Concavity and Curve Sketching

In Section 4.3 we saw how the first derivative tells us where a function is increasing and where it is decreasing. At a critical point of a differentiable function, the First Derivative Test tells us whether there is a local maximum or a local minimum, or whether the graph just continues to rise or fall there.

In this section we see how the second derivative gives information about the way the graph of a differentiable function bends or turns. This additional information enables us to capture key aspects of the behavior of a function and its graph, and then present these features in a sketch of the graph.

Concavity

As you can see in Figure 4.25, the curve \(y = x^3 \) rises as \(x \) increases, but the portions defined on the intervals \((-\infty, 0)\) and \((0, \infty)\) turn in different ways. As we approach the origin from the left along the curve, the curve turns to our right and falls below its tangents. The slopes of the tangents are decreasing on the interval \((-\infty, 0)\). As we move away from the origin along the curve to the right, the curve turns to our left and rises above its tangents. The slopes of the tangents are increasing on the interval \((0, \infty)\). This turning or bending behavior defines the concavity of the curve.

Figure 4.25 The graph of \(f(x) = x^3 \) is concave down on \((-\infty, 0)\) and concave up on \((0, \infty)\) (Example 1a).
If \(y = f(x) \) has a second derivative, we can apply Corollary 3 of the Mean Value Theorem to conclude that \(f' \) increases if \(f'' > 0 \) on \(I \), and decreases if \(f'' < 0 \).

The Second Derivative Test for Concavity
Let \(y = f(x) \) be twice-differentiable on an interval \(I \).
1. If \(f'' > 0 \) on \(I \), the graph of \(f \) over \(I \) is concave up.
2. If \(f'' < 0 \) on \(I \), the graph of \(f \) over \(I \) is concave down.

If \(y = f(x) \) is twice-differentiable, we will use the notations \(f'' \) and \(y'' \) interchangeably when denoting the second derivative.

\[y'' > 0 \]
\[y'' < 0 \]

EXAMPLE 1 Applying the Concavity Test
(a) The curve \(y = x^3 \) (Figure 4.25) is concave down on \((-\infty, 0)\) where \(y'' = 6x < 0 \) and concave up on \((0, \infty)\) where \(y'' = 6x > 0 \).
(b) The curve \(y = x^2 \) (Figure 4.26) is concave up on \((-\infty, \infty)\) because its second derivative \(y'' = 2 \) is always positive.

EXAMPLE 2 Determining Concavity
Determine the concavity of \(y = 3 + \sin x \) on \([0, 2\pi]\).

Solution The graph of \(y = 3 + \sin x \) is concave down on \((0, \pi)\), where \(y'' = -\sin x \) is negative. It is concave up on \((\pi, 2\pi)\), where \(y'' = -\sin x \) is positive (Figure 4.27).

Points of Inflection
The curve \(y = 3 + \sin x \) in Example 2 changes concavity at the point \((\pi, 3)\). We call \((\pi, 3)\) a point of inflection of the curve.

DEFINITION Point of Inflection
A point where the graph of a function has a tangent line and where the concavity changes is a point of inflection.
EXAMPLE 3 An Inflection Point May Not Exist Where $y'' = 0$

The curve $y = x^4$ has no inflection point at $x = 0$ (Figure 4.28). Even though $y'' = 12x^2$ is zero there, it does not change sign.

EXAMPLE 4 An Inflection Point May Occur Where y'' Does Not Exist

The curve $y = x^{1/3}$ has a point of inflection at $x = 0$ (Figure 4.29), but y'' does not exist there.

$$y'' = \frac{d^2}{dx^2} \left(x^{1/3} \right) = \frac{d}{dx} \left(\frac{1}{3} x^{-2/3} \right) = -\frac{2}{9} x^{-5/3}.$$

We see from Example 3 that a zero second derivative does not always produce a point of inflection. From Example 4, we see that inflection points can also occur where there is no second derivative.

To study the motion of a body moving along a line as a function of time, we often are interested in knowing when the body’s acceleration, given by the second derivative, is positive or negative. The points of inflection on the graph of the body’s position function reveal where the acceleration changes sign.

EXAMPLE 5 Studying Motion Along a Line

A particle is moving along a horizontal line with position function

$$s(t) = 2t^3 - 14t^2 + 22t - 5, \quad t \geq 0.$$

Find the velocity and acceleration, and describe the motion of the particle.

