka) = 0.0243 W/(m K) at 8.5°C 

SOLUTION 

The thermal circuit for the system is shown below 
Ti To

Rci Rk1 Rka Rk2 Rko

The individual resistances are 

Rco = 1

coh A
 = 2

1
[15W/(m K)] A

 = 1
A

 0.0667 (K m2)/W

Rk1 = Rk2 = g

g

L
Ak

 = 0.007 m 1
[0.81W/(m K)]A A

=  0.00864  (K m2)/W

Rka =  a

a

L
Ak

 = 0.02m 1
[0.0243W/(m K)]A A

=  0.823 (K m2)/W

Rci = 1

cih A
 = 2

1 1
[4 W/(m K)] AA

=  0.25 (K m2)/W



57

The total resistance for the double-pane window is 

Rtotal = 
5

1i=
Σ Ri = Rco + Rk1 + Rka + Rk2 + Rci

Rtotal = 1
A

 (0.0667 + 0.00864 + 0.823 + 0.00864 + 0.25) (m2 K)/W = 1
A

 1.157 (K m2)/W

Therefore the overall heat transfer coefficient is 

Udouble = 2
total

1 1
1.157(m K)/WAR

=  = 0.864 W/(m2 K) 

(b) The rate of heat loss through the double-pane window is 

qdouble – U A ΔT = [0.864 W/(m2 K)] (4 m2) [22°C – (–5°C)] = 93W 

The thermal circuit for the single-pane window is 
Ti

Rci

T1i

Rk Rco

ToT1o

The total thermal resistance for the single-pane window is 

Rtotal = 
3

1i=
Σ Ri = Rco + Rk1 + Rci = 1

A
 (0.0667 + 0.00864 + 0.25) (m2 K)/W 

Rtotal = 0.325 (m2 K)/W 

The overall heat transfer coefficient for the single-pane window is 

Usingle = 
total

1
AR

 = 2
1

0.325(m K)/W
 = 3.08 W/(m2 K) 

Therefore, the rate of heat loss through the single-pane window is 

qsingle = U A ΔT = [3.07 W/(m2 K)] (4 m2) [22°C – (–5°C)] = 332 W 

The heat loss through the double-pane window is only 28% of that through the single-pane 
window. 

(c) The average heat loss through double-pane windows during the winter months is 

qdouble = U AT ΔT = [0.864 W/(m2 K)] (80 m2) 15°C = 1040 W 

Therefore, the cost of the heat loss from the double-pane windows is 
Costdouble = qdouble (heating cost) 
Costdouble = (1040 W) ($0.10/kWh) (24 h/day) (182 heating days/year) (1 kW/1000 W) 
Costdouble = $454/yr 

The average heat loss through the single-pane windows during the winter months is 

qsingle = U AT ΔT = [3.07 W/(m2 K)] (80 m2) (15°C) = 3688 W 

The cost of this heat loss is 
Costsingle = qsingle (heat cost) 
Costsingle = (3688 W) ($0.10/kWh) (24 h/day) (182 heating days/year) (1 kW/1000 W) 
Costsingle = $1611/yr 

The yearly savings of the double-pane windows is $1157. Therefore if we would like to have a 
payback period of two years, we would be willing to invest $2314 in double panes. 
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PROBLEM 1.44 

A flat roof can be modeled as a flat plate insulated on the bottom and placed in the 
sunlight. If the radiant heat that the roof receives from the sun is 600 W/m2, the 
convection heat transfer coefficient between the roof and the air is 12 W/(m2 K), and the 
air temperature is 27°C, determine the roof temperature for the following two cases:  
(a) Radiative heat loss to space is negligible. (b) The roof is black (ε = 1.0) and radiates 
to space, which is assumed to be a black-body at 0 K. 

GIVEN 

A flat plate in the sunlight 
Radiant heat received from the sun (qr/A) = 600 W/m2

Air temperature (T∞) = 27°C 
Convective heat transfer coefficient ( ch ) = 12 W/(m2 K) 

FIND 

The plate temperature (Tp)

ASSUMPTIONS 

Steady state prevails 
No heat is lost from the bottom of the plate 

SKETCH 

Insulation

q Asol
2/ = 600 W/m

TP

qr
Air

T• = 27°C

PROPERTIES AND CONSTANTS 

From Appendix 1, Table 5: Stefan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4)

SOLUTION 

(a) For this case steady state and the conservation of energy require the heat lost by conduction, from 
Equation (1.10), to be equal to the heat gained from the sun 

qc = ch A (Ts – T∞) = qr

 Solving for Ts

Ts = 1r

c

q
A h

 + T∞ = (600 W/m2) 2
1

12 W/(m K)
 + (27°C) = 77°C 

(b) In this case, the solar gain must be equal to the sum of the convective loss, from Equation (1.10),
and radiative loss, from Equation (1.16)

rq
A

 = ch  (Tp – T∞) + σ (Tp
4 – Tsp

4)

 600 W/m2 = 12 W/(m2 K) (Tp – 300K) + 5.67 × 10–8 W/(m2 K4) (Tp
4 – 0) 

By trial and error 

Tp = 308 K = 35°C 
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COMMENTS 

The addition of a second means of heat transfer from the plate in part (b) allows the plate to operate at 
a significantly lower temperature. 

PROBLEM 1.45 

A horizontal 3-mm-thick flat copper plate, 1 m long and 0.5 m wide, is exposed in air at 
27°C to radiation from the sun. If the total rate of solar radiation absorbed is  
300 W and the combined radiative and convective heat transfer coefficients on the upper 
and lower surfaces are 20 and 15 W/(m2 K), respectively, determine the equilibrium 
temperature of the plate. 

