2017

Random Experiment

It is an experiment that its outcomes can not be predicted, and each its outcome has the same chance(probability).

Definition 11 Sample space The sample space, denoted by Ω , is the collection or totality of all possible outcomes of a conceptual experiment.

Definition 12 Event and event space An event is a subset of the sample space. The class of all events associated with a given experiment is defined to be the event space.

Example

Tossing one single fair coin one time.

Sample space= $\Omega = \{H, T\}$

Let **X** be number of appearance the head, that $P(H) = \frac{1}{2}$ then $P(T) = \frac{1}{2}$

Now let X = 1 for appearance the head, and let X = 0 for without appearance the head, e.g. $P(H) = P(X = 1) = \frac{1}{2}$ then

$$P(T) = P(X = 0) = \frac{1}{2}$$
 and $P(X = 1) + P(X = 0) = 1$

Thus X is discrete random variable since its values are countale values, so that its probability is called probability mass function, th\at is

$$P(X = x) = \begin{cases} \frac{1}{2}, & x = 0, 1\\ 0 & other wise \end{cases}$$

Or $P(X = x) = \frac{1}{2}I_{\{0,1\}}(x)$ where

Definition 14 Indicator function Let Ω be any space with points ω and A any subset of Ω . The *indicator function* of A, denoted by $I_A(\cdot)$, is the function with domain Ω and counterdomain equal to the set consisting of the two real numbers 0 and 1 defined by

$$I_{A}(\omega) = \begin{cases} 1 & \text{if } \omega \in A \\ 0 & \text{if } \omega \notin A. \end{cases}$$

 $I_A(\cdot)$ clearly "indicates" the set A.

1 | Page

Lecture1(Probabilit)...

Howm work1 What are the properties of the indicator function

EXAMPLE 13 Let the function $f(\cdot)$ be defined by

	(0	for	$x \leq 0$
f(x) = c	x	for	$0 < x \le 1$
	$\left 2-x\right $	for	$1 < x \leq 2$
	0	for	2 < x.

By using the indicator function, f(x) can be written as

 $f(x) = xI_{(0,1]}(x) + (2-x)I_{(1,2]}(x),$

Boolen Algebra (Algebra)

It is a set of all possible subsets of the sample space Ω , denoted as \mathcal{A} , which are called events. Therefore this set has the following properties:

1) $\Omega \in \mathcal{A}$,

2) $A \in \mathcal{A} \to A^c \in \mathcal{A}$,

3) $A_1, A_2 \in \mathcal{A} \rightarrow A_1 \cup A_2 \in \mathcal{A}$.

Sigma-algebra(σ –algebra)

Let A be non empty set. Then a collection of all subsets of A, denoted $\mathcal{A}, \mathcal{N}, \mathcal{F},...$

It is called σ –algebra iff it has the following properties:

1) $\Omega \in \mathcal{A}$,

$$2) \mathbf{A} \in \mathcal{A} \to \mathbf{A}^{c} \in \mathcal{A}$$

3) $A_1, A_2, A_3, \dots \in \mathcal{A} \to A_1 \cup A_2 \cup A_3 \cup \dots = \bigcup_{i=1}^{\infty} A_i \in \mathcal{A}.$

EXAMPLE 7 Toss a penny, nickel, and dime simultaneously, and note which side is up on each. There are eight possible outcomes of this experiment. $\Omega = \{(H, H, H), (H, H, T), (H, T, H), (T, H, H), (H, T, T), (T, H, T), (T, T, H), (T, T, T)\}$. We are using the first position of (\cdot, \cdot, \cdot) , called a 3-*tuple*, to record the outcome of the penny, the second position to record the outcome of the nickel, and the third position to record the outcome of the dime. Let $A_i = \{\text{exactly } i \text{ heads}\}; i = 0, 1, 2, 3$. For each i, A_i is an event. Note that A_0 and A_3 are each elementary events. Again all subsets of Ω are events; there are $2^8 = 256$ of them.