Solution The velocity is

$$v(t) = s'(t) = 6t^2 - 28t + 22 = 2(t - 1)(3t - 11),$$

and the acceleration is

$$a(t) = v'(t) = s''(t) = 12t - 28 = 4(3t - 7).$$

When the function $s(t)$ is increasing, the particle is moving to the right; when $s(t)$ is decreasing, the particle is moving to the left.

Notice that the first derivative ($v = s'$) is zero when $t = 1$ and $t = 11/3$.

<table>
<thead>
<tr>
<th>Intervals</th>
<th>$0 < t < 1$</th>
<th>$1 < t < 11/3$</th>
<th>$11/3 < t$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sign of $v = s'$</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Behavior of s</td>
<td>increasing</td>
<td>decreasing</td>
<td>increasing</td>
</tr>
<tr>
<td>Particle motion</td>
<td>right</td>
<td>left</td>
<td>right</td>
</tr>
</tbody>
</table>

The particle is moving to the right in the time intervals $[0, 1)$ and $(11/3, \infty)$, and moving to the left in $(1, 11/3)$. It is momentarily stationary (at rest), at $t = 1$ and $t = 11/3$.

The acceleration $a(t) = s''(t) = 4(3t - 7)$ is zero when $t = 7/3$.

<table>
<thead>
<tr>
<th>Intervals</th>
<th>$0 < t < 7/3$</th>
<th>$7/3 < t$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sign of $a = s''$</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Graph of s</td>
<td>concave down</td>
<td>concave up</td>
</tr>
</tbody>
</table>
The accelerating force is directed toward the left during the time interval \([0, 7/3]\), is momentarily zero at \(t = 7/3\), and is directed toward the right thereafter.

Second Derivative Test for Local Extrema

Instead of looking for sign changes in \(f'\) at critical points, we can sometimes use the following test to determine the presence and character of local extrema.

THEOREM 5 Second Derivative Test for Local Extrema

Suppose \(f''\) is continuous on an open interval that contains \(x = c\).

1. If \(f'(c) = 0\) and \(f''(c) < 0\), then \(f\) has a local maximum at \(x = c\).
2. If \(f'(c) = 0\) and \(f''(c) > 0\), then \(f\) has a local minimum at \(x = c\).
3. If \(f'(c) = 0\) and \(f''(c) = 0\), then the test fails. The function \(f\) may have a local maximum, a local minimum, or neither.

Proof Part (1). If \(f''(c) < 0\), then \(f''(x) < 0\) on some open interval \(I\) containing the point \(c\), since \(f''\) is continuous. Therefore, \(f'\) is decreasing on \(I\). Since \(f'(c) = 0\), the sign of \(f'\) changes from positive to negative at \(c\) so \(f\) has a local maximum at \(c\) by the First Derivative Test.

The proof of Part (2) is similar.

For Part (3), consider the three functions \(y = x^4\), \(y = -x^4\), and \(y = x^3\). For each function, the first and second derivatives are zero at \(x = 0\). Yet the function \(y = x^4\) has a local minimum there, \(y = -x^4\) has a local maximum, and \(y = x^3\) is increasing in any open interval containing \(x = 0\) (having neither a maximum nor a minimum there). Thus the test fails.

This test requires us to know \(f''\) only at \(c\) itself and not in an interval about \(c\). This makes the test easy to apply. That’s the good news. The bad news is that the test is inconclusive if \(f'' = 0\) or if \(f''\) does not exist at \(x = c\). When this happens, use the First Derivative Test for local extreme values.

Together \(f'\) and \(f''\) tell us the shape of the function’s graph, that is, where the critical points are located and what happens at a critical point, where the function is increasing and where it is decreasing, and how the curve is turning or bending as defined by its concavity. We use this information to sketch a graph of the function that captures its key features.

EXAMPLE 6 Using \(f'\) and \(f''\) to Graph \(f\)

Sketch a graph of the function

\[f(x) = x^4 - 4x^3 + 10 \]

using the following steps.

(a) Identify where the extrema of \(f\) occur.
(b) Find the intervals on which \(f\) is increasing and the intervals on which \(f\) is decreasing.
(c) Find where the graph of \(f\) is concave up and where it is concave down.
(d) Sketch the general shape of the graph for \(f\).
4.4 Concavity and Curve Sketching

(e) Plot some specific points, such as local maximum and minimum points, points of inflection, and intercepts. Then sketch the curve.

