

FUEL CELLS AND BATTERIES **RESERVE BATTERIES**

Batteries, which use highly active component materials to obtain the required high energy, high power, and/or low-temperature performance, are often designed in a reserve construction to withstand deterioration in storage and to eliminate self-discharge prior to use. These batteries are used primarily to deliver high power for relatively short periods of time after activation in such applications as radiosondes, fuzes, missiles, torpedoes, and other weapon systems. The reserve design also is used for batteries required to meet extremely long or environmentally severe storage requirements. In the reserve structure, one of the key components of the cell is separated from the remainder of the cell until activation. In this inert condition, chemical reaction between the cell components (self-discharge) is prevented, and the battery is capable of long-term storage. The electrolyte is the component that is usually isolated, although in some water-activated batteries the electrolyte solute is contained in the cell and only water is added. The reserve batteries can be classified by the type of activating medium or mechanism that is involved in the activation:

Water-activated batteries: Activation by fresh- or seawater.

Electrolyte-activated batteries: Activation by the complete electrolyte or with the electrolyte solvent. The electrolyte solute is contained in or formed in the cell.

Gas-activated batteries: Activation by introducing a gas into the cell. The gas can be either the active cathode material or part of the electrolyte.

Heat-activated batteries: A solid salt electrolyte is heated to the molten condition and becomes ionically conductive, thus activating the cell. These are known as thermal batteries.

Activation of the reserve battery is accomplished by adding the missing component just prior to use. In the simplest designs, this is done by manually pouring or adding the electrolyte into the cell or placing the battery in the electrolyte (as in the case of sea water activated batteries). In more sophisticated applications the electrolyte storage and the activation mechanism are contained within the overall battery structure, and the electrolyte is brought automatically to the active electrochemical components by remotely activating the activation mechanism. The trigger for activation can be a mechanical or electrical impulse, the shock and spin accompanying the firing of a shell or missile, and so on. Activation can be completed very rapidly if required, usually in less than one second. The penalty for automatic activation is a substantial reduction in the specific energy and/or energy density of the battery due to the volume and weight of the activating mechanism. It is therefore not general practice to rate these batteries in terms of specific energy or energy density.

The gas-activated batteries are a class of reserve batteries which are activated by introduction of a gas into the battery system. There are two types of gas-activated batteries: those in which the gas serves as the cathodic active material and those in which the gas serves to form the electrolyte. The gas-activated batteries were attractive because they offered the potential of a simple and positive means of activation. In addition, because the gas is nonconductive, it can be distributed through a multicell assembly without the danger of short-circuiting the battery through the distribution system. Gas-activated batteries are no longer in production, however, because of the more advantageous characteristics of other systems.

The thermal or heat-activated battery is another class of reserve battery. It employs a salt electrolyte, which is solid and, hence, nonconductive at the normal storage temperatures when

FUEL CELLS AND BATTERIES

the battery must be inactive. The battery is activated by heating it to a temperature sufficiently high to melt the electrolyte, thus making it ionically conductive and permitting the flow of current. The heat source and activating mechanism, which can be set off by electrical or mechanical means, can be built into the battery in a compact configuration to give very rapid activation. In the inactive stage the thermal battery can be stored for periods of 10 years or more.

CHARACTERISTICS OF RESERVE BATTERIES

Reserve batteries have been designed using a number of different electrochemical systems to take advantage of the long unactivated shelf life achieved by this type of battery design. Relatively few of these have achieved wide usage because of the lower capacity of the reserve structure (compared with a standard battery of the same system), poorer shelf life after activation, higher cost, and generally acceptable shelf life of active primary batteries for most applications. For the special applications that prompted their development, nevertheless, the reserve structure offers the needed advantageous characteristics. In recent years, however, the use of reserve batteries has declined because of the improved storability of active primary batteries and the limited number of applications requiring extended storage. Most of these applications are for special military weapon systems. The reserve batteries are usually designed for specific applications, each design optimized to meet the requirements of the application. A summary of the major types of reserve batteries, their major characteristics and advantages, disadvantages, and key areas of application is given in Table 1.

