

Example : Find the Maclaurin series expansion for $\sin (x)$ for all finite x,
$(-\infty<x<\infty)$
Sol: $\because x_{0}=0$ then
$f(x)=\sin (x)$

$$
f(o)=0
$$

$f^{\prime}(x)=\cos (x)=\sin \left(x+\frac{\pi}{2}\right)$
$f^{\prime \prime}(x)=-\sin (x)=\sin (x+\pi)$
$f^{\prime \prime}(o)=0$
$f^{\prime \prime \prime}(x)=-\cos (x)=\sin \left(x+\frac{3 \pi}{2}\right)$
$f^{k}(x)=\sin \left(x+\frac{k \pi}{2}\right)$
So as shown above the function and its derivatives at $x=0$ are given by the formula: $\quad f^{k}(x)=\sin \left(\frac{k \pi}{2}\right), k=0,1,2,3, \ldots$
Where the notation $f^{k}(0)$ means the value of the $k^{t h}$ derivatives of $f(x)$ at $x=0$ and the zero ${ }^{\text {th }}$ derivative of the function means the function itself.
When k is an even integer $0,2,4, \ldots, \sin \left(\frac{k \pi}{2}\right)$ is zero. When k is one of the integers $1,5,9,13, \ldots$ of the form $4 m+1$, then $\sin \left(\frac{k \pi}{2}\right)$ is plus one, while if k is one of the integer $3,7, \ldots$ of the form $4 m+3$, then $\sin \left(\frac{k \pi}{2}\right)$ is minus one.

Example 1

The derivative of a function $f(x)$ at a particular value of x can be approximately calculated by

$$
f^{\prime}(x) \approx \frac{f(x+h)-f(x)}{h}
$$

of $f^{\prime}(2)$ For $f(x)=7 e^{0.5 x}$ and $h=0.3$, find
a) the approximate value of $f^{\prime}(2)$
b) the true value of $f^{\prime}(2)$
c) the true error for part (a)
d) the relative true error at $x=2$.

Solution:

a) $\quad f^{\prime}(x) \approx \frac{f(x+h)-f(x)}{h}$

For $x=2$ and $h=0.3$,

$$
\begin{aligned}
f^{\prime}(2) & \approx \frac{f(2+0.3)-f(2)}{0.3} \\
& =\frac{f(2.3)-f(2)}{0.3} \\
& =\frac{7 e^{0.5(2.3)}-7 e^{0.5(2)}}{0.3} \\
& =\frac{22.107-19.028}{0.3} \\
& =10.265
\end{aligned}
$$

b) The exact value of $f^{\prime}(2)$ can be calculated by using our knowledge of differential calculus.

$$
\begin{aligned}
f(x) & =7 e^{0.5 x} \\
f^{\prime}(x) & =7 \times 0.5 \times e^{0.5 x} \\
& =3.5 e^{0.5 x}
\end{aligned}
$$

So the true value of $f^{\prime}(2)$ is

$$
\begin{aligned}
f^{\prime}(2)= & 3.5 e^{0.5(2)} \\
& =9.5140
\end{aligned}
$$

c) True error is calculated as

$$
\begin{aligned}
e_{x} & =\mid \text { True value }- \text { Approximate value } \mid \\
& =|9.5140-10.265| \\
& =|-0.7561|=0.7561
\end{aligned}
$$

b) Repeat the procedure of part (a) with $h=0.15$,

$$
f^{\prime}(x) \approx \frac{f(x+h)-f(x)}{h}
$$

For $x=2$ and $h=0.15$,

$$
\begin{aligned}
f^{\prime}(2) & \approx \frac{f(2+0.15)-f(2)}{0.15} \\
& =\frac{f(2.15)-f(2)}{0.15} \\
& =\frac{7 e^{0.5(2.15)}-7 e^{0.5(2)}}{0.15} \\
& =\frac{20.50-19.028}{0.15} \\
& =9.8799
\end{aligned}
$$

c) So the approximate error , E_{a} is

$$
\begin{aligned}
E_{a} & =\mid \text { Present Approximation - Previous Approximation } \mid \\
& =|9.8799-10.265| \\
& =|-0.38474|=0.38474
\end{aligned}
$$

d) Relative approximate error $=\frac{\text { approximate error }}{\mid \text { Present Approximation } \mid}$

$$
\begin{aligned}
& =\frac{0.38474}{|9.8799|} \\
& =0.038942 * 100 \% \\
& =3.8942 \%
\end{aligned}
$$

Q/ While solving a mathematical model using numerical methods, how can we use relative approximate errors to minimize the error?
\underline{A} : In a numerical method that uses iterative methods, a user can calculate relative approximate error δ_{a} at the end of each iteration. The user may prespecify a minimum acceptable tolerance called the pre-specified tolerance $\boldsymbol{\delta}_{\boldsymbol{s}}$. If the absolute relative approximate error δ_{a} is less than or equal to the prespecified tolerance δ_{s}, that is, $\delta_{a} \leq \delta_{s}$, then the acceptable error has been reached and no more iterations would be required. Alternatively, one may prespecify how many significant digits they would like to be correct in their answer. In that case, if one wants at least m significant digits to be correct in the answer, then you would need to have the absolute relative approximate error.

$$
\delta_{a} \leq 0.5 * 10^{2-m} \%
$$

Example 5

If one chooses 6 terms of the Maclourin series for e^{x} to calculate $e^{0.7}$, how many significant digits can you trust in the solution? Find your answer without knowing or using the exact answer.

other higher derivatives of $f(x)$ at $x=4$ are zero.

Solution
$f\left(x_{0}+h\right)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) h+f^{\prime \prime}\left(x_{0}\right) \frac{h^{2}}{2!}+f^{\prime \prime \prime}\left(x_{0}\right) \frac{h^{3}}{3!}+f^{\prime \prime \prime \prime}\left(x_{0}\right) \frac{h^{4}}{4!}+\cdots$
$\because x_{0}=4$
$h=6-4=2$
since fourth and higher derivative of $f(x)$ are zero at $x=4$

$$
\begin{aligned}
& f(4+2)=f(4)+f^{\prime}(4) 2+f^{\prime \prime}(4) \frac{2^{2}}{2!}+f^{\prime \prime \prime}(4) \frac{2^{3}}{3!} \\
& \begin{aligned}
f(6) & =125+74(2)+30\left(\frac{2^{2}}{2!}\right)+6 \frac{2^{3}}{3!} \\
& =125+148+60+8 \\
& =341
\end{aligned}
\end{aligned}
$$

