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Corollary. 
1. There is no finite set of generators of  , since otherwise  would be generated by the empty set and it would follow that  = 0 C! .
2. There is no maximal submodule of . Suppose that A were to be one such and that q, q A, then from 2.2.2
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is a submodule of  . Since this contains A properly it follows that Thus A{q}, and then also A by itself, would be a generating set of  from which it would follow that A =  C!.
3. Obviously  does not have a basis for if we omit an element from a basis then the remaining set of elements is no longer a generating set (since the omitted element is not linearly representable by the remaining elements).

ZORN'S LEMMA. Let A be an ordered set. If every totally ordered subset of
A has an upper bound in A then A has a maximal element.
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not be unique. If it is unique then a particular case occurs with which we have to concern ourselves in the next section.
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2.3.11 THEOREM. If the module MR is finitely generated then every proper
submodule of M is contained in a maximal submodule of M.

Note: 1.The module  is not finitely generated and it has no maximal submodule.
2. If M ≠ 0 and if M is finitely generated then it follows with A = 0 that M has a maximal submodule.
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(2) A vector space V over a field K is finitely cogenerated if and only if it has finite di mension. 
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