Conventional Systems. Reserve batteries employing the conventional electrochemical systems, such as the Leclanche' zinc-carbon system, date back to the 1930–1940 period. This structure, in which the electrolyte is kept in a separate vial and introduced into the cell at the time of use, was employed as a means of extending the shelf life of these batteries, which was very poor at that time. Later similar structures were developed using the zinc-alkaline systems. Because of the subsequent improvement of the shelf life of these primary batteries and the higher cost and lower capacity of the reserve structure, batteries of this type never became popular.

Water-activated Batteries. A reserve battery that was used widely is the water-activated type. This battery was developed in the 1940s for applications such as weather balloons, radiosondes, sonobuoys, and electric torpedoes requiring a low-temperature, high-rate, or high-capacity capability. These batteries use an energetic electrochemical system, generally a magnesium alloy, as the anode and a metal halide for the cathode. The battery is activated by introduction of water or an aqueous electrolyte. The batteries are used at moderate to high discharge rates for periods up to 24 h after activation. These batteries may also be designed to be activated with seawater. They have been used for sonobuoys, other marine applications (lifejacket lights, etc.), and underwater propulsion.

Activation can occur upon immersion into seawater or require the forced flow of seawater through the system. Many of these seawater batteries use a magnesium alloy anode with a metal salt cathode, as shown in Table 1. Alloys of zinc, aluminum, and lithium have also been considered for special-purpose seawater batteries. Zinc can be used as the anode in low-current, low-power long-life batteries. It has the advantage of not sludging, but the disadvantage of being a low-power density system. Zinc/ silver chloride seawater batteries have been used as the power

Dr.HASSAN ABDUL-ZEHRA

Dr.HASSAN ABDUL-ZEHRA

FUEL CELLS AND BATTERIES

source for repeaters for submarine telephone cables (for example, 5 mA at 0.9–1.1 V for 1 year of operation).

Zinc and aluminum seawater batteries, using a silver oxide cathode, have higher energy densities than magnesium seawater batteries and can be discharged at high rates similar to the magnesium/ silver chloride battery. The aluminum anode is subject to much higher corrosion rates than magnesium. Lithium is attractive because of its high energy and power density, and batteries using lithium as an anode were once in development using silver oxide or water as the cathode material. In general the combination of lithium with water is considered hazardous because of the high heat of reaction, but in the presence of hydroxyl ion concentrations greater than 1.5M a protective film is formed which exists in a dynamic steady state. Operation of these batteries requires very precise control of the electrolyte concentration, which requires sophisticated pumps and controls.

Zinc, aluminum, or magnesium alloys are being used in reserve batteries using air as the cathode. With aluminum or magnesium, these batteries may be activated with saline electrolytes, and in some underwater application they may use oxygen dissolved in the seawater.

Reserve or mechanically rechargeable air batteries, for higher-power applications such as for standby power or electric-vehicle propulsion, use zinc or aluminum alloys with alkaline electrolytes.

Zinc/ Silver Oxide Batteries. Another important reserve battery uses the zinc / silver oxide system, which is noted for its high-rate capability and high specific energy. For missile and other high-rate applications, the cell is designed with thin plates and large-surface-area electrodes, which increase the high-rate and low-temperature capability of the battery and give a flatter discharge profile. This construction, however, reduces the activated shelf life of the battery, necessitating the use of a reserve battery design. The cells can be filled and activated manually, but for missile applications the zinc / silver oxide battery is used in an automatically activated design. This use requires a long period in a state of readiness (and storage), necessitating the rate of approximately 2 to 20 min. Activation is accomplished within a second by electrically firing a gas squib which forces the stored electrolyte into the cells. Shelf life of the unactivated battery is 10 years or more at 25° C storage.

Spin Activated Batteries. The spin-dependent design provides another means of activating reserve batteries using liquid electrolytes, taking advantage of the forces available during the firing of an artillery projectile. The electrolyte is stored in a container in the center of the battery. The shock of the firing breaks or opens the container, and the electrolyte is distributed into the annular-shaped cells by the centrifugal force of the spinning of the projectile.

