Chapter 8: Techniques of Integration

8.3 Integration of Rational Functions by Partial Fractions

This section shows how to express a rational function (a quotient of polynomials) as a sum of simpler fractions, called partial fractions, which are easily integrated. For instance, the rational function \(\frac{5x - 3}{x^2 - 2x - 3} \) can be rewritten as

\[
\frac{5x - 3}{x^2 - 2x - 3} = \frac{2}{x + 1} + \frac{3}{x - 3}.
\]
which can be verified algebraically by placing the fractions on the right side over a common denominator \((x + 1)(x - 3)\). The skill acquired in writing rational functions as such a sum is useful in other settings as well (for instance, when using certain transform methods to solve differential equations). To integrate the rational function \((5x - 3)/(x + 1)(x - 3)\) on the left side of our previous expression, we simply sum the integrals of the fractions on the right side:

\[
\int \frac{5x - 3}{(x + 1)(x - 3)} \, dx = \int \frac{2}{x + 1} \, dx + \int \frac{3}{x - 3} \, dx
\]

\[
= 2 \ln |x + 1| + 3 \ln |x - 3| + C.
\]

The method for rewriting rational functions as a sum of simpler fractions is called the method of partial fractions. In the case of the above example, it consists of finding constants \(A\) and \(B\) such that

\[
\frac{5x - 3}{x^2 - 2x - 3} = \frac{A}{x + 1} + \frac{B}{x - 3}.
\]

(Pretend for a moment that we do not know that \(A = 2\) and \(B = 3\) will work.) We call the fractions \(A/(x + 1)\) and \(B/(x - 3)\) partial fractions because their denominators are only part of the original denominator \(x^2 - 2x - 3\). We call \(A\) and \(B\) undetermined coefficients until proper values for them have been found.

To find \(A\) and \(B\), we first clear Equation (1) of fractions, obtaining

\[
5x - 3 = A(x - 3) + B(x + 1) = (A + B)x - 3A + B.
\]

This will be an identity in \(x\) if and only if the coefficients of like powers of \(x\) on the two sides are equal:

\[
A + B = 5, \quad -3A + B = -3.
\]

Solving these equations simultaneously gives \(A = 2\) and \(B = 3\).

General Description of the Method

Success in writing a rational function \(f(x)/g(x)\) as a sum of partial fractions depends on two things:

- *The degree of \(f(x)\) must be less than the degree of \(g(x)\).* That is, the fraction must be proper. If it isn’t, divide \(f(x)\) by \(g(x)\) and work with the remainder term. See Example 3 of this section.

- *We must know the factors of \(g(x)\).* In theory, any polynomial with real coefficients can be written as a product of real linear factors and real quadratic factors. In practice, the factors may be hard to find.

Here is how we find the partial fractions of a proper fraction \(f(x)/g(x)\) when the factors of \(g\) are known.
Method of Partial Fractions ($f(x)/g(x)$ Proper)

1. Let $x - r$ be a linear factor of $g(x)$. Suppose that $(x - r)^m$ is the highest power of $x - r$ that divides $g(x)$. Then, to this factor, assign the sum of the m partial fractions:

$$\frac{A_1}{x - r} + \frac{A_2}{(x - r)^2} + \cdots + \frac{A_m}{(x - r)^m}.$$

Do this for each distinct linear factor of $g(x)$.

2. Let $x^2 + px + q$ be a quadratic factor of $g(x)$. Suppose that $(x^2 + px + q)^n$ is the highest power of this factor that divides $g(x)$. Then, to this factor, assign the sum of the n partial fractions:

$$\frac{B_1x + C_1}{x^2 + px + q} + \frac{B_2x + C_2}{(x^2 + px + q)^2} + \cdots + \frac{B_nx + C_n}{(x^2 + px + q)^n}.$$

Do this for each distinct quadratic factor of $g(x)$ that cannot be factored into linear factors with real coefficients.

3. Set the original fraction $f(x)/g(x)$ equal to the sum of all these partial fractions. Clear the resulting equation of fractions and arrange the terms in decreasing powers of x.

4. Equate the coefficients of corresponding powers of x and solve the resulting equations for the undetermined coefficients.

EXAMPLE 1 Distinct Linear Factors

Evaluate

$$\int \frac{x^2 + 4x + 1}{(x - 1)(x + 1)(x + 3)} \, dx$$

using partial fractions.

