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ELECTROMAGNETIC INDUCTION AND INDUCTOR
7.1 Introduction
           Up till now we have discussed the basic properties, concept of magnetism and magnetic circuits. Similarly we have studied the magnetic effects of an electric current. But we have not seen the generation of e.m.f. with the help of magnetism. The e.m.f. can be generated by different ways, by chemical action, by heating thermocouples etc. But the most popular and extensively used method of generating an e.m.f. is based on electromagnetism.
      After the magnetic effects of an electric current, attempts were made to produce electric current with the help of magnetism rather than getting magnetism due to current carrying conductor. In 1831, an English Physicist, Michael Faraday succeeded in getting e.m.f. from magnetic flux. The phenomenon by which e.m.f. is obtained from flux ill called electromagnetic induction. 
7.2 Faraday's Experiment
[image: ] (
Fig. 
7
.1 Faraday's experiment
)Let us study first the experiment conducted by Faraday to get understanding of electromagnetic induction. Consider a coil having 'N' turn is connected to a galvanometer as shown in the Fig. 7.1. Galvanometer indicates flow of current in the circuit, if any. A permanent magnet is moved relative to coil, such that magnetic lines of force associated with coil get changed. Whenever, there is motion of permanent magnet, galvanometer deflects indicating flow of current through the circuit. The deflection continues as long as motion of magnet exists. 
With this experiment Faraday stated laws called Faraday's Laws of Electromagnetic Induction. Key Point: This phenomenon of cutting of flux lines by the conductor to get the induced e.m.f.  in the conductor  or coil is called Electromagnetic Induction. 
Thus, to have induced e.m.f. there must exist. 
1) A coil or conductor.      2) A magnetic field (permanent magnet or electromagnet). 
3) Relative motion between conductor and magnetic flux (achieved by moving conductor with respect to flux or moving with respect to conductor.) 
Key Point: the e.m.f. exists as along as relative motion persists.
7.3 Faraday's Laws of Electromagnetic Induction 
From the experiment discussed above, Michael Faraday a British scientist stated two laws of electromagnetic induction. 
7.3.1 First Law 
Whenever the number of magnetic lines of force (flux) linking with a coil or circuit changes an e.m.f.  gets induced in that coil or circuit. 
7.3.2 Second Law 
The magnitude of the induced e.m.f. is directly proportional to the rate of change of flux linkages (flux × number of turns of coil= N × Φ). 
As per the first law, e.m.f. will get induced in the coil and as per second law the magnitude of e.m.f. is proportional to the rate of change of flux linkages. 
                                                                                                                                  (7.1)
Now as per Lenz's law (discussed later), the induced e.m.f. sets up a current in such a direction so as to oppose the very cause producing it.. Thus such an induced e.m.f. is mathematically expressed along with its sign as, 
                                                                                                                    (7.2)
7.4 Nature of the Induced E.M.F. 
E.M.F. gets induced in a conductor, whenever there exists change in flux with that conductor according to Faraday's law. 
Depending upon the nature of methods the induced e.m.f. is classified as. 
1) Dynamically induced e.m.f.     2) Statically induced e.m.f. 
7.5 Dynamically Induced E.M.F. 
The dynamically induced e.m.f. or motional induced e.m.f. is an induced e.m.f. which is due to physical movement of coil conductor with respect to flux, or movement of magnet with respect to stationary coil conductor.