Nonaqueous Electrolyte Batteries. Nonaqueous electrolyte systems are also used in reserve batteries to take advantage of their lower freezing points and better performance at low temperatures. The liquid ammonia battery, using liquid ammonia as the electrolyte solvent, had been employed up to about 1990 as a power source for fuzes and low power ordnance devices which require a battery capable of performance over a wide temperature range and with an unactivated shelf life in excess of 10 years. The liquid ammonia battery is operable at cold as well as normal temperatures with little change in cell voltage and energy output.

FUEL CELLS AND BATTERIES

Dr.HASSAN ABDUL-ZEHRA

The battery typically uses a magnesium anode, a meta-dinitrobenzene-carbon cathode, and an electrolyte salt system based on ammonium and potassium thiocyanate. Activation is accomplished by introducing liquid ammonia into the battery cell where it combines with the thiocyanate salts to form the electrolyte:

$$NH_4SCN \xrightarrow{NH_3} NH_4^+ + SCN^-$$

 $KSCN \xrightarrow{NH_3} K^+ + SCN^-$

Mechanically, this can be done by igniting a gas generator which forces the electrolyte into the cells or through an external force, such as a gun firing setback which breaks a glass ampule containing the liquid ammonia as shown in Figure 1. Depending on the application, the battery can be designed for efficient discharge for several minutes or up to 50 or more hours of service. This battery is no longer in production; the only manufacturer was Alliant Techsystems, Power Sources Center, Horsham, PA.

Lithium Anode Batteries. The lithium anode electrochemical system is also being developed in reserve configurations to take advantage of its high energy density and good low temperature performance. These batteries use either an organic electrolyte or a nonaqueous inorganic electrolyte because of the reactivity of lithium in aqueous electrolytes. Even though the active lithium primary batteries are noted for their excellent storability, the reserve structure is used to provide a capability of essentially no capacity loss even after storage periods in the inactive state of 10 years or more. The performance characteristics of the reserve battery, once activated, are similar to those of the active lithium batteries, but with a penalty of 50% or more in specific energy and energy density due to the need for the activation device and the electrolyte reservoir. Lithium is also being considered as an anode in aqueous reserve batteries for high-rate applications in a marine environment.

Gas-activated Batteries. The gas-activated batteries were attractive because their activation was potentially simpler and more positive than liquid or heat activation. The ammonia vapor-activated (AVA) battery was representative of a system in which the gas served to form the electrolyte. (Solids such as ammonium thiocyanate will absorb ammonia rapidly to form electrolyte solutions of high conductivity.) In practice, ammonia vapor activation was found to be slow and nonuniform, and the development of the ammonia battery was directed to liquid ammonia activation which, in turn, was found to be inferior to newer developments. The chlorine-depolarized zinc / chlorine battery was representative of the gas depolarizer system. This battery used a zinc anode, a salt electrolyte, and chlorine, which was introduced into the cell, at the time of use, as the active cathode material. The battery was designed for very high rate discharge ranging from 1 to 5 min, but its poor shelf life while inactivated limited further development and use.

Thermal Batteries. The thermal battery has been used extensively in fuzes, mines, missiles, and nuclear weapons which require an extremely reliable battery that has a very long shelf life, can withstand stress environments such as shock and spin, and has the ability to develop full voltage rapidly, regardless of temperature. The life of the battery after activation is short the majority of applications are high-rate and require only 1–10 min of use and is primarily dependent on the time the electrolyte can be maintained above its melting point. The energy density of the thermal

FUEL CELLS AND BATTERIES

Dr.HASSAN ABDUL-ZEHRA

battery is low; in this characteristic it does not compare favorably with other batteries except at the extremely high discharge rates. New designs, using lithium or lithium alloy anode, have resulted in a significant increase in the energy density as well as an increase in the discharge time to 1 to 2 hours.