Solution The partial fraction decomposition has the form

$$\frac{x^2 + 4x + 1}{(x - 1)(x + 1)(x + 3)} = \frac{A}{x - 1} + \frac{B}{x + 1} + \frac{C}{x + 3}.$$

To find the values of the undetermined coefficients A, B, and C we clear fractions and get

$$x^2 + 4x + 1 = A(x + 1)(x + 3) + B(x - 1)(x + 3) + C(x - 1)(x + 1)$$

$$= (A + B + C)x^2 + (4A + 2B)x + (3A - 3B - C).$$

The polynomials on both sides of the above equation are identical, so we equate coefficients of like powers of x obtaining

Coefficient of x^2: $A + B + C = 1$
Coefficient of x: $4A + 2B = 4$
Coefficient of x^0: $3A - 3B - C = 1$
There are several ways for solving such a system of linear equations for the unknowns \(A\), \(B\), and \(C\), including elimination of variables, or the use of a calculator or computer. Whatever method is used, the solution is \(A = 3/4, B = 1/2, \) and \(C = -1/4\). Hence we have

\[
\int \frac{x^2 + 4x + 1}{(x - 1)(x + 1)(x + 3)} \, dx = \int \left[\frac{3}{4x - 1} + \frac{1}{2x + 1} - \frac{1}{4x + 3} \right] \, dx
\]

\[
= \frac{3}{4} \ln |x - 1| + \frac{1}{2} \ln |x + 1| - \frac{1}{4} \ln |x + 3| + K,
\]

where \(K\) is the arbitrary constant of integration (to avoid confusion with the undetermined coefficient we labeled as \(C\)).

EXAMPLE 2 A Repeated Linear Factor

Evaluate \(\int \frac{6x + 7}{(x + 2)^2} \, dx\).

Solution First we express the integrand as a sum of partial fractions with undetermined coefficients.

\[
\frac{6x + 7}{(x + 2)^2} = \frac{A}{x + 2} + \frac{B}{(x + 2)^2}
\]

\[
6x + 7 = A(x + 2) + B
\]

Equating coefficients of corresponding powers of \(x\) gives

\[A = 6 \quad \text{and} \quad 2A + B = 12 + B = 7, \quad \text{or} \quad A = 6 \quad \text{and} \quad B = -5.\]

Therefore,

\[
\int \frac{6x + 7}{(x + 2)^2} \, dx = \int \left(\frac{6}{x + 2} - \frac{5}{(x + 2)^2} \right) \, dx
\]

\[
= 6 \int \frac{dx}{x + 2} - 5 \int (x + 2)^{-2} \, dx
\]

\[
= 6 \ln |x + 2| + 5(x + 2)^{-1} + C
\]

EXAMPLE 3 Integrating an Improper Fraction

Evaluate \(\int \frac{2x^3 - 4x^2 - x - 3}{x^2 - 2x - 3} \, dx\).

Solution First we divide the denominator into the numerator to get a polynomial plus a proper fraction.

\[
x^2 - 2x - 3 \left(\frac{2x}{2x^3 - 4x^2 - x - 3} \right) = \frac{2x}{2x^3 - 4x^2 - 6x}{5x - 3}
\]
Then we write the improper fraction as a polynomial plus a proper fraction.

\[
\frac{2x^3 - 4x^2 - x - 3}{x^2 - 2x - 3} = 2x + \frac{5x - 3}{x^2 - 2x - 3}
\]

We found the partial fraction decomposition of the fraction on the right in the opening example, so

\[
\int \frac{2x^3 - 4x^2 - x - 3}{x^2 - 2x - 3} \, dx = \int 2x \, dx + \int \frac{5x - 3}{x^2 - 2x - 3} \, dx
\]

\[
= \int 2x \, dx + \int \frac{2}{x + 1} \, dx + \int \frac{3}{x - 3} \, dx
\]

\[
= x^2 + 2 \ln |x + 1| + 3 \ln |x - 3| + C.
\]

A quadratic polynomial is **irreducible** if it cannot be written as the product of two linear factors with real coefficients.

EXAMPLE 4 Integrating with an Irreducible Quadratic Factor in the Denominator

Evaluate

\[
\int \frac{-2x + 4}{(x^2 + 1)(x - 1)^2} \, dx
\]

using partial fractions.