Definition 15 Probability function A probability function $P[\cdot]$ is a set function with domain \mathscr{A} (an algebra of events)* and counterdomain the interval [0, 1] which satisfies the following axioms:

- (i) $P[A] \ge 0$ for every $A \in \mathcal{A}$.
- (ii) $P[\Omega] = 1$.
- (iii) If A_1, A_2, \ldots is a sequence of mutually exclusive events in \mathscr{A}

(that is, $A_i \cap A_j = \phi$ for $i \neq j; i, j = 1, 2, ...$) and if $A_1 \cup A_2 \cup \cdots = \bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$, then $P\left[\bigcup_{i=1}^{\infty} A_i\right] = \sum_{i=1}^{\infty} P[A_i]$. ////

where

Definition 10 Disjoint or mutually exclusive Subsets A and B of Ω are defined to be *mutually exclusive* or *disjoint* if $A \cap B = \phi$. Subsets A_1, A_2, \ldots are defined to be *mutually exclusive* if $A_i A_j = \phi$ for every $i \neq j$.

EXAMPLE 16 Consider the experiment of tossing two coins, say a penny and a nickel. Let $\Omega = \{(H, H), (H, T), (T, H), (T, T)\}$ where the first component of (\cdot, \cdot) represents the outcome for the penny. Let us model this random experiment by assuming that the four points in Ω are equally likely; that is, assume $P[\{(H, H)\}] = P[\{(H, T)\}] = P[\{(T, H)\}] =$ $P[\{(T, T)\}]$. The following question arises: Is the $P[\cdot]$ function that is implicitly defined by the above really a probability function; that is, does it satisfy the three axioms? It can be shown that it does, and so it is a probability function.

Definition 16 Probability space A probability space is the triplet $(\Omega, \mathcal{A}, P[\cdot])$, where Ω is a sample space, \mathcal{A} is a collection (assumed to be an algebra) of events (each a subset of Ω), and $P[\cdot]$ is a probability function with domain \mathcal{A} .

Finite Sample Space with Equally Points

It is a sample space with finite number of outcomes as N, then it is called

finite sample space with equally points if the probability of each its outcome is $\frac{1}{N}$. Let **P**[.] be a probability function, where P: $\mathcal{A} \rightarrow [0,1]$ and \mathcal{A} is event space satisfies the following conditions:

1) $\mathbf{P}[\{w_1\}] = \mathbf{P}[\{w_2\}] = \dots = \mathbf{P}[\{w_N\}]$

2) $A \in \mathcal{A} \to \mathbf{P}[A] = \frac{N(A)}{N}$, where N(A) = number of elements that A contains, and $\Omega = \{w_1, w_2, ..., w_N\}$. Then it is readily checked that the set function $P[\cdot]$ satisfies the three axioms and hence is a probability function.

Definition 17 Equally likely probability function The probability function $P[\cdot]$ satisfying conditions (i) and (ii) above is defined to be an *equally likely probability function*.

EXAMPLE 14 Let Ω be the sample space corresponding to the experiment of tossing two dice, and let \mathscr{A} be the collection of all subsets of Ω . For any $A \in \mathscr{A}$ define N(A) = number of outcomes, or points in Ω , that are in A. Then $N(\phi) = 0$, $N(\Omega) = 36$, and N(A) = 6 if A is the event containing those outcomes having a total of seven spots up. ////

Finite sample space without equally likely points We saw for finite sample spaces with equally likely sample points that $P[A] = N(A)/N(\Omega)$ for any event A. For finite sample spaces without equally likely sample points, things are not quite as simple, but we can completely define the values of P[A] for each of the $2^{N(\Omega)}$ events A by specifying the value of $P[\cdot]$ for each of the $N = N(\Omega)$ elementary events. Let $\Omega = \{\omega_1, \ldots, \omega_N\}$, and assume $p_j = P[\{\omega_j\}]$ for $j = 1, \ldots, N$. Since

$$1 = P[\Omega] = P\left[\bigcup_{j=1}^{N} \{\omega_j\}\right] = \sum_{j=1}^{N} P[\{\omega_j\}],$$
$$\sum_{j=1}^{N} p_j = 1.$$

For any event A, define $P[A] = \Sigma p_j$, where the summation is over those ω_j belonging to A. It can be shown that $P[\cdot]$ so defined satisfies the three axioms and hence is a probability function.

