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CHAPTER THREE
ANALYSIS METHODS
3.1 INTRODUCTION
          Having understood the fundamental laws of circuit theory (Ohm’s law and Kirchhoff’s laws), we are now prepared to apply these laws to develop two powerful techniques for circuit analysis: nodal analysis, which is based on a systematic application of Kirchhoff’s current law (KCL), and mesh analysis, which is based on a systematic application of Kirchhoff’s voltage law (KVL). The two techniques are so important that this chapter should be regarded as the most important in the lectures. 
3.2 NODAL ANALYSIS
          Nodal analysis provides a general procedure for analyzing circuits using node voltages as the circuit variables. Choosing node voltages instead of element voltages as circuit variables is convenient and reduces the number of equations one must solve simultaneously. To simplify matters, we shall assume in this section that circuits do not contain voltage sources. Circuits that contain voltage sources will be analyzed in the next section. 
   (
Steps to Determine Node Voltages:
1. Select a node as the reference node. Assign voltages 
v
1
, v
2
,. . 
v
n
−
1
 
to the remaining 
n
-
1
 nodes. The voltages are referenced with respect to the reference node.
2. Apply 
KCL
 to each of the 
n-1
 
nonreference
 nodes. Use Ohm’s law to express the branch currents in terms of node voltages.
3. Solve the resulting simultaneous equations to obtain the unknown node voltages.
)
We shall now explain and apply these three steps.
[bookmark: _GoBack]          The first step in nodal analysis is selecting a node as the reference or datum node. The reference node is commonly called the ground since it is assumed to have zero potential. A reference node is indicated by any of the three symbols in Fig. 3.1. We shall always use the symbol in Fig. 3.1(b). Once we have selected a reference node, we assign voltage designations to nonreference nodes. Consider, for example, the circuit in Fig. 3.2(a). Node 0 is the reference node (v = 0), while nodes 1 and 2 are assigned voltages v1 and v2, respectively. Keep in mind that the node voltages are defined with respect to the reference node. As illustrated in Fig. 3.2(a), each node voltage is the voltage with respect to the reference node.
[image: ]
Figure 3.1 Common symbols for indicating a reference node.
[image: ][image: ]
Figure 3.2 Typical circuits for nodal analysis.                                                                                                                                                         
          As the second step, we apply KCL to each nonreference node in the circuit. To avoid putting too much information on the same circuit, the circuit in Fig. 3.2(a) is redrawn in Fig. 3.2(b), where we now add i1, i2, and i3 as the currents through resistors R1, R2, and R3, respectively. At node 1, applying KCL gives
               I1 = I2 + i1 + i2                                                                                                      (3.1)
At node 2,
               I2 + i2 = i3                                                                                                             (3.2)
          We now apply Ohm’s law to express the unknown currents i1, i2, and i3 in terms of node voltages.                                                                                         
Current flows from a higher potential to a lower potential in a resistor.
We can express this principle as
                                                                                                              (3.3)
Note that this principle is in agreement with the way we defined resistance in Chapter 2 (see Fig. 2.3). With this in mind, we obtain from Fig. 3.2(b),
                ,   or i1 = G1v1
               ,   or i2 = G2 (v1 − v2) 
                ,    or i3 = G3v2                                                                                 (3.4)
Substituting Eq. (3.4) in Eqs. (3.1) and (3.2) results, respectively, in
                                                                                                        (3.5)
                                                                                                             (3.6)
In terms of the conductances, Eqs. (3.5) and (3.6) become
               I1 = I2 + G1v1 + G2 (v1 − v2)                                                                                (3.7)
               I2 + G2 (v1 − v2) = G3v2                                                                                       (3.8)
          The third step in nodal analysis is to solve for the node voltages. If we apply KCL to n−1 nonreference nodes, we obtain n−1 simultaneous equations such as Eqs. (3.5) and (3.6) or (3.7) and (3.8). For the circuit of Fig. 3.2, we solve Eqs. (3.5) and (3.6) or (3.7) and (3.8) to obtain the node voltages v1 and v2 using any standard method, such as the substitution method, the elimination method, Cramer’s rule, or matrix inversion. To use either of the last two methods, one must cast the simultaneous equations in matrix form. For example, Eqs. (3.7) and (3.8) can be cast in matrix form as
                                                                               (3.9)
which can be solved to get v1 and v2. 
Example 3.1:  Calculate the node voltages in the circuit shown in Fig. 3.3(a).
Solution:
          Consider Fig. 3.3(b), where the circuit in Fig. 3.3(a) has been prepared for nodal analysis. Notice how the currents are selected for the application of KCL. Except for the branches with current sources, the labeling of the currents is arbitrary but consistent. (By consistent, we mean that if, for example, we assume that i2 enters the 4_resistor from the left-hand side, i2 must leave the resistor from the right-hand side.) The reference node is selected, and the node voltages v1 and v2 are now to be determined.
[image: ]At node 1, applying KCL and Ohm’s law gives
           i1 = i2 + i3 ⇒ 
Multiplying each term in the last equation by 4, we obtain
         20 = v1 − v2 + 2v1
or
         3v1 − v2 = 20                                                        (3.1.1)
At node 2, we do the same thing and get
          i2 + i4 = i1 + i5 ⇒
Multiplying each term by 12 results in
         3v1 − 3v= + 120 = 60 + 2v2
or
 (
Figure 3.3 For Example 3.1: (a) original
circuit, (b) circuit for analysis
)        −3v1 + 5v2 = 60                                                     (3.1.2)