7.5.1 Magnitude of Dynamically Induced E.M.F. 
Consider e conductor of length l metres moving in the air gap between the poles of the magnet. If plane of the motion of the conductor is parallel to the plane of the magnetic field then there is no cutting of flux lines and there cannot be any induced e.m.f. in the conductor such condition is shown in the Fig. 7.2(a). 
[image: ][image: ]
Fig. 7.2 (a) No cutting of flux  (b) Maximum cutting of flux
          In second case as shown in the Fig. 7.2(b), the velocity direction i.e. motion of conductor is perpendicular to the flux. Hence whole length of conductor is cutting the flux line hence there is maximum possible induced e.m.f. in the conductor. Under such condition plane of flux and plane of motion are perpendicular to each other.
      Consider a conductor moving with velocity v m/s such that is plane of motion or direction of velocity is perpendicular to the direction of flux lines as shown in Fig. 7.3 (a).
[image: ]
Fig. 7.3
          But if conductor is moving with a velocity v but at a certain angle θ measured with respect to direction of the field (plane of the flux) as shown in the Fig. 7.3 (b) then component of velocity which is v sinθ is perpendicular to the direction of flux and hence responsible for the induced (e.m.f.). The other component v cosθ is parallel to the plane of the flux and hence will not contribute to the dynamically induced e.m.f. 
Under this condition magnitude of induced e.m.f. is given by,
          e = B l v sinθ                                                                                                                  (7.3)
where θ is measured with respect to plane of the flux.
Example 7.1: A conductor of 2 m length with a uniform velocity of 1.27 m/s under magnetic field having a flux density of 1.2 Wb/m2 (tesla). Calculate the magnitude of induced m.m.f. if conductor moves: 
i) At right angle to axis of field.  ii) At an angle of 60° to the direction of field. 
Solution: 
i) The magnitude of induced e.m.f. 
                 e = B l v       for   θ = 90° 
                 e = 1.2×2 × 1.27 = 3.048 volts
ii)              e = B l v sinθ        where   θ = 60° 
                    = 1.2×2×1.27 × sin 60 = 2.6397 volts 
Example 7.2: A coil carries 200 turn gives rise a flux of 500 uWb when carrying a certain current. If this current is reversed in 1/10 th of a second, Find the average e.m.f. induced in the coil.
Solution: The magnitude of induced e.m.f. is, 
                 
where   dΦ is change in flux linkages i.e. change in NΦ. Now in this problem flux is 500×10-6 for given current. After reversing this current, flux will reverse its direction. So flux becomes 
(-500 × 10-6). 
           dΦ = Φ2 – Φ1 = -500 × 10-6 –  (500 × 10-6) = –1× 10-3
This happens in lime dt = 0.1 sec 
Average e.m.f. =   
[image: ]7.5.2 Direction of Dynamically Induced E.M.F. 
The direction of Induced e.m.f. can be decided by using two rules. 
1) Fleming's Right Hand Rule 
 (
Fig. 7.4 
)As discussed earlier, the Fleming's Left Hand Rule is used to get direction of force experienced by conductor carrying current placed in a magnetic field while Fleming's Right Hand Rule is to be used to get direction of induced e.m.f. when conductor is moving in a magnetic field. According to Fleming's right hand rule, outstretch the three fingers of right hand namely the thumb, fore finger and the middle finger, perpendicular to each other. Arrange the right hand so that first finger point in the direction of flux lines (from N to S) and thumb in the direction of motion of conductor with respect to the flux then the middle finger will point in the direction of the induced e.m.f. (or current). Consider the conductor moving in a magnetic field as shown in the Fig.7.4. 
2) Lenz's Law 
          Thus rule is based on the principles derived by German Physicist Heinrich Lenz. The Lenz's law states that, 
'The direction of an induced e.m.f. produced by the electromagnetic induction is such that it sets up a current which always opposes the cause that is responsible for inducing the e.m.f.' 
In short the induced e.m.f. always opposes the cause producing it, which is represented by a negative sign, mathematically in its expression.
               