GIVEN 

Horizontal, 1 m long, 0.5 m wide, and 3 mm thick copper plate is exposed to air and solar radiation 
Air temperature (T∞) = 27°C 
Solar radiation absorbed (qsol) = 300 W 
Combined transfer coefficients are  Upper surface ( uh ) = 20 W/(m2 K) 

 Lower surface ( 1h ) = 15 W/(m2 K) 

FIND 

The equilibrium temperature of the plate (Tp)

ASSUMPTIONS 

Steady state prevails 
The temperature of the plate is uniform 

SKETCH 
qsol = 300 W

TP

Copper plate

T• = 27°C

qcu

qCL

SOLUTION 

For equilibrium the heat gain from the solar radiation must equal the heat lost from the upper and 
lower surfaces 

qsol = uh A (Tp – T∞) + 1h A (Tp – T∞)

Solving for Tp

Tp = sol

1

1

u

q
A h h+

 + T∞

Tp = 2 2
300 W 1

(1m)(0.5m) 20 W/(m K) 15W/(m K)+
 + (27°C) 

Tp = 44°C 
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PROBLEM 1.46 

A small oven with a surface area of 0.28 m2 is located in a room in which the walls and 
the air are at a temperature of 27°C. The exterior surface of the oven is at 150°C and the 
net heat transfer by radiation between the oven’s surface and the surroundings is 586 W. If 
the average convective heat transfer coefficient between the oven and the surrounding air  
is 11 W/(m2K), calculate: (a) the net heat transfer between the oven and the surroundings  
in W, (b) the thermal resistance at the surface for radiation and convection, respectively,  
in K/W, and (c) the combined heat transfer coefficient in W/(m2K). 

GIVEN 

Small oven in a room 
Oven surface area (A) = 0.28 m2

Room wall and air temperature (T∞) = 27°C 
Surface temperature of the exterior of the oven (To) = 150°C 
Net radiative heat transfer (qr) = 586 W 
Convective heat transfer coefficient ( ch ) = 11 W/(m2K) 

FIND 

(a) Net heat transfer (qT) in W 
(b) Thermal resistance for radiation and convection (RT) in K/W 
(c) The combined heat transfer coefficient ( crh ) in W/(m2K) 

ASSUMPTIONS 

Steady state prevails 

SKETCH 

Room

T• = 27°C

Oven

qr

To = 150 °C

A = 0.28 m2

SOLUTION 

(a) The net heat transfer is the sum of the convective heat transfer, from Equation (1.10), and the net 
radiative heat transfer 

qT = qc + qr + ch A (To – T∞) + qr

This gives 

qT = 11 W/(m2K) (0.28 m2) (150 – 27)K +586 W = 965 W 

= 379 W + 586 W 

(b) The radiative resistance is 

Rr = (150 – 27)K
586 W

o

r

T T
q

∞−
=  = 0.21 K/W 
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The convective resistance is 

Rc = (150 – 27)K
379 W

o

c

T T
q

∞−
=  = 0.325 K/W 

These two resistances are in parallel, therefore the total resistance is given by 

RT = ( ) ( )0.21K/W 0.325K/W
(0.21 0.325) K/W

c r

c r

R R
R R

=
+ +

 = 0.13 K/W 

(c) The combined heat transfer coefficient can be calculated from 

qT = crh A ΔT

∴ crh  = rq
A TΔ

 = 2
965 W

(0.28m )(150 27)K−
 = 28 W/(m2K)  

COMMENTS 

The thermal resistances for the convection and radiation modes are of the same order of magnitude. 
Hence, neglecting either one would lead to a considerable error in the rate of heat transfer. 

PROBLEM 1.47 

A steam pipe 200 mm in diameter passes through a large basement room. The 
temperature of the pipe wall is 500°C, while that of the ambient air in the room is 20°C. 
Determine the heat transfer rate by convection and radiation per unit length of steam 
pipe if the emissivity of the pipe surface is 0.8 and the natural convection heat transfer 
coefficient has been determined to be 10 W/(m2 K). 

GIVEN 

A steam pipe passing through a large basement room 
Pipe diameter (Δ) = 200 mm = 0.2 m 
The temperature of the pipe wall (Tp) = 500°C = 773 K 
Temperature of ambient air in the room (T∞) = 20°C = 293 K 
Emissivity of the pipe surface (ε) = 0.8 
Natural convection heat transfer coefficient (hc) = 10 W/(m2 K) 

FIND 

Heat transfer rate by convection and radiation per unit length of the steam pipe (q/L)

ASSUMPTIONS 

Steady state prevails 
The walls of the room are at the same temperature as the air in the room 
The walls of the room are black (ε = 1.0) 

SKETCH 

Steam Pipe = 500°CTpT• = 20°C

L

Ts = 20°C

q
r
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PROPERTIES AND CONSTANTS 

From Appendix 1, Table 5, the Stefan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4)

SOLUTION 

The net radiative heat transfer rate for a gray object in a blackbody enclosure is given by Equation
(1.17)

qr = A1 ε1 σ (T1
4 – T2

4) = π D L ε σ (Tp
4 – Ts

4)

∴ rq
L

 = π (0.2 m) (0.8) [5.67 × 10–8 W/(m2 K4)] [(773 K)4 – (293 K)4]

rq
L

= 9970 W/m 

The convective heat transfer rate is given by 

qc = ch A (Tp – T∞) = ch  (π D L) (Tp – T∞)

∴ cq
L

= [10 W/(m2 K)] π (0.2 m) (500°C – 20°C) 

cq
L

= 3020 W/m 

COMMENTS 

Note that absolute temperatures must be used in the radiative heat transfer equation. 
The radiation heat transfer dominates because of the high emissivity of the surface and the high 
surface temperature which enters to the fourth power in the rate of radiative heat loss. 

PROBLEM 1.48 

The inner wall of a rocket motor combustion chamber receives 160(kW)/m2 by radiation 
from a gas at 2760°C. The convective heat transfer coefficient between the gas and the 
wall is 110 W/(m2K). If the inner wall of the combustion chamber is at a temperature of 
540°C, determine the total thermal resistance of a unit area of the wall in (m2K)/W and 
the heat flux. Also draw the thermal circuit. 