Solution
f is continuous since $f'(x) = 4x^3 - 12x^2$ exists. The domain of f is $(-\infty, \infty)$, and the domain of f' is also $(-\infty, \infty)$. Thus, the critical points of f occur only at the zeros of f'. Since

$$f'(x) = 4x^3 - 12x^2 = 4x^2(x - 3)$$

the first derivative is zero at $x = 0$ and $x = 3$.

<table>
<thead>
<tr>
<th>Intervals</th>
<th>$x < 0$</th>
<th>$0 < x < 3$</th>
<th>$3 < x$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sign of f'</td>
<td>$-$</td>
<td>$-$</td>
<td>$+$</td>
</tr>
<tr>
<td>Behavior of f</td>
<td>decreasing</td>
<td>decreasing</td>
<td>increasing</td>
</tr>
</tbody>
</table>

(a) Using the First Derivative Test for local extrema and the table above, we see that there is no extremum at $x = 0$ and a local minimum at $x = 3$.

(b) Using the table above, we see that f is decreasing on $(-\infty, 0]$ and $[0, 3]$, and increasing on $[3, \infty)$.

(c) $f''(x) = 12x^2 - 24x = 12x(x - 2)$ is zero at $x = 0$ and $x = 2$.

<table>
<thead>
<tr>
<th>Intervals</th>
<th>$x < 0$</th>
<th>$0 < x < 2$</th>
<th>$2 < x$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sign of f'</td>
<td>$+$</td>
<td>$-$</td>
<td>$+$</td>
</tr>
<tr>
<td>Behavior of f</td>
<td>concave up</td>
<td>concave down</td>
<td>concave up</td>
</tr>
</tbody>
</table>

We see that f is concave up on the intervals $(-\infty, 0)$ and $(2, \infty)$, and concave down on $(0, 2)$.

(d) Summarizing the information in the two tables above, we obtain

<table>
<thead>
<tr>
<th>$x < 0$</th>
<th>$0 < x < 2$</th>
<th>$2 < x < 3$</th>
<th>$3 < x$</th>
</tr>
</thead>
<tbody>
<tr>
<td>decreasing</td>
<td>decreasing</td>
<td>decreasing</td>
<td>increasing</td>
</tr>
<tr>
<td>concave up</td>
<td>concave down</td>
<td>concave up</td>
<td>concave up</td>
</tr>
</tbody>
</table>

The general shape of the curve is

General shape.
(e) Plot the curve’s intercepts (if possible) and the points where y' and y'' are zero. Indicate any local extreme values and inflection points. Use the general shape as a guide to sketch the curve. (Plot additional points as needed.) Figure 4.30 shows the graph of f.

The steps in Example 6 help in giving a procedure for graphing to capture the key features of a function and its graph.

Strategy for Graphing $y = f(x)$

1. Identify the domain of f and any symmetries the curve may have.
2. Find y' and y''.
3. Find the critical points of f, and identify the function’s behavior at each one.
4. Find where the curve is increasing and where it is decreasing.
5. Find the points of inflection, if any occur, and determine the concavity of the curve.
6. Identify any asymptotes.
7. Plot key points, such as the intercepts and the points found in Steps 3–5, and sketch the curve.

EXAMPLE 7 Using the Graphing Strategy

Sketch the graph of $f(x) = \frac{(x + 1)^2}{1 + x^2}$.

Solution

1. The domain of f is $(-\infty, \infty)$ and there are no symmetries about either axis or the origin (Section 1.4).

2. Find f' and f''.

 \[
 f(x) = \frac{(x + 1)^2}{1 + x^2}
 \]

 \[
 f'(x) = \frac{(1 + x^2) \cdot 2(x + 1) - (x + 1)^2 \cdot 2x}{(1 + x^2)^2}
 \]

 \[
 = \frac{2(1 - x^2)}{(1 + x^2)^2}
 \]

 \[
 f''(x) = \frac{(1 + x^2)^2 \cdot 2(-2x) - 2(1 - x^2)[2(1 + x^2) \cdot 2x]}{(1 + x^2)^4}
 \]

 \[
 = \frac{4x(x^2 - 3)}{(1 + x^2)^3}
 \]

 Critical points: $x = -1, x = 1$

 After some algebra

 x-intercept at $x = -1$,

 y-intercept ($y = 1$) at $x = 0$

3. **Behavior at critical points.** The critical points occur only at $x = \pm 1$ where $f'(x) = 0$ (Step 2) since f' exists everywhere over the domain of f. At $x = -1$, $f''(-1) = 1 > 0$ yielding a relative minimum by the Second Derivative Test. At $x = 1$, $f''(1) = -1 < 0$ yielding a relative maximum by the Second Derivative Test.