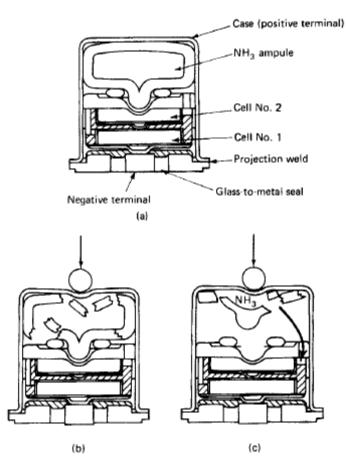


Figure 1: Activation of liquid ammonia reserve battery, Alliant model G2514. (*a*) Inactive cell. (*b*) Ampoule broken by external force. (*c*) Ammonia activates battery stack. (*Courtesy of Alliant Techsystems, Inc., Power Sources Center.*)

Dr.HASSAN ABDUL-ZEHRA

FUEL CELLS AND BATTERIES Table 1: Characteristics of Reserve Batteries

								Gas-activat	ed batteries		
System	Spin-	depend	ent batteries	Lithium-nonaqueous batteries			Liquid ammonia batteries	Chlorine depolarized	Ammonia-vapor-activated (AVA)	Thermal batteries	
General characteristics	store vate	ed in be	parately attery; acti- lock and spin as	Battery activated by introducing liquid electrolyte into battery system			Battery activated by intro- ducing liquid NH ₃ into battery system (NH ₃ can be stored in ampul in battery)	Battery activated by intro- ducing chlorine gas to act as the depolarizer	Battery activated by intro- ducing ammonia gas to form the electrolyte with salt already in the battery	Battery activated by heating to a temperature sufficient to melt solid electrolyte, making it con- ductive	
A dvantages	life;	conven rapid "	ctivated shelf tient, relia- 'built-in'' ac-	High energy density; wide op- erating temperature range; flat discharge profile; excel- lent unactivated storage; high to low discharge rate capabil- ity			Wide operating tempera- ture range; high appli- cations	Potential for high-rate, high-capacity, good low-temperature per- formance; simple acti- vation even at -20°C	Potential for good low- temperature perform- ance; simple activation; excellent unactivated shelf life; high and moderate rate applica-	Performance independent of ambien temperature; rapid activation; ex- cellent unactivated shelf life	
Disadvantages / limitations	Activation device reduces energy density			Reserve structure has lower energy density than active primary systems			High pressure, poor wet stand	Short shelf life even in unactivated condition	tion Activation slow and non- uniform	Short lifetime; activation device re- duces energy density. New de- signs, using Li or Li alloy anode, however, has higher energy den- sity and longer lifetime	
Chemistry: Anode	РЪ	Za	Li	Li	Li	Li	Mg	Zn	Zn	Ca Mg Li	
Cathode	PbO ₂	AgO	SOCI2	V20,	SO ₂	SOCI2	m · DNB	Cl ₂	PbO ₂	CaCrO ₄ V ₂ O ₅ FeS ₂	
Electrolyte	HBF_4	KOH	SOCI2	Organic	Organic	-	NH ₄ SCN, KSCN(NH ₅)	Salt (CaCl ₂ , ZnCl ₂)	NH ₄ SCN(NH ₃)	LICI/KCI LICI/KCI LICI/KCI	
Nominal voltage, V Performance characteristics:	2.0	1.6	3.5	3.3	3.0	3.5	2.2	1.5	1.9	2.22-2.6 2.2-2.7 1.6-2.1	
Operating temperature, °C	-40 to 60 (For HBF ₄ system, other systems may re- quire heating for low- temperature operation.)			-55 to 70			-55 to 70	-20 to 50	-55 to 75	-55 to 75	
Specific energy and energy density			1								
Wh/kg Wh/L	See Section 19.4			50–150 (depending 100–300 on battery system)			45 (at high 60 (at low 100 rates) 130 rates)	40 60	25 50	10 (for Ca 40) (for Li up to 30 batteries) 100 batteries)	
Status) In production			In production			Production terminated	Development effort termi- nated	Effort redirected to liquid ammonia batteries	In production, emphasis directed to newer lithium systems and longer lifetime	
Major applications	Artillery and span stabi- lized projectiles— fuzing control, or arm- ing			Mine fuzing, missiles			Mine fuzing, missiles			Military ordnance (projectiles, rock- ets, missiles, fuzing)	
		ng cont	rol, or arm-								
		ng cont	rol, or ann-						Zinc/S	ilver oxide batteries	
System	ing	-	roi, or arm- ial system	Wate	er-activate	d batteries	Metal/air batteries	Lithium/water batteries	Zinc/S Manually activated	ilver oxide batteries Automatically activated	