GIVEN 

Wall of a rocket motor combustion chamber 
Radiation to inner surface (qr/A) = 160 (kW)/m2

Temperature of gas in chamber (Tg) = 2760°C 
Convective heat transfer coefficient on inner wall (hc) = 110 W/(m2K) 
Temperature of inner wall (Tw) = 540°C 

FIND 

(a) Draw the thermal circuit 
(b) The total thermal resistance of a unit area (A Rtotal) in (m2K)/W 

ASSUMPTIONS 

One dimensional heat transfer through the walls of the combustion chamber 
Steady state heat flow 



63

SKETCH 

qr

Tg = 2760 °C

Tw = 540°C

SOLUTION 

(a) The thermal circuit for the chamber wall is shown below 

Tg Tw

Rc

Rr

(b) The total thermal resistance can be calculated from the total rate of heat transfer from the pipe 

qtotal = 
total

T
R
Δ

∴ A Rtotal =
total

T
q

A

Δ

The total rate of heat transfer is the sum of the radiative and convective heat transfer 

qtotal = qr + qc = qr + ch A ΔT

∴ totalq
A

 = rq
A

 + ch ΔT

totalq
A

 = 160000 W/m2 + 110 W/(m2K) (2760 – 540)K = 404,200 W/m2

Therefore the thermal resistance of a unit area is 

A Rtotal = 2
(2760 – 540)K
404,200 W/m

 = 0.0055 (m2K)/W 

An alternate method of solving part (b) is to calculate the radiative and convective resistances 
separately and then combine them in parallel as illustrated below. 
The convective resistance is 

Rc = 1 1

ch A A
= 2

1
110 W/(m K)

 = 1
A

 0.0091 (m2K)/W 

The radiative resistance is 

Rr = 
r

T
q
Δ  = 

r

T
qA
A

Δ  = 1
A 2

(2760 – 540)K 1
160000 W/m A

=  0.014 (m2K)/W 
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Combining these two resistances in parallel yields the total resistance 

Rtotal = r c

r c

R R
R R+

∴ A Rtotal = 2(0.0091) (0.014) (m K)/W
(0.0091 0.014)+

 = 0.0055 (m2K)/W 

PROBLEM 1.49 

A flat roof of a house absorbs a solar radiation flux of 600 W/m2. The backside of the 
roof is well insulated, while the outside loses heat by radiation and convection to ambient 
air at 20°C. If the emittance of the roof is 0.80 and the convective heat transfer 
coefficient between the roof and the air is 12 W/(m2 K), calculate: (a) the equilibrium 
surface temperature of the roof, and (b) the ratio of convective to radiative heat loss. 
Can one or the other of these be neglected? Explain your answer. 

GIVEN 

Flat roof of a house 
Solar flux absorbed (qsol/A) = 600 W/m2

Back of roof is well insulated 
Ambient air temperature (T∞) = 20°C = 293 K 
Emittance of the roof (ε) = 0.80 
Convective heat transfer coefficient ( ch ) = 12 W/(m2 K) 

FIND 

(a) The equilibrium surface temperature (Ts)
(b) The ratio of the convective to radiative heat loss 

ASSUMPTIONS 

The heat transfer from the back surface of the roof is negligible 
Steady state heat flow 

SKETCH 

Ts

qcqr
qsol

T• = 293 K

Roof

PROPERTIES AND CONSTANTS 

From Appendix 1, Table 5, the Stefan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4)

SOLUTION 

(a) For steady state the sum of the convective heat loss, from Equation (1.10), and the radiative heat 
loss, from Equation (1.15), must equal the solar gain 

solq
A

 = cq
A

 + r
c

q
h

A
=  (Ts – T∞) + ε σ Ts

4

 600 W/m2 = 12 W/(m2 K) (Ts – 293K) + (0.8) ( )8 2 45.67 10 W/(m K )−× Ts
4

  4.535 × 10–8 Ts
4 + 12 Ts – 4116 = 0 
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By trial and error 

Ts = 309 K = 36°C 

(b) The ratio of the convective to radiative loss is 

c

r

q
q

 = 4
( )c s

s

h T T
Tεσ

∞−
 = 

( ) ( )
( ) ( )

2

48 2 4

12 W/(m K) 309K 293K

(0.8) 5.67 10 W/(m K ) 309K−

−

×
 = 0.46 

COMMENTS 

Since the radiative and convective terms are of the same order of magnitude, neither one may be 
neglected without introducing significant error. 

PROBLEM 1.50 

Determine the power requirement of a soldering iron in which the tip is maintained at 
400°C. The tip is a cylinder 3 mm in diameter and 10 mm long. Surrounding air 
temperature is 20°C and the average convective heat transfer coefficient over the tip is 
20 W/(m2 K). Initially, the tip is highly polished giving it a very low emittance. 

GIVEN 

Soldering iron tip  Diameter (D) = 3 mm = 0.003 m  
 Length (D) = 10 mm = 0.01 m 

Temperature of the tip (Tt) = 400°C 
Temperature of the surrounding air (T∞) = 20°C 
Average convective heat transfer coefficient ( ch ) = 20 W/(m2 K) 
Emittance is very low (ε = 0) 

FIND 

The power requirement of the soldering iron ( q )

ASSUMPTIONS 
Steady state conditions exist 
All power used by the soldering iron is used to heat the tip 
Radiative heat transfer from the tip is negligible due to the low emittance 
The end of the tip is flat 
The tip is at a uniform temperature 
SKETCH 

Soldering
Iron

Tt = 400°C
D = 0.003 m

L = 0.01 m

T• = 20°C
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SOLUTION 
The power requirement of the soldering iron, q , is equal to the heat lost from the tip by convection 

qc = coh A ΔT = ch  (π D2/4 + π D L) (Tt – T∞) = q

q  = 20 2W/(m K)
2(0.003m) (0.003m)(0.01m)

4
π π+ (400°C – 20°C) 

q  = 0.77 W 

PROBLEM 1.51 
The soldering iron tip in Problem 1.50 becomes oxidized with age and its gray-body 
emittance increases to 0.8. Assuming that the surroundings are at 20°C determine the 
power requirement for the soldering iron. 
Problem 1.50: 
Determine the power requirement of a soldering iron in which the tip is maintained at 
400°C. The tip is a cylinder 3 mm in diameter and 10 mm long. Surrounding air 
temperature is 20°C and the average convective heat transfer coefficient over the tip is 
20 W/(m2 K). Initially, the tip is highly polished giving it a very low emittance. 