 We will see in Step 6 that both are absolute extrema as well.
4. Increasing and decreasing. We see that on the interval \((-\infty, -1)\) the derivative \(f'(x) < 0\), and the curve is decreasing. On the interval \((-1, 1)\), \(f'(x) > 0\) and the curve is increasing; it is decreasing on \((1, \infty)\) where \(f'(x) < 0\) again.

5. Inflection points. Notice that the denominator of the second derivative (Step 2) is always positive. The second derivative \(f''\) is zero when \(x = -\sqrt{3}, 0\), and \(\sqrt{3}\). The second derivative changes sign at each of these points: negative on \((-\infty, -\sqrt{3})\), positive on \((-\sqrt{3}, 0)\), negative on \((0, \sqrt{3})\), and positive again on \((\sqrt{3}, \infty)\). Thus each point is a point of inflection. The curve is concave down on the interval \((-\infty, -\sqrt{3})\), concave up on \((-\sqrt{3}, 0)\), concave down on \((0, \sqrt{3})\), and concave up again on \((\sqrt{3}, \infty)\).

6. Asymptotes. Expanding the numerator of \(f(x)\) and then dividing both numerator and denominator by \(x^2\) gives

\[
\frac{x + 1}{1 + x^2} = \frac{x^2 + 2x + 1}{x^2 + 1} = 1 + \frac{2x}{x^2 + 1} + \frac{1}{x^2 + 1}.
\]

We see that \(f(x) \to -\infty\) as \(x \to -\infty\) and that \(f(x) \to 1^-\) as \(x \to -\infty\). Thus, the line \(y = 1\) is a horizontal asymptote.

Since \(f\) decreases on \((-\infty, -1)\) and then increases on \((-1, 1)\), we know that \(f(-1) = 0\) is a local minimum. Although \(f\) decreases on \((1, \infty)\), it never crosses the horizontal asymptote \(y = 1\) on that interval (it approaches the asymptote from above). So the graph never becomes negative, and \(f(-1) = 0\) is an absolute minimum as well. Likewise, \(f(1) = 2\) is an absolute maximum because the graph never crosses the asymptote \(y = 1\) on the interval \((-\infty, -1)\), approaching it from below. Therefore, there are no vertical asymptotes (the range of \(f\) is \(0 \leq y \leq 2\)).

7. The graph of \(f\) is sketched in Figure 4.31. Notice how the graph is concave down as it approaches the horizontal asymptote \(y = 1\) as \(x \to -\infty\), and concave up in its approach to \(y = 1\) as \(x \to \infty\).

Learning About Functions from Derivatives

As we saw in Examples 6 and 7, we can learn almost everything we need to know about a twice-differentiable function \(y = f(x)\) by examining its first derivative. We can find where the function’s graph rises and falls and where any local extrema are assumed. We can differentiate \(y'\) to learn how the graph bends as it passes over the intervals of rise and fall. We can determine the shape of the function’s graph. Information we cannot get from the derivative is how to place the graph in the \(xy\)-plane. But, as we discovered in Section 4.2, the only additional information we need to position the graph is the value of \(f\) at one point. The derivative does not give us information about the asymptotes, which are found using limits (Sections 2.4 and 2.5).
Chapter 4: Applications of Derivatives