System General characteristics	ing Con Conver cells (elec	ntional of in rese		Battery		y adding or	Metal/air batteries Battery activated by add- ing electrolyte or plac- ing battery in seawater	Lithium/water batteries Primary reserve system, depending on controlled reaction of Li with H ₂ O	Manually activated Battery activated by add- ing KOH electrolyte		
-	Con Conver cells (elec cell Reserv	wention ntional of in rese strolyte during :	al system cylindrical arve design separated in	Battery a placin High end to hig low-te after a	activated b g battery i ergy densi h rate cap emperature	y adding or in water ity: moderate ability: good e performance simple de-	Battery activated by add- ing electrolyte or plac-	Primary reserve system, depending on controlled	Manually activated Battery activated by add- ing KOH electrolyte	Automatically activated Electrolyte separately stored in bat tery; built-in device to automati cally activate from remote or lo	
General characteristics Advantages Disadvantages / limitations	Conver cells (elec cell Reserv shelf Lower vent low	wention in resectrolyte during : e struct f life capacit, ional ac	al system cylindrical rve design separated in storage) ure extends tive cells; erate dis-	Battery a placin High ena to hig low-te after a signs; Rapid se	activated b g battery i ergy densi h rate cap emperature activation; easy activ elf-dischan ; AgCl sy	y adding or in water ity: moderate ability: good e performance simple de-	Battery activated by add- ing electrolyte or plac- ing battery in seawater High energy density achieved by using oxy- gen from air or ocean	Primary reserve system, depending on controlled reaction of Li with H ₂ O	Manually activated Battery activated by add- ing KOH electrolyte just prior to use Highest capacity of prac- tical aqueous systems for high-rate use Manual activation is in-	Automatically activated Electrolyte separately stored in bat tery; built-in device to automati- cally activate from remote or lo- cal position High capacity, no maintenance; au tomatic activation. Excellent un- activated shelf life Activation device reduces energy	
General characteristics	Conver cells (elec cell Reserv shelf Lower vent low	wention itional is in rese trolyte during : e struct f life capaciti ional ac to mode	al system cylindrical rve design separated in storage) ure extends tive cells; erate dis-	Battery : placin High enu to hig low-te after a signs; Rapid se vation pensiv Mg, Zn AgCl, C	activated b g battery i ergy densi h rate cap semperature cetivation; easy activ eff-dischar ; AgCl sy re fucl, MnO;	y adding or in water ty; moderate ability; good performance simple de- vation ge after acti-	Battery activated by add- ing electrolyte or plac- ing battery in seawater High energy density achieved by using oxy- gen from air or ocean environment	Primary reserve system, depending on controlled reaction of Li with H ₂ O High energy density Need to control Li reac- tion with H ₂ O; complex	Manually activated Battery activated by add- ing KOH electrolyte just prior to use Highest capacity of prac- tical aqueous systems for high-rate use Manual activation is in- convenient and undesir- able for field use; low- temperature	Automatically activated Electrolyte separately stored in bat tery; built-in device to automati- cally activate from remote or lo- cal position High capacity, no maintenance; au tomatic activation. Excellent un- activated shelf life Activation device reduces energy density; costly, but warranted, fr	