GIVEN 
Soldering iron tip  Diameter (D) = 3 mm = 0.003 m  

 Length (D) = 10 mm = 0.01 m 
Temperature of the tip (Tt) = 400°C 
Temperature of the surrounding air (T∞) = 20°C 
Average convective heat transfer coefficient ( ch ) = 20 W/(m2 K) 
Emittance of the tip (ε) = 0.8 
FIND 
The power requirement of the soldering iron ( q )

ASSUMPTIONS 
Steady state conditions exist 
All power used by soldering iron is used to heat the tip 
The surroundings of the soldering iron behave as a blackbody enclosure 
The end of the tip is flat 

SKETCH 

Soldering
Iron

Tt = 400°C

D = 0.003 m

L = 0.01 m

T• = 20°C

PROPERTIES AND CONSTANTS 

From Appendix 1, Table 5, the Stefan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4)

SOLUTION 

The rate of heat loss by convection, from Problem 1.50, is 0.77 W. 
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The rate of heat loss by radiation is given by Equation (1.17)

qr = A1 ε1 σ (T1
4 – T2

4) = 
2

4
D DLπ π+ ε σ (Tt

4 – Tw
4)

qr = 
2(0.003m) (0.003m)(0.01m)

4
π π+  (0.8) [5.67 × 10–8 W/(m2 K4)] [(673 K)4 – (293 K)4]

qr = 0.91 W 
The power requirement of the soldering iron, q , is equal to the total rate of heat loss from the tip. The 
total heat loss is equal to the sum of the convective and radiative losses 

q  = qc + qr = 0.77 W + 0.91 W = 1.68 W 

COMMENTS 

Note that the inclusion of the radiative term more than doubled the power requirement for the 
soldering iron. 
The power required to maintain the desired temperature could be provided by electric resistance 
heating.

PROBLEM 1.52 

Some automobile manufacturers are currently working on a ceramic engine block that 
could operate without a cooling system. Idealize such an engine as a rectangular solid, 45 
cm by 30 cm by 30 cm. Suppose that under maximum power output the engine 
consumes 5.7 liters of fuel per hour, the heat released by the fuel is 9.29 kWh per liter 
and the net engine efficiency (useful work output divided by the total heat input) is 0.33. 
If the engine block is alumina with a gray-body emissivity of 0.9, the engine 
compartment operates at 150°C, and the convective heat transfer coefficient is 30 W/(m2 K), 
determine the average surface temperature of the engine block. Comment on the 
practicality of the concept. 

GIVEN 

Ceramic engine block, 0.45m by 0.3m by 0.3m 
Engine gas consumption is 5.7 1/h 
Heat released is 9.29 (kWh)/1 
Net engine efficiency (η) = 0.33 
Emissivity (ε) = 0.9 
Convective heat transfer coefficient (hc) = 30 W/(m2 K) 
Engine compartment temperature (Tc) = 150°C = 423 K 

FIND 

The surface temperature of the engine block (Ts)
Comment on the practicality 

ASSUMPTIONS 

Heat transfer has reached steady state 
The engine compartment behaves as a blackbody enclosure 
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SKETCH 

0.3 m

Engine
Block

0.3 m
0.45 m

PROPERTIES AND CONSTANTS 

From Appendix 1, Table 5, the Stefan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4)

SOLUTION 

The surface area of the idealized engine block is 

A = 4 (0.45m) (0.3m) + 2(0.3m)2 = 0.72 m2

The rate of heat generation within the engine block is equal to the energy from the gasoline that is not 
transformed into useful work 

Gq  = (1 – η) mg hg = (1 – 0.33) (5.71/h) (9.29 (kWh)/1) = 35.5 kW 

For steady state conditions, the net radiative and convective heat transfer from the engine block must 
be equal to the heat generation within the engine block 

qtotal = qr + qc = Gq

Gq  = A ε σ (Ts
4 – Tc

4) + ch A (Ts – Tc)

35.5 kW = (0.72 m2) (0.9) ( )8 2 45.67 10 W/(m K )−×  [Ts
4 – (423 K)4] + (0.72 m2)

   ( )230 W/(m K)  (Ts – 3.674 × 10–8 Ts
4 + 21.6 Ts – 45656 = 0 

By trial and error 

Ts = 916 K = 643°C 

COMMENTS 

The engine operates at a temperature high enough to burn a careless motorist. 
Note that absolute temperature must be used in radiation equations. 
Hot spots due to the complex geometry of the actual engine may produce local temperatures much 
higher than 916 K. 

PROBLEM 1.53 

A pipe carrying superheated steam in a basement at 10°C has a surface temperature of 
150°C. Heat loss from the pipe occurs by radiation (ε = 0.6) and natural convection  
[ ch  = 25 W/(m2 K)]. Determine the percentage of the total heat loss by these two 
mechanisms. 

GIVEN 

Pipe in a basement 
Pipe surface temperature (Ts) = 150°C = 423 K 
Basement temperature (T∞) = 10°C = 283 K 
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Pipe surface emissivity (ε) = 0.6 
Convective heat transfer coefficient ( ch ) = 25 W/(m2 K) 

FIND 

The percentage of the total heat loss due to radiation and convection 

ASSUMPTIONS 

The system is in steady state 
The basement behaves as a blackbody enclosure at 10°C 

SKETCH 

Basement Wall
Temperature = T•

qr qc

Pipe = 423 KTs

T• = 283 K

PROPERTIES AND CONSTANTS 

From Appendix 1, Table 5: the Stefan-Boltzmann constant (σ) = 5.67 × 10–8 W/(m2 K4)

SOLUTION 

The rate of heat transfer from a gray-body to a blackbody enclosure, from Equation (1.17), is 

qr = A1 ε1 σ (T1
4 – T2

4) = A ε σ (Ts
4 – T∞

4)

∴ rq
A

 = (0.6) [5.67 × 10–8 W/(m2 K4)] [(423 K)4 – (283 K)4]

rq
L

= 870 W/m 

The rate of heat transfer by convection, from Equation (1.10), is 

qc = ch A (Ts – T∞)

∴ cq
A

 = 25 W/(m2 K) (423 K – 283 K) = 3500 W/m2

The total rate of heat transfer is the sum of the radiative and convective rates 

totalq
A

 = cr qq
A A

+  = 870 W/m2 + 3500 W/m2 = 4370 W/m2

The percentage of the total heat transfer due to radiation is 

total

/
/

rq A
q A

× 100 = 870
4370

× 100 = 20% 

The percentage of the total heat transfer due to convection is 

total

/
/

cq A
q A

× 100 = 3500
4370

× 100 = 80% 
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COMMENTS 

This pipe surface temperature and rate of heat loss are much too high to be acceptable. In practice, a 
layer of mineral wool insulation would be wrapped around the pipe. This would reduce the surface 
temperature as well as the rate of heat loss. 