You Try It

<table>
<thead>
<tr>
<th>Differentiable ⇒ smooth, connected; graph may rise and fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>$y = f(x)$</td>
</tr>
<tr>
<td>$y = f(x)$</td>
</tr>
<tr>
<td>$y = f(x)$</td>
</tr>
<tr>
<td>$y' > 0$ ⇒ rises from left to right; may be wavy</td>
</tr>
<tr>
<td>$y' < 0$ ⇒ falls from left to right; may be wavy</td>
</tr>
<tr>
<td>or</td>
</tr>
<tr>
<td>$y'' > 0$ ⇒ concave up throughout; no waves; graph may rise or fall</td>
</tr>
<tr>
<td>$y'' < 0$ ⇒ concave down throughout; no waves; graph may rise or fall</td>
</tr>
<tr>
<td>Inflection point</td>
</tr>
<tr>
<td>or</td>
</tr>
<tr>
<td>y' changes sign ⇒ graph has local maximum or local minimum</td>
</tr>
<tr>
<td>$y' = 0$ and $y'' < 0$ at a point; graph has local maximum</td>
</tr>
<tr>
<td>$y' = 0$ and $y'' > 0$ at a point; graph has local minimum</td>
</tr>
</tbody>
</table>

Copyright © 2005 Pearson Education, Inc., publishing as Pearson Addison-Wesley
EXERCISES 4.4

Analyzing Graphed Functions
Identify the inflection points and local maxima and minima of the functions graphed in Exercises 1–8. Identify the intervals on which the functions are concave up and concave down.

1. \(y = \frac{x^3}{3} - \frac{x^2}{2} - 2x + \frac{1}{3} \)

2. \(y = \frac{x^4}{4} - 2x^2 + 4 \)

3. \(y = \frac{3}{4} (x^2 - 1)^{2/3} \)

4. \(y = \frac{9}{16} x^{1/3} (x^2 - 7) \)
4.4 Conavity and Curve Sketching

Sketching the General Shape Knowing \(y' \)
Each of Exercises 41–62 gives the first derivative of a continuous function \(y = f(x) \). Find \(y'' \) and then use steps 2–4 of the graphing procedure on page 272 to sketch the general shape of the graph of \(f \).

41. \(y' = 2 + x - x^2 \)
42. \(y' = x^2 - x - 6 \)
43. \(y' = x(x - 3)^2 \)
44. \(y' = x^2(2 - x) \)
45. \(y' = x^2 - 12 \)
46. \(y' = (x - 1)^2(2x + 3) \)
47. \(y' = (8x - 5x^2)(4 - x)^2 \)
48. \(y' = (x^3 - 2x)(x - 5)^2 \)
49. \(y' = \sec^2 x, -\frac{\pi}{2} < x < \frac{\pi}{2} \)
50. \(y' = \tan x, -\frac{\pi}{2} < x < \frac{\pi}{2} \)
51. \(y' = \cot \frac{\theta}{2}, 0 < \theta < 2\pi \)
52. \(y' = \csc^2 \frac{\theta}{2}, 0 < \theta < 2\pi \)
53. \(y' = \tan^2 \theta - 1, -\frac{\pi}{2} < \theta < \frac{\pi}{2} \)
54. \(y' = 1 - \cot^2 \theta, 0 < \theta < \pi \)
55. \(y' = \cos \, t, 0 \leq t \leq 2\pi \)
56. \(y' = \sin \, t, 0 \leq t \leq 2\pi \)
57. \(y' = (x + 1)^{-2/3} \)
58. \(y' = (x - 2)^{-1/3} \)
59. \(y' = x^{-2/3}(x - 1) \)
60. \(y' = x^{-4/5}(x + 1) \)
61. \(y' = 2|x| = \begin{cases} -2x, & x \leq 0 \\ 2x, & x > 0 \end{cases} \)
62. \(y' = \begin{cases} -x^2, & x \leq 0 \\ x^2, & x > 0 \end{cases} \)

Sketching \(y \) from Graphs of \(y' \) and \(y'' \)
Each of Exercises 63–66 shows the graphs of the first and second derivatives of a function \(y = f(x) \). Copy the picture and add to it a sketch of the approximate graph of \(f \), given that the graph passes through the point \(P \).

63.
64.
65.
66.
66. The accompanying figure shows a portion of the graph of a twice-differentiable function \(y = f(x) \). At each of the five labeled points, classify \(y' \) and \(y'' \) as positive, negative, or zero.

