
8

Ex:

 The difference between Compiler and Interpreter

The interpreter actually carries out the computations specified in the source
program. In other words, the output of a compiler is a program, whereas the output
of an interpreter is the source program’s output.

 Optimization

For example, in the following program segment:
stmt1
go to label1
stmt2
stmt3
label2: stmt4

stmt2 and stmt3 can never be executed. They are unreachable and can be
eliminated from the object program. A second example of optimization is shown
below:

for (i=1; i<=100000; i++)
{ x = sqrt (y); // square root function
cout << x+i << endl;
}

9

In this case, the assignment to x need not be inside the loop since y doesn’t change
as the loop repeats (it is a loop invariant). In the global optimization phase, the
compiler would move the assignment to x out of the loop in the object program:

x = sqrt (y); // loop invariant
for (i=1; i<=100000; i++)
cout << x+i << endl;

This would eliminate 99,999 unnecessary calls to the sqrt function at run time.

2. Lexical Analysis Phase

The first phase of a compiler is called lexical analysis. Because this phase scans the
input string without backtracking (i.e. by reading each symbol once, and
processing it correctly), it is often called a lexical scanner. As implied by its name,
lexical analysis attempts to isolate the “words” in an input string. We use the word
“word” in a technical sense. A word, also known as a lexeme, a lexical item, or a
lexical token, is a string of input characters which is taken as a unit and passed on
to the next phase of compilation. The Fig. 5 shows the role of lexical analysis.

Fig. 5: The Role of a Lexical Analyzer

Examples of words are:
(1) Keywords - while, if, else, for ...etc. These are words which may have a
particular predefined meaning to the compiler, as opposed to identifiers which
have no particular meaning. Reserved words are keywords which are not available

10

to the programmer for use as identifiers. In most programming languages, such as
Java and C, all keywords are reserved. PL/1 is an example of a language which
has no reserved words.
(2) Identifiers - words that the programmer constructs to attach a name to a
construct, usually having some indication as to the purpose or intent of the
construct. Identifiers may be used to identify variables, classes, constants,
functions, etc.
(3) Operators - symbols used for arithmetic, character, or logical operations, such
as +, - , =,! =, etc. Notice that operators may consist of more than one character.
(4) Numeric constants - numbers such as 124, 12.35, 0.09E-23, etc. These must
be converted to a numeric format so that they can be used in arithmetic operations,
because the compiler initially sees all input as a string of characters. Numeric
constants may be stored in a table.
(5) Character constants - single characters or strings of characters enclosed in
quotes.
(6) Special characters - characters used as delimiters such as .,(,),{,},;. These are
generally single-character words.
(7) Comments - Though comments must be detected in the lexical analysis phase,
they are not put out as tokens to the next phase of compilation.
(8) White space - Spaces and tabs are generally ignored by the compiler, except to
serve as delimiters in most languages, and are not put out as tokens.
(9) Newline - In languages with free format, newline characters should also be
ignored, otherwise a newline token should be put out by the lexical scanner.

An example of C++ source input, showing the word boundaries and types is given
below:

During lexical analysis, a symbol table is constructed as identifiers are
encountered. This is a data structure which stores each identifier once; regardless
of the number of times it occurs in the source program. It also stores information
about the identifier, such as the kind of identifier and where associated run-time
information (such as the value assigned to a variable) is stored. This data structure
is often organized as a binary search tree, or hash table, for efficiency in
searching.

11

When compiling block structured languages such as Java, C, or Algol, the symbol
table processing is more involved. Since the same identifier can have different
declarations in different blocks or procedures, both instances of the identifier must
be recorded. This can be done by setting up a separate symbol table for each
block, or by specifying block scopes in a single symbol table. This would be done
during the parse or syntax analysis phase of the compiler; the scanner could
simply store the identifier in a string space array and return a pointer to its
first character.
Numeric constants must be converted to an appropriate internal form. For
example, the constant “3.4e+6” should be thought of as a string of six characters
which needs to be translated to floating point (or fixed point integer) format so that
the computer can perform appropriate arithmetic operations with it. As we
will see, this is not a trivial problem, and most compiler writers make use of
library routines to handle this.

The output of this phase is a stream of tokens, one token for each word
encountered in the input program. Each token consists of two parts: (1) a class
indicating which kind of token and (2) a value indicating which member of the
class. The above example might produce the following stream of tokens:

Token Token
Class Value
1 [code for while]
6 [code for (]
2 [ptr to symbol table entry for x33]
3 [code for <=]
4 [ptr to constant table entry for 2.5e+33
3 [code for -]
2 [ptr to symbol table entry for total]
6 [code for)]
2 [ptr to symbol table entry for calc]
6 [code for (]
2 [ptr to symbol table entry for x33]
6 [code for)]
6 [code for ;]

Note that the comment is not put out. Also, some token classes might not have a
value part. For example, a left parenthesis might be a token class, with no need to
specify a value.