General characteristics Advantages Disadvantages / limitations Chemistry: Anode	ing Conver cells (elec cell Reserv shelt Lower vent low chan	wention itional is in rese trolyte during : e struct f life capaciti ional ac to mode	al system cylindrical reve design separated in storage) ure extends y than con- tive cells; erate dis- tive	Battery : placin High end to hig low-te after a signs; Rapid se vation pensiv Mg, Zn AgCI, C others	activated b g battery i ergy densi h rate cap emperature cctivation; easy activ elf-dischar; AgCI sy re ucl, MnO;	by adding or in water ability: good performance simple de- vation ge after acti- stem is ex-	Battery activated by add- ing electrolyte or plac- ing battery in seawater High energy density achieved by using oxy- gen from air or ocean environment Self-discharge Zn, Mg, Al	Primary reserve system, depending on controlled reaction of Li with H ₂ O High energy density Need to control Li reac- tion with H ₂ O; complex system and controls Li H ₂ O, H ₂ O ₂ , O ₂ , AgO	Manually activated Battery activated by adding KOH electrolyte just prior to use Highest capacity of practical aqueous systems for high-rate use Manual activation is inconvenient and undesirable for field use; low-temperature performance is poor Zn	Automatically activated Electrolyte separately stored in bat tery; built-in device to automati- cally activate from remote or lo- cal position High capacity, no maintenance; au tomatic activation. Excellent un- activated shelf life Activation device reduces energy density; costly, but warranted, for special applications	
General characteristics Advantages Disadvantages / limitations Disadvantages / limitations Disadvantages / limitations Cathode	ing Conver cells (elec cell Reserve shelf Lower chan Chan MnO ₂	wention itional is in rese trolyte during : e struct f life capaciti ional ac to mode	al system cylindrical reve design separated in storage) ure extends y than con- tive cells; erate dis- Zn HgO	Battery : placin High en- to hig low-te after a signs; Rapid se vation pensiv Mg, Zn AgCl, C others H ₂ O, see	activated b g battery i ergy densi h rate cap emperature cctivation; easy activ elf-dischar; AgCI sy re ucl, MnO;	y adding or in water ity; moderate ability; good performance simple de- vation ge after acti- stem is ex-	Battery activated by add- ing electrolyte or plac- ing battery in seawater High eaergy density achieved by using oxy- gen from air or ocean environment Self-discharge Zn, Mg, Al Air or oxygen Seawater or alkaline solu-	Primary reserve system, depending on controlled reaction of Li with H ₂ O High energy density Need to control Li reac- tion with H ₂ O; complex system and controls Li H ₂ O, H ₂ O ₂ , O ₂ , AgO	Manually activated Battery activated by add- ing KOH electrolyte just prior to use Highest capacity of prac- tical aqueous systems for high-rate use Manual activation is in- convenient and undesir- able for field use; low- temperature performance is poor Zn AgO, Ag2O	Automatically activated Electrolyte separately stored in bat tery; built-in device to automati- cally activate from remote or lo- cal position High capacity, no maintenance; au tomatic activation. Excellent un- activated shelf life Activation device reduces energy density; costly, but warranted, for special applications Zn AgO, Ag ₂ O	
General characteristics Advantages Disadvantages / limitations Disadvantages / limitations Disadvantages / limitations Cathode Electrolyte Nominal voltage, V Performance characteristics Operating temperature, *C	ing Conver cells (elec cells (elec cells (elec cells (elec cells (elec cells (elec cells (elec cells (elec cells (elec calls (shelt cells (shelt (shelt (shelt (shelt (shelt))) (shelt (shelt))) (shelt)) (shelt))) (shelt))) (shelt))) (shelt))) (she	wention tional i in rese trolyte e struct f life capacit ional ac ional ac	al system cylindrical rve design separated in storage) ure extends y than con- tive cells; erate dis- in Tan HgO KOH	Battery : placin High enu- to hig low-te after : signs; Rapid se vation pensiv Mg. Zn AgCl, C others H ₂ O, see tions 1.5–1.6 –60 to 6	activated b g battery i ergy densi h rate cap mperature citivation; easy activ elf-dischar; ; AgCl sy re ucl, MnO; ; wwater aqu	yy addiag or in