Introduction To Modeling & Simulation (Part 1)

Dr. Çağatay ÜNDEĞER

Öğretim Görevlisi
Bilkent Üniversitesi Bilgisayar Mühendisliği Bölümü

e-mail: cagatay@undege.com
cagatay@cs.bilkent.edu.tr

Introduction To Modeling and Simulation (Outline)

• What is Modeling and Simulation (M&S) ?
• Complexity Types
• Model Types
• Simulation Types
• M&S Terms and Definitions
What is M&S?

• Discipline of **understanding and evaluating** the interaction of parts of a **real** or **theoretical system** by;
 – Designing its representation (**model**) and
 – Executing (running) the model including the time and space dimension (**simulation**).

What is a System?

• An unit or process, which **exists** and **operates** **in time and space** through the interaction of its parts.
What is a Model?

• A simplified representation of a real or theoretical system at some particular point in time or space intended to provide understanding of the system.

What Level of Model Detail?

• Whether a model is good or not depends on the extent to which it provides understanding.

• All the models are simplification of reality.
• Exact copy of a reality can only be the reality itself.

• There is always a trade off as to what level of detail is included in the model:
 – Too little detail: risk of missing relevant interactions.
 – Too much detail: Overly complicated to understand.
What is a Simulation?

• The manipulation of a model in such a way that it operates in time or space to summarize it.

Why Simulation?

• Enable one to perceive the interactions that would otherwise be apparent because of their separation in time or space.
Advantages of M&S

• Choose correctly:
 – M&S lets you test every aspect of a proposed change or addition without committing resources to their acquisition.

• Compress and expand time:
 – M&S allows you to speed up or slow down phenomena so that you can investigate them better.

Advantages of M&S

• Understand why:
 – Managers often want to know why certain phenomena occur in a real system.
 – M&S lets you determine answers to “why” questions by reconstructing (replaying) the scene and taking a closer look at what has happened during the run.
Advantages of M&S

• **Explore possibilities:**
 – You can explore new policies, operating procedures or methods without the need of experimenting with the real world systems.

• **Diagnose problems:**
 – Some systems are so complex that it is impossible to consider all the interactions taking place in a given moment.
 – With M&S, you can better understand the interactions among the variables that make up the complex system.

Advantages of M&S

• **Identify constraints:**
 – Bottlenecks in a system is an effect rather than a cause.
 – Doing bottleneck analysis with M&S, you can discover the cause of the delays in work process, information, material or other processes.
Advantages of M&S

• **Develop understanding:**
 – M&S provides understanding about how a system really operates rather than indicating someone’s predictions about how a system will operate.

• **Visualize the plan:**
 – M&S lets you see your system actually running.
 – That allows you to detect design flaws that appear credible.

• **Build consensus:**
 – Instead of saying one person’s opinion about a system, you actually show how the system works, so provide an objective opinion.

• **Prepare for change:**
 – Using M&S, you can ask what-if questions for determining future improvements and new designs on a system.
Advantages of M&S

• Invest wisely:
 – M&S is a wise investment since
 • Typical cost of a simulation study is substantially less than generally 1% of the total amount being expended for the implementation of a design or redesign.

Advantages of M&S

• Train the team:
 – M&S can provide excellent training when design for that purpose.
 – In training, team provides decision inputs to the simulation as it progress, and observes the outputs.
 – After simulation ends, further evaluation can be provided by after action review (AAR).
Advantages of M&S

- **Specify requirements:**
 - M&S can be used to determine requirements for a system design by simulating different possible configurations of a system.

Disadvantages of M&S

- **Model building requires special training:**
 - M&S is an art that is learned over time and through experience.
 - Two models of the same system developed by two different individuals may have similarities, but it is unlikely to be the same.
 - Building a realistic model may require domain knowledge that can only be acquired from a subject matter expert.
Disadvantages of M&S

• Simulation results may be difficult to interpret:
 – Since most simulation results are essentially random variables,
 • It may be hard to determine whether an observation is a result of system interrelationships or just randomness.

• Simulation modeling and analysis can be time consuming and expensive:
 – Economizing on resources for modeling and analysis may result in a simulation not sufficient enough for the problem, and may consume time, effort and money for nothing.
Disadvantages of M&S

- Simulation may be used inappropriately:
 - Simulation is used in some cases when analytical solution is possible, or even preferable.

How to Use a Simulation?