EXAMPLE 22 Consider an experiment that has N outcomes, say $\omega_1, \omega_2, \ldots, \omega_N$, where it is known that outcome ω_{j+1} is twice as likely as outcome ω_j , where $j = 1, \ldots, N - 1$; that is, $p_{j+1} = 2p_j$, where $p_i = P[\{\omega_i\}]$. Find $P[A_k]$, where $A_k = \{\omega_1, \omega_2, \ldots, \omega_k\}$. Since

$$\sum_{j=1}^{N} p_j = \sum_{j=1}^{N} 2^{j-1} p_1 = p_1 (1+2+2^2+\dots+2^{N-1}) = p_1 (2^N-1) = 1,$$
$$p_1 = \frac{1}{2^N - 1}$$

and

$$p_j = 2^{j-1}/(2^N - 1);$$

hence

$$P[A_k] = \sum_{j=1}^k p_j = \sum_{j=1}^k \frac{2^{j-1}}{(2^N - 1)} = \frac{2^k - 1}{2^N - 1}.$$
 ////

2017

1111

Conditional Probability and Independence

Definition 18 Conditional probability Let A and B be two events in \mathscr{A} of the given probability space $(\Omega, \mathscr{A}, P[\cdot])$. The conditional probability of event A given event B, denoted by P[A|B], is defined by

$$P[A|B] = \frac{P[AB]}{P[B]} \quad \text{if} \quad P[B] > 0, \quad (6)$$

and is left undefined if P[B] = 0.

Remark A formula that is evident from the definition is P[AB] = P[A|B]P[B] = P[B|A]P[A] if both P[A] and P[B] are nonzero. This formula relates P[A|B] to P[B|A] in terms of the unconditional probabilities P[A] and P[B].

EXAMPLE 24 Consider the experiment of tossing two coins. Let $\Omega = \{(H, H), (H, T), (T, H), (T, T)\}$, and assume that each point is equally likely. Find (i) the probability of two heads given a head on the first coin and (ii) the probability of two heads given at least one head. Let $A_1 = \{\text{head on first coin}\}$ and $A_2 = \{\text{head on second coin}\}$; then the probability of two heads given a head on the first coin is

$$P[A_1A_2|A_1] = \frac{P[A_1A_2A_1]}{P[A_1]} = \frac{P[A_1A_2]}{P[A_1]} = \frac{\frac{1}{4}}{\frac{1}{2}} = \frac{1}{2}.$$

Howm work **2** Does the conditional probability P[./B] satisfy the axioms of the probability f unction?

Theorem 29 Theorem of total probabilities For a given probability space $(\Omega, \mathcal{A}, P[\cdot])$, if B_1, B_2, \ldots, B_n is a collection of mutually disjoint events in \mathcal{A} satisfying $\Omega = \bigcup_{j=1}^{n} B_j$ and $P[B_j] > 0$ for $j = 1, \ldots, n$, then for every $A \in \mathcal{A}, P[A] = \sum_{j=1}^{n} P[A | B_j] P[B_j]$.