PROBLEM 1.54 

For a furnace wall, draw the thermal circuit, determine the rate of heat flow per unit 
area, and estimate the exterior surface temperature under the following conditions: the 
convective heat transfer coefficient at the interior surface is 15 W/(m2 K); rate of heat 
flow by radiation from hot gases and soot particles at 2000°C to the interior wall surface 
is 45,000 W/m2; the unit thermal conductance of the wall (interior surface temperature 
is about 850°C) is 250 W/(m2 K); there is convection from the outer surface. 

GIVEN 

A furnace wall 
Convective heat transfer coefficient ( ch ) = 15 W/(m2 K) 
Temperature of hot gases inside furnace (Tg) = 2000°C 
Rate of radiative heat flow to the interior of the wall (qr/A) = 45,000 W/m2

Unit thermal conductance of the wall (k/L) = 250 W/(m2 K) 
Interior surface temperature (Twi) is about 850°C 
Convection occurs from outer surface of the wall 

FIND 

(a) Draw the thermal circuit 
(b) Rate of heat flow per unit area (q/A)
(c) The exterior surface temperature (Two)

ASSUMPTIONS 

Heat flow through the wall is one dimensional 
Steady state prevails 

SKETCH 

T•Tg = 2000 °C

qr

Twi = 850°C

Two

T•

SOLUTION 

The thermal circuit for the furnace wall is shown below 

Tg Twi

Rci

Rr

Rk

Two

Rco

T•
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The rate of heat flow per unit area through the wall is equal to the rate of convective and radiative heat 
flow to the interior wall 

q
A

 = rq
A

 + cq
A

 = rq
A

 + ch  (Tg – Twi)

q
A

 = 45,000 W/m2 + 15 W/(m2 K) (2000°C – 850°C) = 62,250 W/m2

We can calculate the outer surface temperature of the wall by examining the conductive heat transfer 
through the wall given by Equation (1.2)

qk = K A
L

 (Twi – Two)

∴ Two = Twi – 1
/

kq
A k L

 = 850°C – (62,250 W/m2) 2
1

250 W/(m K)
 = 601°C 

COMMENTS 

The corner sections should be analyzed separately since the heat flow there is not one dimensional. 

PROBLEM 1.55 

Draw the thermal circuit for heat transfer through a double-glazed window. Include 
solar energy gain to the window and the interior space. Identify each of the circuit 
elements. Include solar radiation to the window and interior space. 

GIVEN 

Double-glazed window 

FIND 

The thermal circuit 

SKETCH 

Glass Plate # 2 Glass Plate # 1

T2i T2o

TRW

T•i

T1i T1o

TRo

T•o

qs

SOLUTION 
TRW

Rr2

T•i

Rc2

T2 i

Rk2

T2o

Rr12

Rk12

T1 i T1o

Rk1

Tro

Rc1

qs

qs2

qs1

Direct Solar to the Room

T•o
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where Rr1, Rr12, Rr2 = Radiative thermal resistances 
Rk1, Rk2, Rk12 = Conductive thermal resistances 
Rc1, Rc2 = Convective thermal resistances 
Trw, Tro = Effective temperatures for radiative heat transfer 
T∞ = Air temperatures 
T1i, T1o, T2i = Surface temperatures of the glass 
qs1, qs2 = Solar energy incident on the window panes 

PROBLEM 1.56 

The ceiling of a tract house is constructed of wooden studs with fiberglass insulation 
between them. On the interior of the ceiling is plaster and on the exterior is a thin layer 
of sheet metal. A cross section of the ceiling with dimensions is shown below. 
(a) The R-factor describes the thermal resistance of insulation and is defined by: 

R-factor = L/keff = ΔT/(q/A)
Calculate the R-factor for this type of ceiling and compare the value of this R-factor with 
that for a similar thickness of fiberglass. Why are the two different? 
(b) Estimate the rate of heat transfer per square meter through the ceiling if the interior 
temperature is 22°C and the exterior temperature is –5°C. 

GIVEN 
Ceiling of a tract house, construction shown below 
Inside temperature (Ti) = 22°C 
Outside temperature (To) = –5°C 

FIND 

(a) R-factor for the ceiling (RFc). Compare this to the R-factor for the same thickness of fiberglass 
(RFfg). Why do they differ? 

(b) Rate of heat transfer (q/A)
ASSUMPTIONS 
Steady state heat transfer 
One dimensional conduction through the ceiling 
Thermal resistance of the sheet metal is negligible 
SKETCH 

PROPERTIES AND CONSTANTS 

From Appendix 2, Table 11, the thermal conductivities of the ceiling materials are 
Pine or fir wood studs (kw) = 0.15 W/(m K) at 20°C 

 Fiberglass (kfg) = 0.035 W/(m K) at 20°C 
 Plaster (kp) = 0.814 W/(m K) at 20°C 
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SOLUTION 

The thermal circuit for the ceiling with studs is shown below 

Tsi Tso

Rfg

Rw

RP

where Rp = thermal resistance of the plaster 
Rw = thermal resistance of the wood 
Rfg = thermal resistance of the fiberglass 

Each of these resistances can be evaluated using Equation (1.4)

Rp = 
wall

P

P

L
A k

 = ( )
3

wall wall

15 10 m 1
[0.814 W/(m K)]A A

−×
=  0.0184 K m2/W

Rw = w

w w

L
A k

 = ( )
3

wall

105 10 m 1
[0.15W/(m K)]wA A

−×
=   0.7 K m2/W

Rfg =  fg

fg fg

L
A k

 = ( )
3

wallfg

105 10  m 1
[0.035W/(m K)] AA

−×
=   3 K m2/W

To convert these all to a wall area basis the fraction of the total wall area taken by the wood studs and 
the fiberglass must be calculated 

 wood studs = 
wall

wA
A

 = 45mm
48cm

 = 0.094 

 fiberglass = 
wall

fgA
A

 = 43.5cm
48m

 = 0.906 

Therefore the resistances of the studs and the fiberglass based on the wall area are 