- Develop a model,
- Simulate it,
- Analyze the results,
- Learn from the simulation,
- Revise the model & simulation,
- Continue the interactions until adequate level of understanding is developed.

- M&S is a discipline, but it is also very much an art form.
Steps in a M&S Study

Problem formulation

Setting of objectives and overall project plan

Model conceptualization

Data collection

Model transformation

Experimental design

Simulation runs & analysis

Documentation and reporting

Verified?

Validated?

More runs?

Some Application Areas

• Medical research, training & support
• Industrial engineering designs & presentations (Factory process design, manufacturing, ...)
• Civil engineering designs & presentations (Building design, city & infrastructure planning, ...)
• Mechanical engineering designs & presentations (Engine designs, aerodynamic design, ...)
• Nature sciences (Physic, chemistry, biology, meteorology, astronomy, ...)
• Geographic Information Systems (Earth modeling, ...)
• Military Decision Support (War modeling, ...)
• Training (Simulators, games, ...)
• Entertainment (Games, ...)

Verified?

Validated?

More runs?
Practical Lecture Focus

- **Modeling & Simulation in;**
 - Defense Industry, and
 - Game Programming.
- **Includes:**
 - Earth modeling,
 - Entity modeling,
 - Behavior modeling,
 - Sensor & weapon systems modeling,
 - Distributed simulations,
 - Simulation based optimization and analysis.

Complexity Types

- Detail Complexity
- Dynamic Complexity
Detail Complexity

- Associated with systems which have **many component parts**.

Dynamic Complexity

- Associated with systems which **have cause and effect separated by time and space**.
- Great difficulty dealing with.
- **Unable** to readily see the **connections between parts** of the systems and their **interactions**.
Model Types

- Mathematical Models
- Physical Models
- Process Models
Mathematical Models

• Models, properties of which are described by mathematical symbols and relations.
• Constructed using:
 – Procedures (algorithms)
 – Mathematical equations.

Chaparral Missile Properties (Parameters)

<table>
<thead>
<tr>
<th>Type</th>
<th>Surface to air missile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radius</td>
<td>2.75 inch</td>
</tr>
<tr>
<td>Length</td>
<td>58 inch</td>
</tr>
<tr>
<td>Guidance</td>
<td>Passive infrared</td>
</tr>
<tr>
<td>Range</td>
<td>4 km</td>
</tr>
<tr>
<td>Velocity</td>
<td>2.2 mach</td>
</tr>
<tr>
<td>War Head</td>
<td>High explosive</td>
</tr>
<tr>
<td>Engine</td>
<td>Rocket, 2 phased</td>
</tr>
<tr>
<td>Acceleration</td>
<td>2 m/sec</td>
</tr>
</tbody>
</table>

A = Acceleration
S = Speed
W = Effective Radius
E = Effective Range
S2 = Target Velocity
D = Target Distance

\[
R = A + \frac{D}{(D/S + D/S^2)}
\]

R = Probability of Hit
Physical Models

• Models, properties of which are described by physical structures and relations.
• Usually applied to high fidelity (detailed) system simulations such as simulators.

Physical Models (Sample)
Process Models

- Models the process a system performs.
- Represents dynamic relations by mathematical and logical functions.

Process Models (Sample)

- Target
- Take Fire Decision
- Perform Fire Computations
- Give Fire Command
- Fire Missile
- Missile Hit Target

\[
T_1 + T_2 + T_3 + T_4 + T_5 + T_6 = \text{Mission Complete}
\]
Simulation Types (WRT Entities Involved)

- Live
- Virtual
- Constructive

Live Simulations

- Real systems & actors
- Real environment

Possible results:
- Resource Waste
- Time Waste
- Possible Damages
Virtual Simulations

- Real/Virtual systems & actors
- Real/Virtual environment

Usually used for training within simulators

Constructive Simulations

- Virtual systems & actors
- Virtual environment

Objectives:
- Doing measurement, comparison, forecasting & concept analysis,
- Producing statistics
Simulation Types (WRT Time Advance)

- Discrete
- Continuous

Discrete (Event) Simulations

- Time is advanced from event time to event time rather than using a continuously advancing time clock.
Continuous Simulations

- Something that can only really be accomplished with an analog computer.
- An approximation for continuous simulations (combined discrete continuous sim.) is;
 - Making the time step of the simulation sufficiently small so there are no transitions within the system between time steps.
 - So the simulation is stepped in time increments.