67. Sketch a smooth connected curve \(y = f(x) \) with

\[
\begin{align*}
&f(-2) = 8, & f'(2) = f'(-2) = 0, \\
&f(0) = 4, & f'(x) < 0 \text{ for } |x| < 2, \\
&f(2) = 0, & f''(x) < 0 \text{ for } x < 0, \\
&f'(x) > 0 \text{ for } |x| > 2, & f''(x) > 0 \text{ for } x > 0.
\end{align*}
\]

68. Sketch a smooth connected curve \(y = f(x) \) with

\[
\begin{align*}
&f(-2) = 8, & f'(2) = f'(-2) = 0, \\
&f(0) = 4, & f'(x) < 0 \text{ for } |x| < 2, \\
&f(2) = 0, & f''(x) < 0 \text{ for } x < 0, \\
&f'(x) > 0 \text{ for } |x| > 2, & f''(x) > 0 \text{ for } x > 0.
\end{align*}
\]

69. Sketch the graph of a twice-differentiable function \(y = f(x) \) with the following properties. Label coordinates where possible.

\[
\begin{array}{ccc}
\hline
x & y & \text{Derivatives} \\
\hline
x < 2 & y' < 0, & y'' > 0 \\
2 & 1 & y' = 0, y'' > 0 \\
2 < x < 4 & y' > 0, & y'' > 0 \\
4 & 4 & y' > 0, y'' = 0 \\
4 < x < 6 & y' > 0, & y'' < 0 \\
6 & 7 & y' = 0, y'' < 0 \\
x > 6 & y' < 0, & y'' < 0 \\
\hline
\end{array}
\]

70. Sketch the graph of a twice-differentiable function \(y = f(x) \) that passes through the points \((-2, 2), (-1, 1), (0, 0), (1, 1)\) and \((2, 2)\) and whose first two derivatives have the following sign patterns:

\[
\begin{align*}
y': & \quad + \quad - \quad + \quad - \\
y'': & \quad - \quad + \quad - \quad +
\end{align*}
\]

Motion Along a Line

71. The graphs in Exercises 71 and 72 show the position \(s = f(t) \) of a body moving back and forth on a coordinate line. (a) When is the body moving away from the origin? Toward the origin? At approximately what times is the (b) velocity equal to zero? (c) Acceleration equal to zero? (d) When is the acceleration positive? Negative?

72. Marginal cost

The accompanying graph shows the hypothetical cost \(c = f(x) \) of manufacturing \(x \) items. At approximately what production level does the marginal cost change from decreasing to increasing?

73. The accompanying graph shows the monthly revenue of the Widget Corporation for the last 12 years. During approximately what time intervals was the marginal revenue increasing? decreasing?
75. Suppose the derivative of the function \(y = f(x) \) is
\[y' = (x - 1)^2(x - 2). \]
At what points, if any, does the graph of \(f \) have a local minimum, local maximum, or point of inflection? (Hint: Draw the sign pattern for \(y' \).)

76. Suppose the derivative of the function \(y = f(x) \) is
\[y' = (x - 1)^2(x - 2)(x - 4). \]
At what points, if any, does the graph of \(f \) have a local minimum, local maximum, or point of inflection?

77. For \(x > 0 \), sketch a curve \(y = f(x) \) that has \(f(1) = 0 \) and \(f'(x) = 1/x \). Can anything be said about the concavity of such a curve? Give reasons for your answer.

78. Can anything be said about the graph of a function \(y = f(x) \) that has a continuous second derivative that is never zero? Give reasons for your answer.

79. If \(b, c, \) and \(d \) are constants, for what value of \(b \) will the curve \(y = x^3 + bx^2 + cx + d \) have a point of inflection at \(x = 1 \)? Give reasons for your answer.

80. **Horizontal tangents** True, or false? Explain.
 - a. The graph of every polynomial of even degree (largest exponent even) has at least one horizontal tangent.
 - b. The graph of every polynomial of odd degree (largest exponent odd) has at least one horizontal tangent.

81. **Parabolas**
 - a. Find the coordinates of the vertex of the parabola \(y = ax^2 + bx + c, a \neq 0 \).
 - b. When is the parabola concave up? Concave down? Give reasons for your answers.

82. Is it true that the concavity of the graph of a twice-differentiable function \(y = f(x) \) changes every time \(f''(x) = 0 \)? Give reasons for your answer.

83. **Quadratic curves** What can you say about the inflection points of a quadratic curve \(y = ax^2 + bx + c, a \neq 0 \)? Give reasons for your answer.