PROOF Note that $A = \bigcup_{j=1}^{n} AB_j$ and the AB_j 's are mutually disjoint; hence

$$P[A] = P\left[\bigcup_{j=1}^{n} AB_{j}\right] = \sum_{j=1}^{n} P[AB_{j}] = \sum_{j=1}^{n} P[A | B_{j}] P[B_{j}]. \qquad ////$$

Corollary For a given probability space $(\Omega, \mathcal{A}, P[\cdot])$ let $B \in \mathcal{A}$ satisfy 0 < P[B] < 1; then for every $A \in \mathcal{A}$

$$P[A] = P[A|B]P[B] + P[A|\overline{B}]P[\overline{B}]. \qquad ////$$

Dr. Kareema. Abed Al-Kadim

Theorem 30 Bayes' formula For a given probability space $(\Omega, \mathcal{A}, P[\cdot])$, if B_1, B_2, \ldots, B_n is a collection of mutually disjoint events in \mathcal{A} satisfying $\Omega = \bigcup_{j=1}^{n} B_j$ and $P[B_j] > 0$ for $j = 1, \ldots, n$, then for every $A \in \mathcal{A}$ for which P[A] > 0

$$P[B_k|A] = \frac{P[A|B_k]P[B_k]}{\sum_{j=1}^{n} P[A|B_j]P[B_j]}.$$

PROOF

$$P[B_k|A] = \frac{P[B_kA]}{P[A]} = \frac{P[A|B_k]P[B_k]}{\sum_{j=1}^{n} P[A|B_j]P[B_j]}$$

by using both the definition of conditional probability and the theorem of total probabilities.

Corollary For a given probability space $(\Omega, \mathcal{A}, P[\cdot])$ let A and $B \in \mathcal{A}$ satisfy P[A] > 0 and 0 < P[B] < 1; then

$$P[B|A] = \frac{P[A|B]P[B]}{P[A|B]P[B] + P[A|\overline{B}]P[\overline{B}]}.$$
 ////

Theorem 31 Multiplication rule For a given probability space $(\Omega, \mathcal{A}, P[\cdot])$, let A_1, \ldots, A_n be events belonging to \mathcal{A} for which $P[A_1 \cdots A_{n-1}] > 0$; then

$$P[A_1A_2\cdots A_n] = P[A_1]P[A_2|A_1]P[A_3|A_1A_2]\cdots P[A_n|A_1\cdots A_{n-1}].$$

EXAMPLE 27 An urn contains ten balls of which three are black and seven are white. The following game is played: At each trial a ball is selected at random, its color is noted, and it is replaced along with two additional balls of the same color. What is the probability that a black ball is selected in each of the first three trials? Let B_i denote the event that a black ball is selected on the *i*th trial. We are seeking $P[B_1B_2B_3]$. By the multiplication rule,

$$P[B_1B_2B_3] = P[B_1]P[B_2|B_1]P[B_3|B_1B_2] = \frac{3}{10} \cdot \frac{5}{12} \cdot \frac{7}{14} = \frac{1}{16}.$$
 ////

Definition 19 Independent events For a given probability space $(\Omega, \mathcal{A}, P[\cdot])$, let A and B be two events in \mathcal{A} . Events A and B are defined to be *independent* if and only if any one of the following conditions is satisfied:

(i) P[AB] = P[A]P[B].

(ii)
$$P[A|B] = P[A]$$
 if $P[B] > 0$.

(iii) P[B|A] = P[B] if P[A] > 0. ////

Definition 20 Independence of several events For a given probability space $(\Omega, \mathcal{A}, P[\cdot])$, let A_1, A_2, \ldots, A_n be *n* events in \mathcal{A} . Events A_1 , A_2, \ldots, A_n are defined to be *independent* if and only if

$$P[A_i A_j] = P[A_i]P[A_j] \qquad \text{for } i \neq j$$

$$P[A_i A_j A_k] = P[A_i]P[A_j]P[A_k] \qquad \text{for } i \neq j, j \neq k, i \neq k$$

$$\vdots$$

$$P\left[\bigcap_{i=1}^{n} A_i\right] = \prod_{i=1}^{n} P[A_i]. \qquad ////$$