Rw = 
wall

1
0.094 A

 0.7 K m2/W = 
wall

1
A

 7.45 K m2/W

Rfg = 
wall

1
0.906 A

  3 K m2/W  = 
wall

1
A

 3.31 K m2/W

The R-Factor of the wall is related to the total thermal resistance of the wall by 

RFc = Awall Rtotal = Awall
w fg

p
w fg

R R
R

R R
+

+
=

 0.0184 + (7.45) (3.31) K m/W
7.45 3.31+

  = 2.31 K m2/W

For 12 cm of fiberglass alone, the R-factor is 

RFfg = 
fg

L
k

 = 
212 10  m

0.035W/(m K)

−×  = 3.43 K m2/W
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The R-factor of the ceiling is only 67% that of the same thickness of fiberglass. This is mainly due to 
the fact that the wood studs act as a ‘thermal short’ conducting heat through the ceiling more quickly 
than the surrounding fiberglass. 
(b) The rate of heat transfer through the ceiling is 

q
A

 = 
c

T
RF
Δ  = 2

22°C ( 5°C)
2.31K m /W

− −  = 11.69 W/m2

COMMENTS 

R-factors are given in handbooks. For example, Mark’s Standard Handbook for Mechanical 
Engineers lists the R-factor of a multi-layer masonry wall as 6.36 Btu/(h ft2) = 20 W/m2.

PROBLEM 1.57 

A homeowner wants to replace an electric hot-water heater. There are two models in the 
store. The inexpensive model costs $280 and has no insulation between the inner and 
outer walls. Due to natural convection, the space between the inner and outer walls has 
an effective conductivity of 3 times that of air. The more expensive model costs $310 and 
has fiberglass insulation in the gap between the walls. Both models are 3.0 m tall and 
have a cylindrical shape with an inner wall diameter of 0.60 m and a 5 cm gap. The 
surrounding air is at 25°C, and the convective heat transfer coefficient on the outside is 
15 W/(m2 K). The hot water inside the tank results in an inside wall temperature of 
60°C. 
If energy costs 6 cents per kilowatt-hour, estimate how long it will take to pay back the 
extra investment in the more expensive hot-water heater. State your assumptions. 

GIVEN 

Two hot-water heaters Height (H) = 3.0 m 
Inner wall diameter (Di) = 0.60 m 
Gap between walls (L) = 0.05 m 

Water heater #1  Cost = $280.00 
Insulation: none 
Effective Conductivity between wall (keff) = 3(ka)

Water heater #2  Cost = $310.00 
Insulation: Fiberglass 

Surrounding air temperature (T∞) = 25°C 
Convective heat transfer coefficient (hc) = 15 W/(m2 K) 
Inside wall temperature (Twi) = 60°C 
Energy cost = $0.06/kWh 

FIND 

The time it will take to pay back the extra investment in the more expensive hot-water heater 

ASSUMPTIONS 

Since the diameter is large compared to the wall thickness, one-dimensional heat transfer is assumed 
To simplify the analysis, we will assume there is no water drawn from the heater, therefore the inside 

wall is always at 60°C 
Steady state conditions prevail 
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SKETCH 
0.6 m

3.0 m
T• = 25°Cq

Ti = 60°C

0.05 m

Wall Detail

PROPERTIES AND CONSTANTS 

From Appendix, Table 11 and 27: The thermal conductivities are 
fiberglass (ki) = 0.035 W/(m K) at 20°C 
dry air (ka) = 0.0279 W/(m K) at 60°C 

SOLUTION 

The areas of the inner and outer walls are 

Ai = 2 
2

4
iDπ

 + π Di H = 2 
2(0.6m)

4
π  + π (0.6 m) (3 m) = 6.22 m2

Ao = 2 
2

4
oDπ

  + π Do H = 2 
2(0.7 m)

4
π  + π (0.7 m) (3 m) = 7.37 m2

The average area for the air or insulation between the walls (Aa) = 6.8 m2.
The thermal circuit for water heater #1 is 

Twi Two Tco

Rk eff, Rco

The rate of heat loss for water heater #1 is 

q1 = 
total

T
R
Δ  = 

eff,k co

T
R R

Δ
+

 = 

eff

1
wi

a co

T T
L

k A h A

∞

∞

−

+

q1 = 

2 2 2

60°C 25°C
0.05m 1

3[0.0279 W/(m K)](6.8m ) [15W/(m K)](7.37 m )

−

+
 = 361 W = 0.361 kW 

Therefore the cost to operate water heater #1 is 
 Cost1 = q1 (energy cost) = 0.361 kW ($0.06/kWh) (24 h/day) = $0.52/day 
The thermal circuit for water heater #2 is 

Twi Two Tdo

Rk i, Rco

The rate of heat loss from water heater #2 is 

q2 = 

2 2 2

60°C 25°C
0.05m 1

[0.035W/(m K)](6.8m ) [15W/(m K)](7.37 m )

−

+
  = 160 W = 0.16 kW 
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Therefore the cost of operating water heater #2 is 
 Cost2 = q2 (energy cost) = 0.16 kW ($0.06/kWh) (24 h/day) = $0.23/day 
The time to pay back the additional investment is the additional investment divided by the difference 
in operating costs 

 Payback time = $310 $280
$0.52 / day $0.23/ day

−
−

Payback time = 103 days

COMMENTS 

When water is periodically drawn from the water heater, energy must be supplied to heat the cold 
water entering the water heater. This would be the same for both water heaters. However, drawing 
water from the heater also temporarily lowers the temperature of the water in the heater thereby 
lowering the heat loss and lowering the cost savings of water heater #2. Therefore, the payback time 
calculated here is somewhat shorter than the actual payback time. 
A more accurate, but much more complex estimate could be made by assuming a typical daily hot 
water usage pattern and power output of heaters. But since the payback time is so short, the increased 
complexity is not justified since it will not change the bottom line—buy the more expensive model 
and save money as well as energy! 