          Now we have two simultaneous Eqs. (3.1.1) and (3.1.2). We can solve the equations using any method and obtain the values of v1 and v2.
METHOD 1: Using the elimination technique, we add Eqs. (3.1.1) and (3.1.2).
               4v2 = 80 ⇒ v2 = 20 V
Substituting v2 = 20 in Eq. (3.1.1) gives
               3v1 − 20 = 20 ⇒ v1 =40/3 = 13.33 V
METHOD 2: To use Cramer’s rule, we need to put Eqs. (3.1.1) and (3.1.2) in matrix form as 
                                                                                                    (3.1.3)
The determinant of the matrix is
               
We now obtain v1 and v2 as
                
                
If we need the currents, we can easily calculate them from the values of the nodal voltages.   i1 = 5 A, , , i4 = 10 A, 
The fact that i2 is negative shows that the current flows in the direction opposite to the one assumed.
[image: ]Practice problem 3.1: Find the voltages at the three nonreference nodes in the circuit of Figure below.
Answer: v1 = 80 V, v2 = −64 V, v3 = 156 V.


3.2.1 NODAL ANALYSIS WITH VOLTAGE SOURCES
          We now consider how voltage sources affect nodal analysis. We use the circuit in Fig. 3.4 for illustration. Consider the following two possibilities.
CASE 1: If a voltage source is connected between the reference node and a nonreference node, we simply set the voltage at the nonreference node equal to the voltage of the voltage source. In Fig. 3.4, for example,
          v1 = 10 V                                                                                                                 (3.10)
Thus our analysis is somewhat simplified by this knowledge of the voltage at this node.
[image: ]
Figure 3.4 A circuit with a supernode.
CASE 2: If the voltage source (dependent or independent) is connected between two nonreference nodes, the two nonreference nodes form a generalized node or supernode; we apply both KCL and KVL to determine the node voltages.
A supernode is formed by enclosing a (dependent or independent) voltage source connected between two nonreference nodes and any elements connected in parallel with it. 
          In Fig. 3.4, nodes 2 and 3 form a supernode. (We could have more than two nodes forming a single supernode. For example, see the circuit in the Practice problem 3.4). We analyze a circuit with supernodes using the same three steps mentioned in the previous section except that the supernodes are treated differently. Why? Because, an essential component of nodal analysis is applying KCL, which requires knowing the current through each element. There is no way of knowing the current through a voltage source in advance. However, KCL must be satisfied at a supernode like any other node. Hence, at the supernode in Fig. 3.5,
               i1 + i4 = i2 + i3                                                                                                   (3.11a)
or                                                                               (3.11b)
        To apply Kirchhoff’s voltage law to the supernode in Fig. 3.4, we redraw the circuit as shown in Fig. 3.5. Going around the loop in the clockwise direction gives
              −v2 + 5 + v3 = 0 ⇒ v2 − v3 = 5                                                                            (3.12)
From Eqs. (3.10), (3.11b), and (3.12), we obtain the node voltages.
[image: ]
Figure 3.5 Applying KVL to a supernode.
Example 3.2: For the circuit shown in Fig. 3.6, find the node voltages.
Solution:
[image: ]      The supernode contains the 2-V source, nodes 1 and 2, and the 10-Ω resistor. Applying KCL to the supernode as shown in Fig. 3.7(a) gives
         2 = i1 + i2 + 7
   Expressing i1 and i2 in terms of the node voltages
         