Consider a solenoid as shown in the Fig. 7.5 (a) and (b). When a bar magnet is moved and the  N-pole of magnet is facing a coil. According to Lenz's Law, the direction of current due to induced e.m.f. is so as to oppose the cause. So e.m.f. will set up a current through coil in such a way that the end of solenoid facing bar magnet will become N-pole when magnet move toward coil. Hence two like poles will face each other experiencing force of repulsion. While if the same bar magnet is moved away from the coil, then induced e.m.f. will set up a current in the direction which will cause, the end of solenoid facing bar magnet to behave as S-pole. Because of this two unlike poles face each other and there will be force of attraction. 
[image: ][image: ]
                               (a)                                                                    (b)
Fig.  7.5  Lenz's  Jaw
7.6 Statically Induced E.M.F. 
Key Point: Statically induced e.m.f., it's an e.m.f. induced in a coil without physical moving the coil or the magnet.    
Explanation: To have an induced e.m.f. there must be change in flux associated with a coil. Such a change in flux can be achieved without any physical movement by increasing and decreasing the current (alternating current) producing the flux rapidly, with time. Such alternating current means it changes its magnitude periodically with time. This produces the flux which is also alternating i.e. changing with time. Thus there exists dΦ/dt associated with coil placed in the vicinity of an electromagnet. This is responsible for producing an e.m.f. in the coil. This is called statically induced e.m.f.  The concept of statically induced e.m.f. is shown in the Fig. 7.6.
[image: ]
Fig. 7.6 Concept of statically induced e.m.f.
Such an induced e.m.f. can be observed in case of a device known as transformer. 
 The statically induced e.m.f. is further classified as,
1) Self induced e.m.f. and        2) Mutually induced e.m.f.
7.7 Self Induced E.M.F. 
          According to Faraday's law, due to rate of change of flux linkages there will be induced e.m.f. in the coil. So without physically moving coil or flux there, is induced e.m.f.  in the coil . The phenomenon is called self induction. The e.m.f. induced in a coil due to the change of its own flux linked with it is called self induced e.m.f. 
7.7.1 Self Inductance
According to Lenz's law the direction of this induced e.m.f. will be so as to oppose the cause producing it. The cause is the current I hence the self induced e.m.f. will try to set up a current which is in opposite direction to that of current I. When current is increased, self induced e.m.f. reduces the current tries to keep it to its original value and vice versa. So any change in current through coil is opposed by the coil. 
7.7.2 Magnitude of Self Induced E.M.F. 
The coefficient of self Inductance and denoted by 'L' is constant 
              
It can be defined as flux linkages per ampere current in it. Its unit is henry (H),
Self induced e.m.f.,    
The coefficient of self inductance is also defined as the e.m.f. induced in volts when the current in the circuit changes uniformly at the rate of one ampere per second.
7.7.3 Expressions for Coefficient of Self Inductance (L) 

Where     l = length of magnetic circuit
               a = area of cross-section of magnetic circuit through which flux is passing.
Example 7.3: If a coil has 500 turns is linked with a flux of 50 mWb, when carrying a current of 125 A. Calculate the inductance of the coil. If this current is reduced to zero uniformly in 0.1 sec, calculate the self induced e.m.f. in the coil. 
Solution: The inductance is given by,  
Where  N = 500, Φ = 50 mWb = 50 × l0-3 Wb, I = 125 A 
           
                   
This is positive because current is decreased. So this 'e' will try to opposite this decrease, means will try to increase current and will help the growth of the current.  
Example 7.4: A coil is wound uniformly on an iron core. The relative permeability of the iron is 1400. The length of the magnetic circuit is 70 cm. The cross-sectional area of the core is 5 cm2. The coil has 1000 turns. Calculate,
i) Reluctance of magnetic circuit      ii) Inductance of coil in henries.
iii) E.M.F. induced in coil if a current of 10 A is uniformly reversed in 0.2 seconds.
Solution:  μr = 1400, L = 70 cm = 0.7 m, N = 1000,   a = 5 cm2 = 5× 10-4 m2, μ0 = 4π ×l0-7
i)    
ii)   
iii) A current of + 10 A is made ‒ 10 A in 0.2 sec.
       
       
7.8 Mutually Induced E.M.F. 
If the flux produced by one coil is getting linked with another coil and due to change in this flux produced by first coil, there is induced e.m.f. in the second coil, then such an e.m.f. is called mutually induced e.m.f.

7.8.1 Magnitude of Mutually Induced E.M.F. 
Let   I1 Current flowing through coil A
N1 =  Number of turns of coil A         N2 =  Number of turns of coil B
Φ1 = Flux produced due to current I1 in webers,    Φ2 = Flux linking with coil B
According to Faraday's law, the induced e.m.f. in coil B is,
             
Negative  sign indicates  that this  e.m.f.  will set up  a  current which will  oppose  the  change of flux linking with it.
           
where M  is coefficient of mutual inductance and equal to (). Coefficient  of  mutual  inductance  is  defined  as  the  property  by  which  e.m.f.  gets induced in the second coil because of change  in current through first coil.
7.8.3 Expressions of the Mutual Inductance 