PROBLEM 1.58 

Liquid oxygen (LOX) for the Space Shuttle can be stored at 90 K prior to launch in a 
spherical container 4 m in diameter. To reduce the loss of oxygen, the sphere is insulated 
with superinsulation developed at the US Institute of Standards and Technology’s 
Cryogenic Division that has an effective thermal conductivity of 0.00012 W/(m K). If the 
outside temperature is 20°C on the average and the LOX has a heat of vaporization of 
213 J/g, calculate the thickness of insulation required to keep the LOX evaporation rate 
below 200 g/h. 

GIVEN 

Spherical LOX tank with superinsulation 
Tank diameter (D) = 4 m 
LOX temperature (TLOX) = 90 K 
Ambient temperature (T∞) = 20°C = 293 K 
Thermal conductivity of insulation (k) = 0.00012 W/(m K) 
Heat of vaporization of LOX (hfg) = 213 kJ/kg 
Maximum evaporation rate ( Loxm ) = 0.2 kg/h 

FIND 

The minimum thickness of the insulation (L) to keep evaporation rate below 0.2 kg/h 

ASSUMPTIONS 

The thickness is small compared to the sphere diameter so the problem can be considered one 
dimensional 

Steady state conditions prevail 
Radiative heat loss is negligible 
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SKETCH 

TLOX = 90 K

D = 4 m

L = ?

Insulation

SOLUTION 

The maximum permissible rate of heat transfer is the rate that will evaporate 0.2 kg/h of LOX 

q = Lox fgm h  = (0.2 kg/h) (213 kJ/kg) h
3600 s

1000 J
kJ

( )Ws/J  = 11.8 W 

An upper limit can be put on the rate of heat transfer by assuming that the convective resistance on the 
outside of the insulation is negligible and therefore the outer surface temperature is the same as the 
ambient air temperature. With this assumption, heat transfer can be calculated using Equation (1.2), 
one dimensional steady state conduction 

qk = k A
L

 (Thot – Tcold) = 
2k D

L
π  (T∞ – TLOX)

Solving for the thickness of the insulation (L)

L = 
2

k

k D
q
π  (T∞ – TLOX) = 

2[0.00012 W/(m K)] (4m)
11.8W

π  (293 K – 90 K) = 0.10 m = 10 cm 

COMMENTS 

The insulation thickness is small compared to the diameter of the tank. Therefore, the assumption of 
one dimensional conduction is reasonable. 

PROBLEM 1.59 

The heat transfer coefficient between a surface and a liquid is 60 W/(m2K). How many 
watts per square meter will be transferred in this system if the temperature difference is 
10°C? 

GIVEN 

The heat transfer coefficient between a surface and a liquid (hc) = 60 W/(m2K) 
Temperature difference (ΔT) = 10°C 

FIND 

The rate of heat transfer in watts per square meter 

ASSUMPTIONS 

Steady state conditions 
Surface temperature is higher than the liquid temperature 
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SKETCH 

hc = 60 W/(m K)2Liquid

qc

SOLUTION 

The rate of convective heat transfer per unit area (qc/A) is 

cq
A

 = ch ΔT = 60 W/(m2K) × 10°C = 600 W. 

PROBLEM 1.60 

An ice chest (see sketch) is to be constructed from Styrofoam [k = 0.033 W/(m K)]. If the 
wall of the chest is 5 cm thick, calculate its R-value in (m2K)/(W-cm). 

GIVEN 

Ice chest constructed of Styrofoam, k = 0.0333 W/(m K) 
Wall thickness 5 cm 

FIND 

(a) R-value of the ice chest wall 

ASSUMPTIONS 

(a) One-dimensional, steady conduction 

SKETCH 

5 cm

SOLUTION 

From Section 1.6 the R-value is defined as 

R-value = thickness
thermal conductivity

R-value = 
–25 10 m

0.033W/(m K)
×  = 1.51 (m2K)/W 

From the problem statement, it is clear that we are asked to determine the R-value on a ‘per-cm’ basis. 
Dividing the above R-value by the thickness in cm, we get 

R-value = 1.51
5

 = 0.302 (m2K)/(W-cm) 



79

PROBLEM 1.61 

Estimate the R-values for a 5 cm-thick fiberglass board and a 2.5 cm-thick polyurethane 
foam layer. Then compare their respective conductivity-times-density products if the 
density for fiberglass is 50 kg/m3 and the density of polyurethane is 30 kg/m3. Use the 
units given in Figure 1.27. 

GIVEN 

5 cm-thick fiberglass board, density = 50 kg/m3

2.5 cm-thick polyurethane, density = 30 kg/m3

FIND 

(a) R-values for both 
(b) Conductivity-times-density products for both 

ASSUMPTIONS 

(a) One-dimensional, steady conduction 

SOLUTION 

Ranges of conductivity for both of these materials are given in Figure 1.28. Using mean values we 
find:

fiberglass board k = 0.04 W/(m K) 
polyurethane foam k = 0.025 W/(m K) 

For the 5 cm fiberglass we have 
t = 0.05 m 
k = 0.04 W/(m K) 

From Section 1.6 the R-value is given by 

R-value = thickness
thermal conductivity

 = 0.050m
0.04 W/(m K)

 = 1.25 (m2 K)/W 

and

 conductivity × density = ( ) 30.04 W/(m K) (50 kg/m )  = 2 4(Wkg)/(Km )

For the 2.5 cm polyurethane we have 

t = 0.025 m 
k = 0.025 W/(m K) 

R-value = t
k

 = 1 (m2 K)/W 

 conductivity × density = ( ) ( )30.025 W/(m K) 30 kg/m   = 0.75 4(Wkg)/(Km )

Summarizing, we have 

R-value 
(m2 K)/W 

conductivity × density 
(W kg)/(K m4)

2′′ fiberglass board 1.25 2 

1′′ polyurethane foam           1    0.75 
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PROBLEM 1.63 

How many kilograms of ice can a 3-ton refrigeration unit produce in a 24-hour period? 
The heat of fusion of water is 330 kJ/kg. 
A manufacturer in the US wants to sell a refrigeration system to a customer in 
Germany. The standard measure of refrigeration capacity used in the United States is 
the ‘ton’; a one-ton capacity means that the unit is capable of making about one ton of 
ice per day or has a heat removal rate of 3.52 kW. The capacity of the American system 
is to be guaranteed at three tons. What would this guarantee be in SI units? 