Simulation Types (WRT Results)

- Deterministic
- Stochastic
Deterministic Simulations

- A model that does **not contain probability**.
- Every run will result the same.
- Single run is enough to evaluate the result.

Stochastic Simulations

- A model that **contains probability**.
- Units, process, events or their parameters are **initiated randomly** using random numbers.
- If different runs are initiated with **different** random number **seeds**,
 - Every run will **result differently**.
- **Multiple runs are required** to evaluate the results.
- Statistics such as **averages, standard deviations** are used for evaluation.
Simulation Types
(WRT Design)

• Traditional
• Agent-Based

Traditional Simulations

• Simulations where the characteristics of a population are averaged together, and
• The model attempts to simulate changes in these averaged characteristics for the whole population.
Traditional Simulations
(Screen shot of a GPSS Program)

- GPSS is a traditional computer simulation language that stands for general-purpose simulation systems.

An internet cafe simulation

Traditional Simulations
(A Sample GPSS Program)

- Statistical values are used to model & simulate the system.

Mean inter arrival times for different time of day

<table>
<thead>
<tr>
<th>Time of Day</th>
<th>Inter Arrival Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00 - 10:00</td>
<td>60 minutes</td>
</tr>
<tr>
<td>10:00 - 11:00</td>
<td>40 minutes</td>
</tr>
<tr>
<td>11:00 - 12:00</td>
<td>45 minutes</td>
</tr>
<tr>
<td>12:00 - 13:00</td>
<td>25 minutes</td>
</tr>
<tr>
<td>13:00 - 14:00</td>
<td>20 minutes</td>
</tr>
<tr>
<td>14:00 - 15:00</td>
<td>25 minutes</td>
</tr>
<tr>
<td>15:00 - 16:00</td>
<td>30 minutes</td>
</tr>
<tr>
<td>16:00 - 17:00</td>
<td>45 minutes</td>
</tr>
<tr>
<td>17:00 - 18:00</td>
<td>60 minutes</td>
</tr>
</tbody>
</table>

```
INITIAL X$INTMEAN 60
INITIAL X$WAITMEAN 30
CALCULATE VARIABLE X$WAITTIME= X$WAITMEAN+5
GENERATE X$INTMEAN,FN$EXPO
ASSIGN 1,V$CALCWAIT ; max waiting time in parameter 1 of xact
EXPO FUNCTION RN1,C24 ; Exponential Distribution
0,0/.1,0/.104/.2,.2,.222/.3,.355/.4,.509/.5,.69/.6,.915/.7,1.2/.75,.104/.8,.915/.9,1.6/.995,2/1
WAITTIME FUNCTION RN3,C25 ; Standard normal distribution
0,-5/.00003,-4/.00135,-3/.00621,-2.5/.02275,-2/.06681,-1.5/.11507,-1.2/.15866,-1/.21186,-.8/.27425,-.6/.34458,-.4/.42074,-.2/.5,.0/.57926,.2/.65542,.4/.72575,.6/.78814,.8/.84134,1/.88493,1.2/.93319,1.5/.97725,2/1
```
Traditional Simulations
(A Sample GPSS Program)

Simulating 1 day in GPSS

```
ONEDAY
GENERATE 961,1 ; Internet Cafe Open at 09:00, 16*60 Min = 1 Day
SAVEVALUE INTMEAN,60 ; After 09:00 Inter Arrival Mean = 60 min
SAVEVALUE COMMEAN,60 ; Computer Usage Mean = 60 min
ADVANCE 60 ; 1 Hours
SAVEVALUE INTMEAN,45 ; After 10:00 Inter Arrival Mean = 45 min
ADVANCE 60 ; 1 Hours
SAVEVALUE INTMEAN,30 ; After 11:00 Inter Arrival Mean = 30 min
SAVEVALUE COMMEAN,90 ; Computer Usage Mean = 90 min
ADVANCE 180 ; 3 Hours
SAVEVALUE INTMEAN,25 ; After 14:00 Inter Arrival Mean = 25 min
ADVANCE 240 ; 4 Hours
SAVEVALUE INTMEAN,20 ; After 18:00 Inter Arrival Mean = 20 min
ADVANCE 180 ; 3 Hours
SAVEVALUE INTMEAN,30 ; After 21:00 Inter Arrival Mean = 30 min
ADVANCE 120 ; 2 Hours
SAVEVALUE INTMEAN,40 ; After 23:00 Inter Arrival Mean = 40 min
SAVEVALUE COMMEAN,60 ; Computer Usage Mean = 60 min
ADVANCE 60 ; 1 Hours
SAVEVALUE INTMEAN,60 ; After 24:00 Inter Arrival Mean = 60 min
ADVANCE 60 ; 1 Hours
TERMINATE 1 ; Internet Cafe Closed At 01:00
```