7.8.4 Coefficient of Coupling or Magnetic Coupling Coefficient 
     or         
The K is called coefficient of coupling. If entire flux produced by one coil links with other then K = K1 = K2 and maximum mutual inductance existing between the coil is  
Example 7.5: Two coils A and B are kept in parallel planes, such that 70 % of the flux produced by coil A links with coil B . Coil A has 10,000 turns. Coil B has 12,000 turns. A current of 4 A in coil A produces a flux of 0.04 mWb while a current of 4A in coil B produces a flux of 0.08 mWb. Calculate,
i) Self inductances LA and LB,     ii) Mutual inductance M,             iii) Coupling coefficient.
Solution: The given values are, 
NA= 10,000, NB = 12,000, ΦB = 0.7 ΦA,  KA =   = 0.7, 
ΦA = 0.04 ×10-3 Wb for IA = 4 A,            ΦB = 0.08 ×10-3 Wb for IB = 4 A.
i) Self Inductance,     ,      
ii) Mutual Inductance            M = 
iii) Coupling Coefficient       
7.9 Lifting Power of Electromagnets 
[image: ]          Force of attraction between the two magnetized surfaces forms the basis of operation of devices like lifting magnets, solenoid valves, magnetically operated contactors, clutches etc. Consider two poles of two magnetized surface N and S having an air gap of length 'l' m between them and a cross-sectional area of 'a' m2. Let P newtons be the force of attraction between them. This is shown in the Fig. 7.7. The energy stored in a magnetic field per unit volume is,
           
The energy stored in a magnetic field in air per unit volume is,
 (
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)                  ….  μr = 1
The force in newtons existing between two magnetized surfaces.
             

7.10 INDUCTORS
          An inductor is a passive element designed to store energy in its magnetic field. Inductors find numerous applications in electronic and power systems. They are used in power supplies, transformers, radios, TVs, radars, and electric motors.
          Any conductor of electric current has inductive properties and maybe regarded as an inductor. But in order to enhance the inductive effect, a practical inductor is usually formed into a cylindrical coil with many turns of conducting wire.
          An inductor consists of a coil of conducting wire.
          If current is allowed to pass through an inductor, it is found that the voltage across the inductor is directly proportional to the time rate of change of the current. Using the passive sign convention,
                                                                                                                                  (7.4)
where L is the constant of proportionality called the inductance of the inductor. The unit of inductance is the henry (H), named in honor of the American inventor Joseph Henry (1797–1878). It is clear from Eq. (6.4) that 1 henry equals 1 volt-second per ampere.

Inductance is the property whereby an inductor exhibits opposition to the change of current flowing through it, measured in henrys (H).
          The inductance of an inductor depends on its physical dimension and construction. Formulas for calculating the inductance of inductors of different shapes are derived from electromagnetic theory as shown in section 7.7.
       Typical practical inductors have inductance values ranging from a few microhenrys (μH), as in communication systems, to tens of henrys (H) as in power systems. Inductors may be fixed or variable. The core may be made of iron, steel, plastic, or air. The terms coil and choke are also used for inductors. The circuit symbols for inductors are shown in Fig. 7.8.
[image: ]
Figure 7.8 Circuit symbols for inductors: (a) air-core, (b) iron-core, (c) variable iron-core.
The current-voltage relationship is obtained from Eq. (7.4) as
               
Integrating gives                                                                            (7.5)
where i(t0) is the total current for −∞ < t < t0 and i(−∞) = 0. 
The inductor is designed to store energy in its magnetic field. The energy stored can be obtained from Eqs. (6.4) and (6.5). The power delivered to the inductor is
                                         p = vi = (L) i                                                                                (7.6)
The energy stored is                                                                                                (7.7)
We should note the following important properties of an inductor.
1. Note from Eq. (7.4) that the voltage across an inductor is zero when the current is constant. Thus,   An inductor acts like a short circuit to dc.
2. An important property of the inductor is its opposition to the change in current flowing through it.  The current through an inductor cannot change instantaneously.
However, the voltage across an inductor can change abruptly.
3. Like the ideal capacitor, the ideal inductor does not dissipate energy. The energy stored in it can be retrieved at a later time. 
 (
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 Circuit model 
for a practical inductor.
)[image: ]4. A practical, nonideal inductor has a significant resistive component, as shown in Fig. 7.9. This is due to the fact that the inductor is made of a conducting material such as copper, which has some resistance. This resistance is called the winding resistance Rw, and it appears in series with the inductance of the inductor. The presence of Rw makes it both an energy storage device and an energy dissipation device. The nonideal inductor also has a winding capacitance Cw due to the capacitive coupling between the conducting coils. Cw is very small and can be ignored in most cases, except at high frequencies. We will assume ideal inductors in this book.
Example 7.6: The current through a 0.1-H inductor is i(t) = 10te−5t A. Find the voltage across the inductor and the energy stored in it.
Solution: Since   v = Ldi/dt and L = 0.1 H,
                             