GIVEN 

A three-ton refrigeration unit 
Heat of fusion of ice is 330 kJ/kg 

FIND 

(a) Kilograms of ice produced by the unit per 24 hour period 
(b) The refrigeration unit capacity is the net value, i.e., it includes heat losses 

ASSUMPTIONS 

(a) Water is cooled to just above the freezing point before entering the unit 

SOLUTION 

The mass of ice produced in a given period of time Δt is given by 

mice = 
f

q T
h
Δ

where hf is the heat of fusion and q is the rate of heat removal by the refrigeration unit. From Problem 
1.65 we have q = 10,548 W. Inserting the given values we have 

mice = 
( )5

(10,548 W)(24 hr)
hr3.30 10 J / kg (Ws) / J

3600s
×

 = 2762 kg 

PROBLEM 1.64 

Explain a fundamental characteristic that differentiates conduction from convection and 
radiation.

SOLUTION 

Conduction is the only heat transfer mechanism that dominates in solid materials. Convection and 
radiation play important roles in fluids or, for radiation, in a vacuum. Under certain conditions, e.g., a 
transparent solid, radiation could be important in a solid. 

PROBLEM 1.65 

Explain in your own words: (a) what is the mode of heat transfer through a large steel 
plate that has its surfaces at specified temperatures? (b) what are the modes when the 
temperature on one surface of the steel plate is not specified, but the surface is exposed 
to a fluid at a specified temperature. 

GIVEN 

Steel plate with specified surface temperatures 
Steel plate with one specified temperature and another surface exposed to a fluid 
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FIND 

(a) Modes of heat transfer 

SKETCH 

T1 T2

Steel Plate

Tfluid T2

Steel Plate

(a) (b)

SOLUTION 

(a) Since the surface temperatures are specified, the only mode of heat transfer of importance is 
conduction through the steel plate 

(b) In addition to conduction to the steel plate, convection at the surface exposed to the fluid must be 
considered

PROBLEM 1.66 

What are the important modes of heat transfer for a person sitting quietly in a room? 
What if the person is sitting near a roaring fireplace? 

GIVEN 

Person sitting quietly in a room 
Person sitting in a room with a fireplace 

FIND 

(a) Modes of heat transfer for each situation 

ASSUMPTIONS 

The person is clothed 

SOLUTION 

(a) Since the person is clothed, we would need to consider conduction through the clothing, and 
convection and radiation from the exposed surface of the clothing. 

(b) In addition to the modes identified in (a), we would need to consider that surfaces of the person 
oriented towards the fire would be absorbing radiation from the flames. 

PROBLEM 1.67 

Explain a fundamental characteristic that differentiates condition from convection and 
radiation.

SOLUTION 

Conduction is the only heat transfer mechanism that dominates in solid materials. Convection and 
radiation play important roles in fluids or, for radiation, in a vacuum. Under certain conditions, e.g. a 
transparent solid, radiation could be important in a solid. 
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PROBLEM 1.68 

Describe and compare the modes of heat loss through the single-pane and double-pane 
window assemblies shown in the sketch below. 

GIVEN 

A single-pane and a double-pane window assembly 

FIND 

(a) The modes of heat transfer for each 
(b) Compare the modes of heat transfer for each 

ASSUMPTIONS 

The window assembly wood casing is a good insulator 

SKETCH 
Wood Casing Wood Casing

Glass Glass

Single Pane Window Double Pane Window

SOLUTION 

The thermal network for both cases is shown above and summarizes the situation. For the single-pane 
window, we have convection on both exterior surfaces of the glass, radiation from both exterior 
surfaces of the glass, and conduction through the glass. For the double-pane window, we would have 
these modes in addition to radiation and convection exchange between the facing surfaces of the glass 
panes. Since the overall thermal network for the double-pane assembly replaces the pane-conduction 
with two-pane conductions plus the convection/radiation between the two panes, the overall thermal 
resistance of the double-pane assembly should be larger. Therefore, we would expect lower heat loss 
through the double-pane window. 

PROBLEM 1.69 

A person wearing a heavy parka is standing in a cold wind. Describe the modes of heat 
transfer determining heat loss from the person’s body. 

GIVEN 

Person standing in a cold wing wearing a heavy parka 

FIND 

(a) The modes of heat transfer 

SKETCH 
Rshirt

Tskin

Rparka Rconvection

Tair
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SOLUTION 

The thermal circuit for the situation is shown above. Assume that the person is wearing one other 
garment, i.e. a shirt, under the parka. The modes of heat transfer include conduction through the shirt 
and the parka and convection from the outer surface of the parka to the cold wind. We expect that the 
largest thermal resistance will be the parka insulation. We have neglected radiation from the parka 
outer surface because its influence on the overall heat transfer will be small compared to the other 
terms. 

PROBLEM 1.70 

Discuss the modes of heat transfer that determine the equilibrium temperature of the 
space shuttle Endeavor when it is in orbit. What happens when it reenters the earth’s 
atmosphere? 

GIVEN 

Space shuttle Endeavor in orbit 
Space shuttle Endeavor during reentry 

FIND 

(a) Modes of heat transfer 

SKETCH 

SOLUTION 

Heat generated internally will have to be rejected to the skin of the shuttle or to some type of radiator 
heat exchanger exposed to space. The internal loads that are not rejected actively, i.e., by a heat 
exchanger, will be transferred to the internal surface of the shuttle by radiation and convection, 
transferred by conduction through the skin, then radiated to space. These two paths of heat transfer 
must be sufficient to ensure that the interior is maintained at a comfortable working temperature. 
During reentry, the exterior surface of the shuttle will be exposed to a heat flux that results from 
frictional heating by the atmosphere. In this case, it is likely that the net heat flow will be into the 
space shuttle. The thermal design must be such that during reentry the interior temperature does not 
exceed some safe value. 