84. **Cubic curves** What can you say about the inflection points of a cubic curve \(y = ax^3 + bx^2 + cx + d, a \neq 0 \)? Give reasons for your answer.

COMPUTER EXPLORATIONS

In Exercises 85–88, find the inflection points (if any) on the graph of the function and the coordinates of the points on the graph where the function has a local maximum or local minimum value. Then graph the function in a region large enough to show all these points simultaneously. Add to your picture the graphs of the function’s first and second derivatives. How are the values at which these graphs intersect the \(x \)-axis related to the graph of the function? In what other ways are the graphs of the derivatives related to the graph of the function?

85. \(y = x^5 - 5x^4 - 240 \)
86. \(y = x^3 - 12x^2 \)
87. \(y = \frac{4}{5}x^3 + 16x^2 - 25 \)
88. \(y = \frac{x^4}{4} - \frac{x^3}{2} - 4x^2 + 12x + 20 \)
89. Graph \(f(x) = 2x^4 - 4x^2 + 1 \) and its first two derivatives together. Comment on the behavior of \(f \) in relation to the signs and values of \(f' \) and \(f'' \).
90. Graph \(f(x) = x \cos x \) and its second derivative together for \(0 \leq x \leq 2\pi \). Comment on the behavior of the graph of \(f \) in relation to the signs and values of \(f'' \).
91. a. On a common screen, graph \(f(x) = x^3 + kx \) for \(k = 0 \) and nearby positive and negative values of \(k \). How does the value of \(k \) seem to affect the shape of the graph?
 - b. Find \(f'(x) \). As you will see, \(f'(x) \) is a quadratic function of \(x \). Find the discriminant of the quadratic (the discriminant of \(ax^2 + bx + c \) is \(b^2 - 4ac \)). For what values of \(k \) is the discriminant positive? Zero? Negative? For what values of \(k \) does \(f' \) have two zeros? One or no zeros? Now explain what the value of \(k \) has to do with the shape of the graph of \(f \).
 - c. Experiment with other values of \(k \). What appears to happen as \(k \rightarrow -\infty \) ? as \(k \rightarrow \infty \) ?
92. a. On a common screen, graph \(f(x) = x^4 + kx^3 + 6x^2 \), \(-2 \leq x \leq 2 \) for \(k = -4 \), and some nearby integer values of \(k \). How does the value of \(k \) seem to affect the shape of the graph?
 - b. Find \(f'(x) \). As you will see, \(f'(x) \) is a quadratic function of \(x \). What is the discriminant of this quadratic (see Exercise 91(b))? For what values of \(k \) is the discriminant positive? Zero? Negative? For what values of \(k \) does \(f'(x) \) have two zeros? One or no zeros? Now explain what the value of \(k \) has to do with the shape of the graph of \(f \).
93. a. Graph \(y = x^{2/3}(x^2 - 2) \) for \(-3 \leq x \leq 3 \). Then use calculus to confirm what the screen shows about concavity, rise, and fall. (Depending on your grapher, you may have to enter \(x^{2/3} \) as \((x^2)^{1/3} \) to obtain a plot for negative values of \(x \)).
 - b. Does the curve have a cusp at \(x = 0 \) , or does it just have a corner with different right-hand and left-hand derivatives?
94. a. Graph \(y = 9x^{2/3}(x - 1) \) for \(-0.5 \leq x \leq 1.5 \). Then use calculus to confirm what the screen shows about concavity, rise, and fall. What concavity does the curve have to the left of the origin? (Depending on your grapher, you may have to enter \(x^{2/3} \) as \((x^2)^{1/3} \) to obtain a plot for negative values of \(x \)).
 - b. Does the curve have a cusp at \(x = 0 \) , or does it just have a corner with different right-hand and left-hand derivatives?
95. Does the curve \(y = x^3 + 3 \sin 2x \) have a horizontal tangent near \(x = -3 \) ? Give reasons for your answer.
Applied Optimization Problems

To optimize something means to maximize or minimize some aspect of it. What are the dimensions of a rectangle with fixed perimeter having maximum area? What is the least expensive shape for a cylindrical can? What is the size of the most profitable production run? The differential calculus is a powerful tool for solving problems that call for maximizing or minimizing a function. In this section we solve a variety of optimization problems from business, mathematics, physics, and economics.