Solution The denominator has an irreducible quadratic factor as well as a repeated linear factor, so we write

\[
\frac{-2x + 4}{(x^2 + 1)(x - 1)^2} = \frac{Ax + B}{x^2 + 1} + \frac{C}{x - 1} + \frac{D}{(x - 1)^2}.
\]

Clearing the equation of fractions gives

\[
-2x + 4 = (Ax + B)(x - 1)^2 + C(x - 1)(x^2 + 1) + D(x^2 + 1)
\]

\[
= (A + C)x^3 + (-2A + B - C + D)x^2
\]

\[
+ (A - 2B + C)x + (B - C + D).
\]

Equating coefficients of like terms gives

Coefficients of \(x^3\):	\(0 = A + C\)
Coefficients of \(x^2\):	\(0 = -2A + B - C + D\)
Coefficients of \(x^1\):	\(-2 = A - 2B + C\)
Coefficients of \(x^0\):	\(4 = B - C + D\)

We solve these equations simultaneously to find the values of \(A, B, C,\) and \(D\):

\[-4 = -2A, \quad A = 2\] Subtract fourth equation from second.

\[C = -A = -2\] From the first equation

\[B = 1\] \(A = 2\) and \(C = -2\) in third equation.

\[D = 4 - B + C = 1.\] From the fourth equation

Copyright © 2005 Pearson Education, Inc., publishing as Pearson Addison-Wesley
We substitute these values into Equation (2), obtaining
\[
\frac{-2x + 4}{(x^2 + 1)(x - 1)^2} = \frac{2x + 1}{x^2 + 1} - \frac{2}{x - 1} + \frac{1}{(x - 1)^2}.
\]
Finally, using the expansion above we can integrate:
\[
\int \frac{-2x + 4}{(x^2 + 1)(x - 1)^2} \, dx = \int \left(\frac{2x + 1}{x^2 + 1} - \frac{2}{x - 1} + \frac{1}{(x - 1)^2} \right) \, dx
\]
\[
= \int \left(\frac{2x}{x^2 + 1} + \frac{1}{x^2 + 1} - \frac{2}{x - 1} + \frac{1}{(x - 1)^2} \right) \, dx
\]
\[
= \ln (x^2 + 1) + \tan^{-1} x - 2 \ln |x - 1| - \frac{1}{x - 1} + C. \quad \blacksquare
\]

EXAMPLE 5 A Repeated Irreducible Quadratic Factor

Evaluate
\[
\int \frac{dx}{x(x^2 + 1)^2}.
\]

Solution The form of the partial fraction decomposition is
\[
\frac{1}{x(x^2 + 1)^2} = \frac{A}{x} + \frac{Bx + C}{x^2 + 1} + \frac{Dx + E}{(x^2 + 1)^2}
\]
Multiplying by \(x(x^2 + 1)^2\), we have
\[
1 = A(x^2 + 1)^2 + (Bx + C)x(x^2 + 1) + (Dx + E)x
\]
\[
= A(x^4 + 2x^2 + 1) + B(x^4 + x^2) + C(x^3 + x) + Dx^2 + Ex
\]
\[
= (A + B)x^4 + Cx^3 + (2A + B + D)x^2 + (C + E)x + A
\]
If we equate coefficients, we get the system
\[
A + B = 0, \quad C = 0, \quad 2A + B + D = 0, \quad C + E = 0, \quad A = 1.
\]
Solving this system gives \(A = 1, \quad B = -1, \quad C = 0, \quad D = -1, \quad E = 0\). Thus,
\[
\int \frac{dx}{x(x^2 + 1)^2} = \int \left[\frac{1}{x} + \frac{-x}{x^2 + 1} + \frac{-x}{(x^2 + 1)^2} \right] \, dx
\]
\[
= \int \frac{dx}{x} - \int \frac{x \, dx}{x^2 + 1} - \int \frac{x \, dx}{(x^2 + 1)^2}
\]
\[
= \int \frac{dx}{x} - \frac{1}{2} \int \frac{du}{u} - \frac{1}{2} \int \frac{du}{u^2}
\]
\[
= \ln |x| - \frac{1}{2} \ln |u| + \frac{1}{2u} + K
\]
\[
= \ln |x| - \frac{1}{2} \ln (x^2 + 1) + \frac{1}{2(x^2 + 1)} + K
\]
\[
= \ln \frac{|x|}{\sqrt{x^2 + 1}} + \frac{1}{2(x^2 + 1)} + K. \quad \blacksquare
\]
The Heaviside "Cover-up" Method for Linear Factors