The energy stored is      
Practice problem 7.1: If the current through a 1-mH inductor is i(t) = 20 cos 100t mA, find the terminal voltage and the energy stored.
Answer: −2 sin 100t mV, 0.2 cos2 100t μJ.
Example 7.7: Consider the circuit in Fig. 7.10(a). Under dc conditions, find: 
(a) i, vC, and iL, (b) the energy stored in the capacitor and inductor.
[image: ]Solution: (a) Under dc conditions, we replace the capacitor with an open circuit and the inductor with a short circuit, as in Fig. 7.10(b). It is evident from Fig. 7.10(b) that
             i =  iL =  
[image: ]The voltage vC is the same as the voltage across the 5-Ω resistor. Hence,
              vC  =  5×i  = 10 V
(b)  The energy in the capacitor is
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)and that in the inductor is
[image: ]               
Practice problem 7.2: Determine vC, iL, and the energy stored in the capacitor and inductor in the circuit of Figure below under dc conditions.
Answer: 3 V, 3 A, 9 J, 1.125 J.

7.11 SERIES AND PARALLEL INDUCTORS
            Now that the inductor has been added to our list of passive elements, it is necessary to extend the powerful tool of series-parallel combination. We need to know how to find the equivalent inductance of a series-connected or parallel-connected set of inductors found in practical circuits.
Consider a series connection of N inductors, as shown in Fig. 7.11(a), with the equivalent circuit shown in Fig. 7.11(b). The inductors have the same current through them. Applying KVL to the loop,
             v = v1 + v2 + v3 +· · ·+ vN                                                                                         (7.8)
Substituting   vk = Lk di/dt   results in           v =   L1  + L2  + L3  +· · ·+LN 
                     =   (L1 + L2 + L3 +· · ·+LN)  =     = Leq                                  (7.9)                  
Where    Leq = L1 + L2 + L3 +· · ·+LN                                                                                (7.10)
[image: ][image: ]
Figure 7.11 (a) A series connection of N inductors, (b) equivalent circuit for the series inductors.
The equivalent inductance of series-connected inductors is the sum of the individual inductances.
Inductors in series are combined in exactly the same way as resistors in series.
We now consider a parallel connection of N inductors, as shown in Fig. 7.12(a), with the equivalent circuit in Fig. 7.12(b). The inductors have the same voltage across them. Using KCL,
               i = i1 + i2 + i3 +· · ·+iN                                                                                           (7.11)
But      ik =  ; hence,
[image: ][image: ]
Figure 7.12 (a) A parallel connection of N inductors, (b) equivalent circuit for the parallel inductors.
     i =  + + · · ·+
       =  =            (7.12)
Where                                                                                                (7.13)
The initial current i(t0) through Leq at t = t0 is expected by KCL to be the sum of the inductor currents at t0. Thus, according to Eq. (7.12),
             i (t0) = i1(t0) + i2(t0)+· · ·+ iN(t0)
According to Eq. (7.13),
The equivalent inductance of parallel inductors is the reciprocal of the sum of the reciprocals of the individual inductances.
Note that the inductors in parallel are combined in the same way as resistors in parallel. For two inductors in parallel (N = 2), Eq. (7.13) becomes
                 or                                                                            (7.14)
[image: ]Example 7.8: Find the equivalent inductance of the circuit shown in Fig. 7.13.
Solution:
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)The 10-H, 12-H, and 20-H inductors are in series; thus, combining them gives a 42-H inductance. This 42-H inductor is in parallel with the 7-H inductor so that they are combined, to give

This 6-H inductor is in series with the 4-H and 8-H inductors. Hence,
                 Leq = 4 + 6 + 8 = 18 H
[image: ]Practice problem 7.3: Calculate the equivalent inductance for the inductive ladder network in Figure below.
Answer: 25 mH.