water ty: moderate ability: good performance simple de- ration ge after acti- stem is ex- , PbCl ₂ , and tecous solu-	Battery activated by add- ing electrolyte or plac- ing battery in seawater High energy density achieved by using oxy- gen from air or ocean environment Self-discharge Zn, Mg, Al Air or oxygen Seawater or alkaline solu- tion	Primary reserve system, depending on controlled reaction of Li with H ₂ O High energy density Need to control Li reac- tion with H ₂ O; complex system and controls Li H ₂ O, H ₂ O ₂ , O ₂ , AgO H ₂ O, LiOH	Manually activated Battery activated by add- ing KOH electrolyte just prior to use Highest capacity of prac- tical aqueous systems for high-rate use Manual activation is in- convenient and undesir- able for field use; low- temperature performance is poor Zn AgO, Ag2O KOH	Automatically activated Electrolyte separately stored in bat tery; built-in device to automati- cal position High capacity, no maintenance; au tomatic activation. Excellent un- activated shelf life Activation device reduces energy density; costly, but warranted, for special applications Zn AgO, Ag ₂ O KOH	
General characteristics Advantages Disadvantages / limitations Disadvantages / limitations Disadvantages / limitations Disadvantages / limitations Cathode Electrolyte Nominal voltage, V Performance characteristics Operating temperature, °C	ing Conver cells (elec cells (elec char vent low char Zn MnO ₂ Salt 1.5 0 to 50	wention tional i in rese trolyte e struct f life capacit ional ac ional ac	al system cylindrical separated in storage) ure extends y than con- tifve cells; erate dis- constant HgO KOH 1.35 0 to 50	Battery : placin High enu- to hig low-te after a signs; Rapid se vation pensiv Mg. Zn AgCl, C others H ₂ O, see tions 1.5–1.6 –60 to 6 Perform dent o after a	activated b g battery i ergy densi h rate cap imperature cetivation; easy activ elf-dischar (if-dischar)) (if-dischar (if-dischar)) (if-dischar (if-dischar)) (if-di	yy addiag or in water ty: moderate abiliy: good performance simple de- ation ge after acti- stem is ex- sp PbCl2, and teous solu- ectivation) st indepen-	Battery activated by add- ing electrolyte or plac- ing battery in seawater High energy density achieved by using oxy- gen from air or ocean environment Self-discharge Za, Mg, Al Air or oxygen Seawater or alkaline solu- tion See Table 38.2	 Primary reserve system, depending on controlled reaction of Li with H₂O High energy density Need to control Li reac- tion with H₂O; complex system and controls Li H₂O, H₂O₂, O₂, AgO H₂O, LiOH 2.2 0 to 30 	Manually activated Battery activated by add- ing KOH electrolyte just prior to use Highest capacity of prac- tical aqueous systems for high-rate use Manual activation is in- convenient and undesir able for field use; low- temperature performance is poor Zn AgO, Ag2O KOH 1.6 0 to 60	Automatically activated Electrolyte separately stored in bat tery; built-in device to automati- cally activate from remote or lo- cal position High capacity, no maintenance; au tomatic activation. Excellent un- activated shelf life Activation device reduces energy density; costly, but warranted, for special applications Zn AgO, Ago KOH 1.6 0 to 60 (<0°C operation with heat ers)	
General characteristics Advantages Disadvantages / limitations Chemistry: Anode Cathode Electrolyte Nominal voltage, V Performance characteristics Operating temperature, *C	ing Conver cells (elec cells (elec charges manda charges Salt 1.5 0 to 50 0 to 50 0 to 50 0 to 50	w ention ntional in research trolyte during e struct life capaciti ional ac to mode ge rates	al system cylindrical rve design separated in storage) ure extends y than con- tive cells; rate dis- Zn HgO KOH 1.35 0 to 50 rate	Battery : placin High ener to hig low-te after a signs; Rapid se vation pensiv Mg, Zn AgCl