When the degree of the polynomial $f(x)$ is less than the degree of $g(x)$ and $g(x) = (x - r_1)(x - r_2) \cdots (x - r_n)$ is a product of n distinct linear factors, each raised to the first power, there is a quick way to expand $f(x)/g(x)$ by partial fractions.

EXAMPLE 6 Using the Heaviside Method

Find A, B, and C in the partial-fraction expansion

$$
\frac{x^2 + 1}{(x - 1)(x - 2)(x - 3)} = \frac{A}{x - 1} + \frac{B}{x - 2} + \frac{C}{x - 3}.
$$

Solution If we multiply both sides of Equation (3) by $(x - 1)$ to get

$$
\frac{x^2 + 1}{(x - 2)(x - 3)} = A + \frac{B(x - 1)}{x - 2} + \frac{C(x - 1)}{x - 3}
$$

and set $x = 1$, the resulting equation gives the value of A:

$$
\frac{(1)^2 + 1}{(1 - 2)(1 - 3)} = A + 0 + 0,
$$

$$
A = 1.
$$

Thus, the value of A is the number we would have obtained if we had covered the factor $(x - 1)$ in the denominator of the original fraction

$$
\frac{x^2 + 1}{(x - 1)(x - 2)(x - 3)}
$$

and evaluated the rest at $x = 1$:

$$
A = \frac{(1)^2 + 1}{(x - 1)} \frac{1}{(1 - 2)(1 - 3)} = \frac{2}{(-1)(-2)} = 1.
$$

Similarly, we find the value of B in Equation (3) by covering the factor $(x - 2)$ in Equation (4) and evaluating the rest at $x = 2$:

$$
B = \frac{(2)^2 + 1}{(2 - 1)} \frac{1}{(x - 2)(2 - 3)} = \frac{5}{(1)(-1)} = -5.
$$

Finally, C is found by covering the $(x - 3)$ in Equation (4) and evaluating the rest at $x = 3$:

$$
C = \frac{(3)^2 + 1}{(3 - 1)(3 - 2)} \frac{1}{(x - 3)} = \frac{10}{(2)(1)} = 5.
$$

Copyright © 2005 Pearson Education, Inc., publishing as Pearson Addison-Wesley
Heaviside Method

1. Write the quotient with $g(x)$ factored:

$$\frac{f(x)}{g(x)} = \frac{f(x)}{(x - r_1)(x - r_2) \cdots (x - r_n)}.$$

2. Cover the factors $(x - r_i)$ of $g(x)$ one at a time, each time replacing all the uncovered x’s by the number r_i. This gives a number A_i for each root r_i:

$$A_1 = \frac{f(r_1)}{(r_1 - r_2) \cdots (r_1 - r_n)}$$

$$A_2 = \frac{f(r_2)}{(r_2 - r_1)(r_2 - r_3) \cdots (r_2 - r_n)}$$

$$\vdots$$

$$A_n = \frac{f(r_n)}{(r_n - r_1)(r_n - r_2) \cdots (r_n - r_{n-1})}.$$

3. Write the partial-fraction expansion of $f(x)/g(x)$ as

$$\frac{f(x)}{g(x)} = \frac{A_1}{(x - r_1)} + \frac{A_2}{(x - r_2)} + \cdots + \frac{A_n}{(x - r_n)}.$$

Example 7 Integrating with the Heaviside Method

Evaluate

$$\int \frac{x + 4}{x^3 + 3x^2 - 10x} \, dx.$$

Solution The degree of $f(x) = x + 4$ is less than the degree of $g(x) = x^3 + 3x^2 - 10x$, and, with $g(x)$ factored,

$$\frac{x + 4}{x^3 + 3x^2 - 10x} = \frac{x + 4}{x(x - 2)(x + 5)}.$$

The roots of $g(x)$ are $r_1 = 0$, $r_2 = 2$, and $r_3 = -5$. We find

$$A_1 = \frac{0 + 4}{(0 - 2)(0 + 5)} = \frac{4}{(-2)(5)} = -\frac{2}{5}$$

Cover

$$A_2 = \frac{2 + 4}{2(x - 2)(2 + 5)} = \frac{6}{(2)(7)} = \frac{3}{7}$$

Cover

$$A_3 = \frac{-5 + 4}{(-5)(-5 - 2)(x + 5)} = \frac{-1}{(-5)(-7)} = -\frac{1}{35}.$$