[image: ]
7.12 THE SOURCE-FREE RL CIRCUIT
 (
Figure 7.1
4
 A source-free
RL circuit.
)          Consider the series connection of a resistor and an inductor, as shown in Fig. 7.14. Our goal is to determine the circuit response, which we will assume to be the current i(t) through the inductor. We select the inductor current as the response in order to take advantage of the idea that the inductor current cannot change instantaneously. At t = 0, we assume that the inductor has an initial current I0, or
             i(0) = I0                                                                                                                     (7.15)
with the corresponding energy stored in the inductor as
                                                                                                                        (7.16)
Applying KVL around the loop in Fig. 7.14,
              vL + vR = 0                                                                                                               (7.17)
But        vL = L   and vR = i R. Thus,             L  + Ri = 0
Rearranging terms and integrating gives
             i(t) = I0e−Rt/L                                                                                                              (7.18)
This shows that the natural response of the RL circuit is an exponential decay of the initial current. The current response is shown in Fig. 7.15. The time constant for the RL circuit is
                                                                                                                                    (7.19)
with τ again having the unit of seconds. Thus, Eq. (7.18) may be written as
             i(t) = I0e−t/τ                                                                                                                (7.20)
With the current in Eq. (7.20), we can find the voltage across the resistor as
            vR(t) = i×R = I0Re−t/τ                                                                                                  (7.21)
The power dissipated in the resistor is
             p = vR×i =  R e−2t/τ                                                                                                 (7.22)
The energy absorbed by the resistor is
[image: ]            wR(t) =  (1 − e−2t/τ )                                                                                            (7.23)
Note that as t →∞, wR(∞) →   , which is the same as wL(0), the initial energy stored in the inductor as in Eq. (7.16). Again, the energy initially stored in the inductor is eventually dissipated in the resistor.
The Key to Working with a Source - free RL Circuit is to Find :
 (
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Response
 
of the RL circuit.
)1. The initial current i(0) = I0 through the inductor.
2. The time constant τ of the circuit.

Example 7.9: Assuming that i(0) = 10 A, calculate i(t) and ix (t) in the circuit in Fig. 7.16.
[image: ]Solution:  There are two ways we can solve this problem. One way is to obtain the equivalent resistance at the inductor terminals and then use Eq. (7.20). The other way is to start from scratch by using Kirchhoff’s voltage law. 
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)The equivalent resistance is the same as the Thevenin resistance at the inductor terminals. Because of the dependent source, we insert a voltage source with vo = 1 V at the inductor terminals a-b, as in Fig. 7.17(a). 
Applying KVL to the two loops results in
          2(i1 − i2) + 1 = 0   ⇒  i1 − i2 = −1/2                                                                             (7.9.1)
          6i2 − 2i1 − 3i1 = 0  ⇒  i2 = (5/6)i1                                                                                (7.9.2)
[image: ]Substituting Eq. (7.9.2) into Eq. (7.9.1) gives
       i1 = −3 A, io = −i1 = 3 A
Hence,   Req = RTh = vo/io =(1/3)Ω
The time constant is τ =L/Req = = (3/2)s


[image: ]Thus, the current through the inductor is
       i(t) = i(0)e−t/τ = 10e−(2/3)t A, t>0
The voltage across the inductor is

 (
Figure 7.17 Solving the 
circuit in Fig. 7.9.
)Since the inductor and the 2-_ resistor are in parallel,
         ix (t) = v/2 = −1.667e−(2/3)t A, t>0
Practice problem 7.4:  Find i and vx in the circuit in Figure below. Let i(0) = 5 A.
[image: ]Answer: i= 5e−53t A, vx= −15e−53t V.