Traditional Simulations
(Sample GPSS Execution)
Traditional Simulations (Sample GPSS Results)

Queue waiting frequencies

<table>
<thead>
<tr>
<th>Time Range</th>
<th>Frequency</th>
<th>Cumulative %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 minute</td>
<td>5</td>
<td>100.00%</td>
</tr>
<tr>
<td>1...5 minutes</td>
<td>20</td>
<td>93.75%</td>
</tr>
<tr>
<td>5...10 minutes</td>
<td>3</td>
<td>87.50%</td>
</tr>
<tr>
<td>10...15 minutes</td>
<td>3</td>
<td>81.25%</td>
</tr>
<tr>
<td>15...20 minutes</td>
<td>1</td>
<td>75.00%</td>
</tr>
<tr>
<td>20...25 minutes</td>
<td>1</td>
<td>68.75%</td>
</tr>
<tr>
<td>25...30 minutes</td>
<td>1</td>
<td>62.50%</td>
</tr>
<tr>
<td>30...35 minutes</td>
<td>2</td>
<td>56.25%</td>
</tr>
</tbody>
</table>

Frequency of leaving time for too much waited customers

<table>
<thead>
<tr>
<th>Time Range</th>
<th>Frequency</th>
<th>Cumulative %</th>
</tr>
</thead>
<tbody>
<tr>
<td>25...30 minutes</td>
<td>1</td>
<td>33.33%</td>
</tr>
<tr>
<td>30...35 minutes</td>
<td>2</td>
<td>100.00%</td>
</tr>
</tbody>
</table>

Agent-Based Simulations

- Differs from traditional kinds of simulations in that some or all of the simulated entities are modeled in terms of agents.
- Explicitly attempts to model specific behaviors of specific individuals.
- Contrasted to methods where the characteristics of a population are averaged together.
- Supports structure preserving modeling of the simulated reality.
Agent-Based Simulations (Domain Examples)

- Vehicles and pedestrians in traffic situations.
- Actors in financial markets.
- Consumer behavior.
- Humans and machines in battlefields.
- People in crowds.
- Animals and/or plants in eco-systems.
- Artificial creatures in computer games.

Agent-Based Simulations (Advantages)

- Distributed control, supporting parallel computations on separate machines.
- Supports simulation of pro-active behaviour.
- Ability to add or delete entities during a simulation.
- Easy to swap (exchange) an agent with the corresponding simulated entity,
 -- i.e., a real person or a physical machine, (even during a simulation) making the simulation scenarios very dynamic.
Agent-Based Simulations (Advantages)

- Facilitates simulation of group behavior in highly dynamic situations,
 - Thereby allowing the study of "emergent behavior" that is hard to grasp with traditional methods.
- Well-suited for the simulation of situations where there are a large number of heterogeneous individuals who may behave somewhat differently.

Agent-Based Simulations (Agent Characterization)

- What is referred to as an agent covers a spectrum ranging from ordinary objects to full agents.
- May characterize them with the following dimensions:
 - Interaction
 - Communication language
 - Control/autonomy
 - Pro-activeness
 - Spatial explicitness
 - Mobility
 - Adaptivity
 - Modelling concepts
Agent-Based Simulations (Agent Characterization)

- Interaction:
 - From collaborative to no interaction at all.

- Communication language:
 - From KQML via simple signals (e.g. procedure calls) to none at all.

- Control/autonomy:
 - From each agent being a separate process (or thread) to one single process (monolithic system).

Agent-Based Simulations (Agent Characterization)

- Pro-activeness:
 - From pro-active to full reactive.

- Spatial explicitness:
 - From each agent being assigned a location in physical geometrical space to no notion of space.

- Mobility:
 - From each agent being able to move around in the simulated physical space to all agents being stationary.
Agent-Based Simulations
(Agent Characterization)

• Adaptivity:
 – From learning to static behaviour.

• Modelling concepts:
 – From mentalistic (e.g., Belief Desire Intention [BDI]) to non-mentalistic.