or
         Figure 3.6 For Example 3.2.                     v2 = −20 − 2v1                                                  (3.2.1)
     To get the relationship between v1 and v2, we apply KVL to the circuit in Fig. 3.7(b). Going around the loop, we obtain
               −v1 − 2 + v2 = 0  ⇒ v2 = v1 + 2                                                                         (3.3.2)
From Eqs. (3.2.1) and (3.2.2), we write
               v2 = v1 + 2 = −20 − 2v1
or
               3v1 = −22   ⇒ v1 = −7.333 V
and v2 = v1 +2 = −5.333 V. Note that the 10-Ω resistor does not make any difference because it is connected across the supernode.
[image: ][image: ]
(a)                                                    (b)
Figure 3.7 Applying: (a) KCL to the supernode, (b) KVL to the loop.
Practice problem 3.2: Find v and i in the circuit in Figure below.
[image: ]Answer: −0.2 V, 1.4 A.




3.3 MESH ANALYSIS
          Mesh analysis provides another general procedure for analyzing circuits, using mesh currents as the circuit variables. Using mesh currents instead of element currents as circuit variables is convenient and reduces the number of equations that must be solved simultaneously. Recall that a loop is a closed path with no node passed more than once. A mesh is a loop that does not contain any other loop within it.
          Nodal analysis applies KCL to find unknown voltages in a given circuit, while mesh analysis applies KVL to find unknown currents. To understand mesh analysis, we should first explain more about what we mean by a mesh. A mesh is a loop which does not contain any other loops within it. 
          In Fig. 3.10, for example, paths abefa and bcdeb are meshes, but path abcdefa is not a mesh. The current through a mesh is known as mesh current. In mesh analysis, we are interested in applying KVL to find the mesh currents in a given circuit.
[image: ]
Figure 3.10 A circuit with two meshes.
           (
Steps to Determine 
mesh currents
:
1. Assign mesh currents 
i
1
, 
i
2
, . . . , 
i
n
 to the n meshes.
2. Apply 
KVL
 to each of the n meshes. Use Ohm’s law to express
 
the voltages in terms of the mesh currents.
3. Solve the resulting n simultaneous equations to get the mesh
 
currents.
)
          To illustrate the steps, consider the circuit in Fig. 3.10. The first step requires that mesh currents i1 and i2 are assigned to meshes 1 and 2. Although a mesh current may be assigned to each mesh in an arbitrary direction, it is conventional to assume that each mesh current flows clockwise.
As the second step, we apply KVL to each mesh. Applying KVL to mesh 1, we obtain
               −V1 + R1i1 + R3 (i1 − i2) = 0
or
               (R1 + R3) i1− R3i2 = V1                                                                                     (3.13)
For mesh 2, applying KVL gives
               R2i2 + V2 + R3 (i2 − i1) = 0
or
              −R3i1 + (R2 + R3) i2 = −V2                                                                                  (3.14)
          Note in Eq. (3.13) that the coefficient of i1 is the sum of the resistances in the first mesh, while the coefficient of i2 is the negative of the resistance common to meshes 1 and 2. Now observe that the same is true in Eq. (3.14). This can serve as a shortcut way of writing the mesh equations.
The third step is to solve for the mesh currents. Putting Eqs. (3.13). and (3.14) in matrix form yields
                                                                                (3.15)
which can be solved to obtain the mesh currents i1 and i2. We are at liberty to use any technique for solving the simultaneous equations. If a circuit has n nodes, b branches, and l independent loops or meshes, then l = b−n+1. Hence, l independent simultaneous equations are required to solve the circuit using mesh analysis.
          Notice that the branch currents are different from the mesh currents unless the mesh is isolated. To distinguish between the two types of currents, we use i for a mesh current and I for a branch current. The current elements I1, I2, and I3 are algebraic sums of the mesh currents. It is evident from Fig. 3.10 that
               I1 = i1,    I2 = i2,    I3 = i1 − i2                                                                              (3.16)
[image: ]Example 3.3: For the circuit in Fig. 3.11, find the branch currents I1, I2, and I3 using mesh analysis.