Cover
Therefore,
\[
\frac{x + 4}{x(x - 2)(x + 5)} = -\frac{2}{5x} + \frac{3}{7(x - 2)} - \frac{1}{35(x + 5)},
\]
and
\[
\int \frac{x + 4}{x(x - 2)(x + 5)} \, dx = -\frac{2}{5} \ln |x| + \frac{3}{7} \ln |x - 2| - \frac{1}{35} \ln |x + 5| + C.
\]

Other Ways to Determine the Coefficients

Another way to determine the constants that appear in partial fractions is to differentiate, as in the next example. Still another is to assign selected numerical values to \(x \).

EXAMPLE 8 Using Differentiation

Find \(A \), \(B \), and \(C \) in the equation
\[
\frac{x - 1}{(x + 1)^3} = \frac{A}{x + 1} + \frac{B}{(x + 1)^2} + \frac{C}{(x + 1)^3}.
\]

Solution We first clear fractions:
\[
x - 1 = A(x + 1)^2 + B(x + 1) + C.
\]
Substituting \(x = -1 \) shows \(C = -2 \). We then differentiate both sides with respect to \(x \), obtaining
\[
1 = 2A(x + 1) + B.
\]
Substituting \(x = -1 \) shows \(B = 1 \). We differentiate again to get \(0 = 2A \), which shows \(A = 0 \). Hence,
\[
\frac{x - 1}{(x + 1)^3} = \frac{1}{(x + 1)^2} - \frac{2}{(x + 1)^3}.
\]
In some problems, assigning small values to \(x \) such as \(x = 0, \pm 1, \pm 2 \), to get equations in \(A, B, \) and \(C \) provides a fast alternative to other methods.

EXAMPLE 9 Assigning Numerical Values to \(x \)

Find \(A \), \(B \), and \(C \) in
\[
\frac{x^2 + 1}{(x - 1)(x - 2)(x - 3)} = \frac{A}{x - 1} + \frac{B}{x - 2} + \frac{C}{x - 3}.
\]

Solution Clear fractions to get
\[
x^2 + 1 = A(x - 2)(x - 3) + B(x - 1)(x - 3) + C(x - 1)(x - 2).
\]
Then let $x = 1, 2, 3$ successively to find $A, B, \text{ and } C$:

$x = 1$: $\quad (1)^2 + 1 = A(-1)(-2) + B(0) + C(0)$

$\quad 2 = 2A$

$\quad A = 1$

$x = 2$: $\quad (2)^2 + 1 = A(0) + B(1)(-1) + C(0)$

$\quad 5 = -B$

$\quad B = -5$

$x = 3$: $\quad (3)^2 + 1 = A(0) + B(0) + C(2)(1)$

$\quad 10 = 2C$

$\quad C = 5.$

Conclusion:

$$\frac{x^2 + 1}{(x - 1)(x - 2)(x - 3)} = \frac{1}{x - 1} - \frac{5}{x - 2} + \frac{5}{x - 3}. \quad \blacksquare$$
Excerpts from Thomas' Calculus

EXERCISES 8.3

Expanding Quotients into Partial Fractions

Expand the quotients in Exercises 1–8 by partial fractions.

<table>
<thead>
<tr>
<th>Exercise</th>
<th>Quotient</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>(\frac{5x-13}{(x-3)(x-2)})</td>
</tr>
<tr>
<td>2.</td>
<td>(\frac{5x-7}{x^2-3x+2})</td>
</tr>
<tr>
<td>3.</td>
<td>(\frac{x+4}{(x+1)^2})</td>
</tr>
<tr>
<td>4.</td>
<td>(\frac{2x+2}{x^2-2x+1})</td>
</tr>
<tr>
<td>5.</td>
<td>(\frac{z+1}{z^2(z-1)})</td>
</tr>
<tr>
<td>6.</td>
<td>(\frac{z}{z^3-z^2-6z})</td>
</tr>
<tr>
<td>7.</td>
<td>(\frac{t^2+8}{t^3-5t+6})</td>
</tr>
<tr>
<td>8.</td>
<td>(\frac{r^4+9}{t^4+9t^2})</td>
</tr>
</tbody>
</table>

Nonrepeated Linear Factors

In Exercises 9–16, express the integrands as a sum of partial fractions and evaluate the integrals.