Frequently Used M&S Terms and Definitions

• Entity, Attributes, State Variables & Event
• Replication
• Pixel, Polygon & Voxel
• Fidelity & Resolution
• Aggregation & Disaggregation
• Interoperability & Reusability
• Frame
• Simulator
• Computer Generated Forces
• Distributed Simulation
• High Level Architecture (HLA)
• Conceptual Model of The Mission Space (CMMS)
• Verification & Validation
Entity

- A representation of an object that requires explicit definition.
- An entity can be:
 - Dynamic: Moves through the system
 - E.g. A customer
 - Static (resource): Serves other entities
 - E.g. A bank teller

Attributes

- Local values that defines the characteristics of an entity.
- A soldier attributes could be:
 - Max running speed: 12 km/h
 - Head direction left limit: -80 degree
 - Head direction right limit: +80 degree
 - Max ammunition level: 20 bullets
 - Max target detection range: 2 km
State Variables

- The collection of all information needed to define what is happening within an entity or system to sufficient level at a given point in time.
- A soldier state variables could be:
 - Body posture: standing, running, ...
 - Head direction: -80 ... +80 degrees
 - Ammunition level: 0 .. 20 bullets
 - Health: alive, injured, dead

Event

- An occurrence that changes the state of a system.
- Event types:
 - Internal (endogenous) events
 - E.g. Beginning of a service at a bank.
 - External (exogenous) events
 - E.g. arrival of customers for service.
Replication

- A single simulation run is a random sequence of events that illustrated only one of the branches of all possible event flow combinations.
- Therefore, reaching a conclusion based on just a single run is not an appropriate way of analysis.
- To minimize effect of randomness, simulations are run multiple times with the same scenario and the results are averaged.
- Each of these runs are called a replication.

Pixel

- The smallest piece of information in an image data.
- Normally arranged in a regular 2D grid, and are often represented using dots or squares.
Value of Pixels

- Intensity/value of each pixel is variable:
 - *In color systems*, each pixel has typically 3 or 4 components such as red, green, blue and alpha.
 - *In digital elevation models*, each pixel is typically a height value such as elevation from sea level.

Polygon

- A plane figure that is bounded by a closed path or circuit, composed of a finite sequence of straight line segments.
- Segments are called edges or sides.
- Points where two edges meet are the polygon's vertices or corners.
- Interior of the polygon is called its body.
Characterization of Polygons

- **Convex**: Any line drawn through the polygon (and not tangent to an edge or corner) meets its boundary exactly twice.
- **Concave**: Non-convex.
- **Simple**: The boundary of the polygon does not cross itself. All convex polygons are simple.

Characterization of Polygons

- **Star-shaped**: There exists a point that whole interior is visible from without crossing any edge. The polygon must be simple.
- **Self-intersecting**: Boundary of the polygon crosses itself.
- **Star-Polygon**: A polygon which self-intersects in a regular way.
- **Polygon with Holes**: A polygon having interior boundaries that generates holes.
Polygonal Models

- A three-dimensional model of an object that is created by building polygons (usually triangles) from the points in a point cloud.

- A faceted three-dimensional model of an object.

Voxel

- A volume element, representing a value on a regular grid in three-dimensional space.
- This is analogous to a pixel, which represents 2D image data.
- Voxels are frequently used in the visualization and analysis of medical and scientific data.
Voxel Models

• A three dimensional model of an object that is represented by voxels (created with voxelization).

Resolution

• The level of detail a model is represented.

Image

3D model

Low resolution

High resolution
Fidelity

- The degree to which a model or simulation reproduces the state and behaviour of a real world system.
- Fidelity is therefore a measure of the realism of a model or simulation.
- A high resolution model does not always mean a high fidelity model.

Aggregation & Disaggregation

- The grouping/ungrouping of a number of entities for low/high fidelity modeling and/or visualization
Interoperability

• The ability of diverse systems to work together (inter-operate).

If two systems are interoperable, they can work together.

Reusability

• The likelihood a segment of source code can be used again to add new functionalities with slight or no modification.

• Reusable modules and classes;
 – Reduce implementation time,
 – Increase the likelihood that prior testing and use has eliminated bugs,
 – Localizes code modifications when a change in implementation is required.
Frame

- One of the many single;
 - Photographic images in a motion picture, or
 - Time instant in a simulation run.

Simulator

- A software & hardware integrated system that creates an environment that is as close as possible to reality for the purpose of training or research.
Computer Generated Forces

- Simulated military entities (e.g. soldiers, tanks) capable of acting autonomously in a simulation environment using artificial intelligence techniques.