Solution:
We first obtain the mesh currents using KVL. For mesh 1,
 (
Figure 3.1
1
 For Example 3.
3
.
)               −15 + 5i1 + 10(i1 − i2) + 10 = 0
or                                                                                                          
                3i1 − 2i2 = 1                                                                                                      (3.5.1)
For mesh 2,
               6i2 + 4i2 + 10(i2 − i1) − 10 = 0
or
                i1 = 2i2 − 1                                                                                                        (3.5.2)
Using the substitution method, we substitute Eq. (3.3.2) into Eq. (3.3.1), and write
                6i2 − 3 − 2i2 = 1 ⇒   i2 = 1 A
From Eq. (3.5.2), i1 = 2i2 − 1 = 2 − 1 = 1 A. Thus,
               I1 = i1 = 1 A, I2 = i2 = 1 A, I3 = i1 − i2 = 0
[image: ]Practice problem 3.3: Calculate the mesh currents i1 and i2 in the circuit of Figure below.
Answer:  i1 = 23 A, i2 = 0 A.

3.3.1 MESH ANALYSIS WITH CURRENT SOURCES
          Applying mesh analysis to circuits containing current sources (dependent or independent) may appear complicated. But it is actually much easier than what we encountered in the previous section, because the presence of the current sources reduces the number of equations. Consider the following two possible cases.
[image: ]
Figure 3.12 A circuit with a current source.
CASE 1: When a current source exists only in one mesh: Consider the circuit in Fig. 3.12, for example. We set i2 = −5 A and write a mesh equation for the other mesh in the usual way, that is,
               −10 + 4i1 + 6(i1 − i2) = 0 ⇒ i1 = −2 A                                                                (3.17)
CASE 2: When a current source exists between two meshes: Consider the circuit in Fig. 3.13(a), for example. We create a supermesh by excluding the current source and any elements connected in series with it, as shown in Fig. 3.13(b). Thus,
A supermesh results when two meshes have a (dependent or independent) current source in common.
[image: ]
Figure 3.13 (a) Two meshes having a current source in common, (b) a supermesh, created by excluding the current source.
          As shown in Fig. 3.13(b), we create a supermesh as the periphery of the two meshes and treat it differently. (If a circuit has two or more supermeshes that intersect, they should be combined to form a larger supermesh.) Why treat the supermesh differently? Because mesh analysis applies KVL—which requires that we know the voltage across each branch—and we do not know the voltage across a current source in advance. However, a supermesh must satisfy KVL like any other mesh.
Therefore, applying KVL to the supermesh in Fig. 3.13(b) gives
              −20 + 6i1 + 10i2 + 4i2 = 0
or
               6i1 + 14i2 = 20                                                                                                    (3.18)
We apply KCL to a node in the branch where the two meshes intersect.
Applying KCL to node 0 in Fig. 3.13(a) gives
               i2 = i1 + 6                                                                                                            (3.19)
Solving Eqs. (3.18) and (3.19), we get
               i1 = −3.2 A, i2 = 2.8 A                                                                                        (3.20)
[image: ]Practice problem 3.4: Use mesh analysis to determine i1, i2, and i3 in Figure shown below.
Answer: i1 = 3.474 A, i2 = 0.4737 A, i3 = 1.1052 A.





Practice problem 3.5: Use mesh analysis to determine the mesh currents in figure below.
[image: ]	
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