7.13 STEP RESPONSE OF AN RL CIRCUIT
Consider the RL circuit in Fig. 7.18(a), which may be replaced by the circuit in Fig. 7.18(b). Again, our goal is to find the inductor current i as the circuit response. Rather than apply Kirchhoff’s laws. Let the response be the sum of the natural current and the forced current,
           i = in + if                                                                                                                     (7.24)
We know tht the natural response is always a decaying exponential, that is,
           in = Ae−t/τ,          τ= L/R                                                                                              (7.25)
where A is a constant to be determined.
The forced response is the value of the current a long time after the switch in Fig. 7.18(a) is closed. We know that the natural response essentially dies out after five time constants. At that time, the inductor becomes a short circuit, and the voltage across it is zero. The entire source voltage Vs appears across R. Thus, the forced response is
          if =Vs/R                                                                                                                        (7.26)
Substituting, Eqs. (7.24) and (7.25) into Eq. (7.23) gives
          i = Ae−t/τ +Vs/R                                                                                                            (7.27)
[image: ]            [image: ]
     (
Figure 7.18 An 
RL 
circuit with 
a step input voltage.
)
          We now determine the constant A from the initial value of i. Let I0 be the initial current through the inductor, which may come from a source other than Vs. Since the current through the inductor cannot change instantaneously,
           i(0+) = i(0−) = I0                                                                                                          (7.28)
Thus at t = 0, Eq. (7.27) becomes
           I0 = A +VsR
From this, we obtain A as
           A = I0 –Vs/R
Substituting for A in Eq. (7.27), we get
           i(t) =Vs/R + (I0 –Vs /R )e−t/τ                                                                                       (7.29)
This is the complete response of the RL circuit. It is illustrated in Fig.7.19. The response in Eq. (7.29) may be written as
           i(t) = i(∞) + [i(0) − i(∞)]e−t/τ                                                                                       (7.30)
where i(0) and i(∞) are the initial and final values of i. Thus, to find the step response of an RL circuit requires three things:
1. The initial inductor current i(0) at t = 0+.
[image: ]2. The final inductor current i(∞).
3. The time constant τ.
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)
We obtain item 1 from the given circuit for t < 0 and items 2 and 3 from the circuit for t > 0. Once these items are determined, we obtain the response using Eq. (7.30). Keep in mind that this technique applies only for step responses.
Again, if the switching takes place at time t = t0 instead of t = 0, Eq. (7.30) becomes
           i(t) = i(∞) + [i(t0) − i(∞)]e−(t−t0)/τ                                                                                 (7.31)
If I0 = 0, then
                                                                                         (7.32a)
or      i(t) =(1 − e−t/τ )u(t)                                                                                                   (7.32b)
This is the step response of the RL circuit. The voltage across the inductor is obtained from Eq. (7.32) using v = Ldi/dt. We get
          v(t) = L  = Vs    e−t/τ, τ   =         t>0
or       v(t) = Vs e−t/τ u(t)                                                                                                         (7.33)
Figure 7.20 shows the step responses in Eqs. (7.32) and (7.33).
[image: ]
Figure 7.20 Step responses of an RL circuit with no initial  inductor current: (a) current response, (b) voltage response.

Example 7.12: Find i(t) in the circuit in Fig. 7.21 for t > 0. Assume that the switch has been closed for a long time.
[image: ]





Figure 7.21 For Example 7.12.
Solution: When t < 0, the 3-Ω resistor is short-circuited, and the inductor acts like a short circuit. The current through the inductor at t = 0− (i.e., just before t = 0) is
             i(0−) =10 / 2 = 5 A
Since the inductor current cannot change instantaneously,
             i(0) = i(0+) = i(0−) = 5 A
When t > 0, the switch is open. The 2-Ω and 3-Ω resistors are in series, so that
             i(∞) =      = 2 A
The Thevenin resistance across the inductor terminals is
             RTh = 2 + 3 = 5 Ω
For the time constant,
             τ =   =  =1 / 15 s
Thus,
             i(t) = i(∞) + [i(0) − i(∞)]e−t/τ  = 2 + (5 − 2)e−15t = 2 + 3e−15t A,             t>0

[image: ]Practice problem 7.5: The switch in Figure below has been closed for a long time. It opens at t = 0. Find i(t) for t > 0.
Answer: (2 + e−10t) A, t > 0.
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