Distributed Simulation

- An integrated simulation that is partitioned into a number of smaller simulations over different computational units (e.g. processors, computers).
- Provides higher scalability and multi user interaction.
- A system, whose performance improves proportional to the computational capacity added, is said to be a scalable system.
High Level Architecture (HLA)

- An IEEE (1516) standard for developing distributed simulations.
- The concept was developed by Defense Modeling & Simulation Office (DMSO).
 - Current technology was not providing tools necessary to achieve DoD M&S Master Plan.
 - A standard was needed for the interoperability of developed simulations.
High Level Architecture (HLA)

Simulations (Federates)

In practice: A Centralized Approach
All Simulations Communicate via RTI

RUN TIME INFRASTRUCTURE (RTI)

- Federation Management
- Declaration Management
- Object Management
- Ownership Management
- Time Management
- Data Distribution Management

Conceptual Model of The Mission Space (CMMS)

- Developing simulations for some specific domains such as military operations requires knowledge of the domain (mission space).
- But that mission space knowledge is not usually readily available for the developers.
 - It is incomplete, ambiguous or defined in an informal way.
- In such a case,
 - It is not possible to develop a high fidelity model and simulation.
Conceptual Model of The Mission Space (CMMS)

- CMMS is a bridge between subject matter experts (SME*) and developers, which describes in a consistent way how the real world runs within a particular domain.

SME*: A person who is an expert in a particular area.

<table>
<thead>
<tr>
<th>Real World</th>
<th>CMMI</th>
<th>System Design</th>
<th>System Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implementation Independent</td>
<td>Implementation Dependent</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Steps of CMMS Development

- **Collect authoritative simulation context information:**
 To develop scope of simulation, which describes the domain that a simulation is to address.

- **Identify entities and processes:**
 That must be represented for the simulation to accomplish its objectives.

- **Develop simulation elements:**
 To represent entities and processes.

- **Address relationships among simulation elements:**
 To ensure that constraints and boundary conditions imposed by the simulation context are accommodated.
Representing CMMS Formally

Verification & Validation

• Real-world system under investigation is abstracted by a conceptual model.
• Conceptual model is then coded into operational model.
• Hopefully, operation model is a correct representation of real-world system.
• We need more than hope.
• To ensure correctness, we have to perform verification and validation.
Verification

• Determination of whether the computer implementation of the conceptual model is correct.

• Question:
 – Does the operational model accurately reflects the conceptual model?

• To get an answer:
 – Examine the simulation program in details and compare to the conceptual model.

Verification

• Commonsense ways to perform verification:
 – Follow the principles of structured programming (detailed plans, top-down design, flow charts, etc.).
 – Make operational model as self-documenting as possible (comments, graphical software).
 – Have computer code checked by more than one person.
Verification

• Commonsense ways to perform verification:
 – Check to see that values of input data are being used appropriately (e.g. units).
 – For a variety of input-data values, ensure that outputs are reasonable.
 – Use an interactive run controller or debugger to check that program operates as intended (e.g. execute model step by step).
 – Visualisation is a very useful verification tool (e.g. detect actions that are illogical).

Validation

• Determination of whether the conceptual model can be substituted for the real system for the purpose of experimentation.
• A variety of subjective and objective techniques can be used to validate the conceptual model.
Validation

• Subjective techniques to perform validation:
 – Face validation: Model must appear reasonable to the subject matter experts.
 – Sensitivity analysis: When model input is changed, output should change in a predictable direction.
 – Extreme condition test: Check whether model behaves properly when input data are at the extremes.

• Validation of conceptual model assumptions:
 • Check structural and data assumptions with appropriate personnel (experts, consultants).
 • No one person knows everything about the entire system.
 • So, many people are required.
Validation

• Subjective techniques to perform validation:
 – Consistency checks:
 • Continue to examine operation model over time.
 • Detect significant changes in real-system that would effect correctness of simulation model.

• Turing tests:
 • Experimentally compare model outputs to system outputs with experts.
 • Make experts distinguish the ones that are simulated.
 • If a substantial number of simulated ones are identified, simulation model is inadequate.
Validation

• Objective techniques to perform validation:
 – Validating input-output transformations:
 • Compare model output to the output of real-system if possible (e.g. using t-test).
 – Validation using historical input data:
 • Drive operational model with historical records.
 • Output should stay within acceptable statistical error of those observed from real-world system.