<table>
<thead>
<tr>
<th>Exercise</th>
<th>Integrand</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.</td>
<td>(\int \frac{dx}{1-x^2})</td>
</tr>
<tr>
<td>10.</td>
<td>(\int \frac{dx}{x^2+2x})</td>
</tr>
<tr>
<td>11.</td>
<td>(\int \frac{x+4}{x^2+5x-6} , dx)</td>
</tr>
<tr>
<td>12.</td>
<td>(\int \frac{2x+1}{x^2-7x+12} , dx)</td>
</tr>
<tr>
<td>13.</td>
<td>(\int_4^8 \frac{y , dy}{y^2-2y-3})</td>
</tr>
<tr>
<td>14.</td>
<td>(\int_{\sqrt{2}}^{1} \frac{y+4}{y^2+y} , dy)</td>
</tr>
<tr>
<td>15.</td>
<td>(\int dt)</td>
</tr>
<tr>
<td>16.</td>
<td>(\int \frac{x+3}{2x^3-8x} , dx)</td>
</tr>
</tbody>
</table>

Repeated Linear Factors

In Exercises 17–20, express the integrands as a sum of partial fractions and evaluate the integrals.

<table>
<thead>
<tr>
<th>Exercise</th>
<th>Integrand</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.</td>
<td>(\int_0^1 \frac{x^3 , dx}{x^2+2x+1})</td>
</tr>
<tr>
<td>18.</td>
<td>(\int_{-1}^0 \frac{x^3 , dx}{x^2-2x+1})</td>
</tr>
</tbody>
</table>

Irreducible Quadratic Factors

In Exercises 21–28, express the integrands as a sum of partial fractions and evaluate the integrals.

<table>
<thead>
<tr>
<th>Exercise</th>
<th>Integrand</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.</td>
<td>(\int \frac{dx}{(x^2-1)^2})</td>
</tr>
<tr>
<td>20.</td>
<td>(\int \frac{x^2 , dx}{(x-1)(x^2+2x+1)})</td>
</tr>
</tbody>
</table>

Improper Fractions

In Exercises 29–34, perform long division on the integrand, write the proper fraction as a sum of partial fractions, and then evaluate the integral.

<table>
<thead>
<tr>
<th>Exercise</th>
<th>Integrand</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.</td>
<td>(\int_0^1 \frac{dx}{(x+1)(x^2+1)})</td>
</tr>
<tr>
<td>22.</td>
<td>(\int \frac{3t^2+t+4}{t^3+t} , dt)</td>
</tr>
<tr>
<td>23.</td>
<td>(\int \frac{y^2+2y+1}{(y^2+1)^2} , dy)</td>
</tr>
<tr>
<td>24.</td>
<td>(\int \frac{8x^2+8x+2}{(4x^2+1)^2} , dx)</td>
</tr>
<tr>
<td>25.</td>
<td>(\int \frac{2x+2}{(s^2+1)(s-1)^3} , ds)</td>
</tr>
<tr>
<td>26.</td>
<td>(\int \frac{s^4+81}{s^2+9} , ds)</td>
</tr>
<tr>
<td>27.</td>
<td>(\int \frac{2\theta^3+5\theta^2+8\theta+4}{(\theta^2+2\theta+2)^2} , d\theta)</td>
</tr>
<tr>
<td>28.</td>
<td>(\int \frac{\theta^4-4\theta^3+2\theta^2-3\theta+1}{(\theta^2+1)^3} , d\theta)</td>
</tr>
</tbody>
</table>

Copyright © 2005 Pearson Education, Inc., publishing as Pearson Addison-Wesley
Chapter 8: Techniques of Integration

Evaluating Integrals
Evaluate the integrals in Exercises 35–40.