C AgCl 10	activated b g battery i ergy densi h rate cap mperature citivation; easy activ eff-dischar; AgCI sy re uucl, MnO; i water aqu 55 (after a ance almo of ambient activation 0–150 C	yy adding or in water ty: moderate ability: good performance simple de- ation ge after acti- stem is ex- p. PbCl ₂ , and tecous solu- tecous solu- temperature bitners 45–80 50–200	Battery activated by add- ing electrolyte or plac- ing battery in seawater High energy density achieved by using oxy- gen from air or ocean environment Self-discharge Zn, Mg, Al Air or oxygen Seawater or alkaline solu- tion See Table 38.2 See Chap. 38 In development, early pro-	Primary reserve system, depending on controlled reaction of Li with H ₂ O High energy density Need to control Li reac- tion with H ₂ O; complex system and controls Li H ₂ O, H ₂ O ₂ , O ₂ , AgO H ₂ O, LiOH 2.2 0 to 30 160 (at 20-h 135 rate)	Manually activated Battery activated by add- ing KOH electrolyte just prior to use Highest capacity of prac- tical aqueous systems for high-rate use Manual activation is in- convenient and undesir able for field use; low- temperature performance is poor Zn AgO, Ag2O KOH 1.6	Automatically activated Electrolyte separately stored in bat tery; built-in device to automati- cally activate from remote or lo- cal position High capacity, no maintenance; au tomatic activation. Excellent un- activated shelf life Activation device reduces energy density; costly, but warranted, for special applications Zn AgO, AgO KOH 1.6 0 to 60 (<0°C operation with heat ers)	
General characteristics Advantages Disadvantages / limitations Disadvantages / limitations Cathode Electrolyte Nominal voltage, V Performance characteristics Operating temperature, *C Specific energy and energy density.	ing Conver cells (elec cells (elec charges manda charges Salt 1.5 0 to 50 0 to 50 0 to 50 0 to 50	wention in reset trolyte e struct f ife capaciti ional ac ge rates ge rates	al system cylindrical rve design separated in storage) ure extends y than con- tive cells; rate dis- Zn HgO KOH 1.35 0 to 50 rate	Battery : placin High ener to hig low-te after a signs; Rapid se vation pensiv Mg, Zn AgCl C AgCl C C others L,O, sea tions 1.5-1.6 -60 to 6 Performs dent c after a AgCl 10 In limite cation	activated b g battery i ergy densi h rate cap imperature citivation; easy activ elf-dischar; AgCI sy re uucl, MnO; i water aqu 55 (after a ance almo of ambient ictivation 0–150 C ad use for s	yy adding or in water ty: moderate ability: good performance simple de- ation ge after acti- stem is ex- p. PbCl ₂ , and tecous solu- tecous solu- temperature bthers 45–80 50–200 special appli-	Battery activated by add- ing electrolyte or plac- ing battery in seawater High energy density achieved by using oxy- gen from air or ocean environment Self-discharge Za, Mg, Al Air or oxygen Seawater or alkaline solu- tion See Table 38.2 See Chap. 38	Primary reserve system, depending on controlled reaction of Li with H ₂ O High energy density Need to control Li reac- tion with H ₂ O; complex system and controls Li H ₂ O, H ₂ O ₂ , O ₂ , AgO H ₂ O, LiOH 2.2 0 to 30 160 (at 20-h 135 rate)	Manually activated Battery activated by adding KOH electrolyte just prior to use Highest capacity of practical aqueous systems for high-rate use Manual activation is inconvenient and undesirable for field use; low-temperature performance is poor Zn AgO, AgO KOH 1.6 0 to 60 60–60 (at high 100–160 (Automatically activated Electrolyte separately stored in bat tery; built-in device to automati- cal position High capacity, no maintenance; au tomatic activation. Excellent un- activated shelf life Activation device reduces energy density; costly, but warranted, for special applications Zn AgO, AggO KOH 1.6 0 to 60 (<0°C operation with heat ers) 20–50 (at high 100–200 rates)	