12

Some variations on this scheme are certainly possible, allowing greater efficiency.
For example, when an identifier is followed by an assignment operator, a single
assignment token could be put out. The value part of the token would be a symbol
table pointer for the identifier. Thus the input string "x =", would be put out as a
single token, rather than two tokens. Also, each keyword could be a distinct token
class, which would increase the number of classes significantly, but might simplify
the syntax analysis phase.
Note that the lexical analysis phase does not check for proper syntax. The
input could be

 } while if ({

and the lexical phase would put out five tokens corresponding to the five words in
the input. (Presumably the errors will be detected in the syntax analysis phase).
If the source language is not case sensitive, the scanner must accommodate this
feature. For example, the following would all represent the same keyword: then,
tHeN, Then, THEN. A preprocessor could be used to translate all alphabetic
characters to upper (or lower) case.

2.1 Specification of Tokens

2.1.1 Formal Languages

A formal language is one that can be specified precisely and is amenable for use
with computers, whereas a natural language is one which is normally spoken by
people.

2.1.1.1 Language Elements

We need to understand some fundamental definitions from discrete mathematics.

 A set is a collection of unique objects. In listing the elements of a set, we
normally list each element only once, and the elements may be listed in any order.
A set may contain an infinite number of objects. The set which contains no
elements is still a set, and we call it the empty set and designate it either by { } or
by φ.

 A string is a list of characters from a given alphabet. The elements of a string
need not be unique, and the order in which they are listed is important. For
example, “abc” and “cba” are different strings, as are “abb” and “ab”. The

13

string which consists of no characters is still a string (of characters from the given
alphabet), and we call it the null string and designate it by ε. It is important to
remember that if, for example, we are speaking of strings of zeros and ones (i.e.
strings from the alphabet {0, 1}).
The following are examples of languages from the alphabet {0, 1}:

1. {0,10,1011}
2. {}
3. {ε,0,00,000,0000,00000,...}
4. The set of all strings of zeroes and ones having an even number of ones.

The first two examples are finite sets while the last two examples are infinite.
The first two examples do not contain the null string, while the last two examples
do.

2.1.1.2 Finite State Machines

We now encounter a problem in specifying, precisely, the strings in an infinite
(or very large) language. If we describe the language in English, we lack the
precision necessary to make it clear exactly which strings are in the language and
which are not in the language. One solution to this problem is to use a
mathematical or hypothetical machine called a finite state machine. This is a
machine which we will describe in mathematical terms and whose operation
should be perfectly clear, though we will not actually construct such a machine.
The study of theoretical machines such as the finite state machine is called
automata theory because “automaton” is just another word for “machine”. A finite
state machine consists of:
1. A finite set of states, one of which is designated the starting state, and zero or
more of which are designated accepting states. The starting state may also be an
accepting state.
2. A state transition function which has two arguments – a state and an input
symbol (from a given input alphabet) – and returns as result a state.

Here is how the machine works. The input is a string of symbols from the input
alphabet. The machine is initially in the starting state. As each symbol is read
from the input string, the machine proceeds to a new state as indicated by the
transition function, which is a function of the input symbol and the current state of
the machine. When the entire input string has been read, the machine is either
in an accepting state or in a non-accepting state. If it is in an accepting state, then

14

we say the input string has been accepted. Otherwise the input string has not been
accepted, i.e. it has been rejected. The set of all input strings which would be
accepted by the machine form a language, and in this way the finite state machine
provides a precise specification of a language.

A string is a finite sequence of symbols, such as 0011. Sequence and word are
synonyms for string. The length of the string x, usually denotedxis the total
number of the symbols in x. For example 01101 is a string of length 5. A special
string in the empty string, which denote by . This string is of length zero.
If x and y are string, then the concatenation of x and y; written x.y or xy, is the
string formed by the symbol of x followed by the symbol of y. For example if
x=abc and y=de, where a, b, c, d, e are symbols, then xy=abcde. The condition of
the empty string with any string is that string, more formally x=x=x.

We may think of condition as a "product". It thus makes sense to talk of
exponentiation of string as representing an iterated project. For example, x1=x,
x2=xx, x3=xxx and so on. In general, xi is the string x repeated i times. As a useful
convention, we take x0 to be  for any string x. Thus, , is the identity of
concatenation.