35. \[\int e^t dt \]
36. \[\int \frac{e^{2t} + 2e^t - e^t}{e^{2t} + 1} dt \]
37. \[\int \frac{\cos y dy}{\sin^2 y + \sin y - 6} \]
38. \[\int \frac{\sin \theta d\theta}{\cos^2 \theta + \cos \theta - 2} \]
39. \[\int \frac{(x - 2)^2 \tan^{-1} (2x) - 12x^3 - 3x}{(4x^2 + 1)(x - 2)^2} dx \]
40. \[\int \frac{(x + 1)^3 \tan^{-1} (3x) + 9x^3 + x}{(9x^2 + 1)(x + 1)^2} dx \]

Initial Value Problems
Solve the initial value problems in Exercises 41–44 for \(x \) as a function of \(t \).

41. \((t^2 - 3t + 2) \frac{dx}{dt} = 1 \quad (t > 2), \quad x(3) = 0 \)
42. \((3t^4 + 4t^2 + 1) \frac{dx}{dt} = 2\sqrt{3}, \quad x(1) = -\pi\sqrt{3}/4 \)
43. \((t^2 + 2t) \frac{dx}{dt} = 2x + 2 \quad (t, x > 0), \quad x(1) = 1 \)
44. \((t + 1) \frac{dx}{dt} = x^2 + 1 \quad (t > -1), \quad x(0) = \pi/4 \)

Applications and Examples
In Exercises 45 and 46, find the volume of the solid generated by revolving the shaded region about the indicated axis.

45. The \(x \)-axis

46. The \(y \)-axis

47. Find, to two decimal places, the \(x \)-coordinate of the centroid of the region in the first quadrant bounded by the \(x \)-axis, the curve \(y = \tan^{-1} x \), and the line \(x = \sqrt{3} \).

48. Find the \(x \)-coordinate of the centroid of this region to two decimal places.

49. Social diffusion
Sociologists sometimes use the phrase “social diffusion” to describe the way information spreads through a population. The information might be a rumor, a cultural fad, or news about a technical innovation. In a sufficiently large population, the number of people \(x \) who have the information is treated as a differentiable function of time \(t \), and the rate of diffusion, \(dx/dt \), is assumed to be proportional to the number of people who have the information times the number of people who do not. This leads to the equation

\[\frac{dx}{dt} = kx(N - x), \]

where \(N \) is the number of people in the population.

Suppose \(t \) is in days, \(k = 1/250 \), and two people start a rumor at time \(t = 0 \) in a population of \(N = 1000 \) people.

a. Find \(x \) as a function of \(t \).

b. When will half the population have heard the rumor? (This is when the rumor will be spreading the fastest.)

50. Second-order chemical reactions
Many chemical reactions are the result of the interaction of two molecules that undergo a change to produce a new product. The rate of the reaction typically depends on the concentrations of the two kinds of molecules. If \(a \) is the amount of substance \(A \) and \(b \) is the amount of substance \(B \) at time \(t = 0 \), and if \(x \) is the amount of product at time \(t \), then the rate of formation of \(x \) may be given by the differential equation

\[\frac{dx}{dt} = k(a - x)(b - x), \]

or

\[\frac{1}{(a - x)(b - x)} \frac{dx}{dt} = k, \]

where \(k \) is a constant for the reaction. Integrate both sides of this equation to obtain a relation between \(x \) and \(t \) (a) if \(a = b \), and (b) if \(a \neq b \). Assume in each case that \(x = 0 \) when \(t = 0 \).

51. An integral connecting \(\pi \) to the approximation 22/7

a. Evaluate \(\int_0^1 \frac{x^4(x - 1)^4}{x^2 + 1} dx \).

b. How good is the approximation \(\pi \approx 22/7 \)? Find out by expressing \(\left(\frac{22}{7} - \pi \right) \) as a percentage of \(\pi \).
e. Graph the function \(y = \frac{x^4(x - 1)^4}{x^2 + 1} \) for \(0 \leq x \leq 1 \). Experiment with the range on the \(y \)-axis set between 0 and 1, then between 0 and 0.5, and then decreasing the range until the graph can be seen. What do you conclude about the area under the curve?

52. Find the second-degree polynomial \(P(x) \) such that \(P(0) = 1 \), \(P'(0) = 0 \), and

\[\int \frac{P(x)}{x^3(x - 1)^2} \, dx \]

is a rational function.