Examples from Business and Industry

EXAMPLE 1 Fabricating a Box

An open-top box is to be made by cutting small congruent squares from the corners of a 12-in.-by-12-in. sheet of tin and bending up the sides. How large should the squares cut from the corners be to make the box hold as much as possible?

Solution We start with a picture (Figure 4.32). In the figure, the corner squares are \(x \) in. on a side. The volume of the box is a function of this variable:

\[
V(x) = x(12 - 2x)^2 = 144x - 48x^2 + 4x^3.
\]

Since the sides of the sheet of tin are only 12 in. long, \(x \) \(\leq 6 \) and the domain of \(V \) is the interval \(0 \leq x \leq 6 \).

A graph of \(V \) (Figure 4.33) suggests a minimum value of 0 at \(x = 0 \) and \(x = 6 \) and a maximum near \(x = 2 \). To learn more, we examine the first derivative of \(V \) with respect to \(x \):

\[
\frac{dV}{dx} = 144 - 96x + 12x^2 = 12(12 - 8x + x^2) = 12(2 - x)(6 - x).
\]

Of the two zeros, \(x = 2 \) and \(x = 6 \), only \(x = 2 \) lies in the interior of the function’s domain and makes the critical-point list. The values of \(V \) at this one critical point and two endpoints are

Critical-point value: \(V(2) = 128 \)

Endpoint values: \(V(0) = 0, \quad V(6) = 0. \)

The maximum volume is 128 in.\(^3\). The cutout squares should be 2 in. on a side.

EXAMPLE 2 Designing an Efficient Cylindrical Can

You have been asked to design a 1-liter can shaped like a right circular cylinder (Figure 4.34). What dimensions will use the least material?

Solution Volume of can: If \(r \) and \(h \) are measured in centimeters, then the volume of the can in cubic centimeters is

\[
\pi r^2 h = 1000. \quad 1 \text{ liter} = 1000 \text{ cm}^3
\]

Surface area of can: \(A = 2\pi r^2 + 2\pi rh \)

Copyright © 2005 Pearson Education, Inc., publishing as Pearson Addison-Wesley
How can we interpret the phrase “least material”? First, it is customary to ignore the thickness of the material and the waste in manufacturing. Then we ask for dimensions r and h that make the total surface area as small as possible while satisfying the constraint $\pi r^2 h = 1000$.

To express the surface area as a function of one variable, we solve for one of the variables in $\pi r^2 h = 1000$ and substitute that expression into the surface area formula. Solving for h is easier:

$$h = \frac{1000}{\pi r^2}.$$

Thus,

$$A = 2\pi r^2 + 2\pi rh$$

$$= 2\pi r^2 + 2\pi r \left(\frac{1000}{\pi r^2}\right)$$

$$= 2\pi r^2 + \frac{2000}{r}.$$

Our goal is to find a value of $r > 0$ that minimizes the value of A. Figure 4.35 suggests that such a value exists.

Notice from the graph that for small r (a tall thin container, like a piece of pipe), the term $2000/r$ dominates and A is large. For large r (a short wide container, like a pizza pan), the term $2\pi r^2$ dominates and A again is large.

Since A is differentiable on $r > 0$, an interval with no endpoints, it can have a minimum value only where its first derivative is zero.

$$\frac{dA}{dr} = 4\pi r - \frac{2000}{r^2}$$

$$0 = 4\pi r - \frac{2000}{r^2}$$

Set $dA/dr = 0$.

$$4\pi r^3 = 2000$$

Multiply by r^2.

$$r = \sqrt[3]{\frac{500}{\pi}} \approx 5.42$$

Solve for r.

What happens at $r = \sqrt[3]{500/\pi}$?
The second derivative
\[\frac{d^2A}{dr^2} = 4\pi + \frac{4000}{r^3} \]
is positive throughout the domain of \(A \). The graph is therefore everywhere concave up and the value of \(A \) at \(r = \sqrt[3]{500/\pi} \) an absolute minimum.

The corresponding value of \(h \) (after a little algebra) is
\[h = \frac{1000}{\pi r^2} = 2\sqrt[3]{\frac{500}{\pi}} = 2r. \]
The 1-L can that uses the least material has height equal to the diameter, here with \(r \approx 5.42 \text{ cm} \) and \(h \approx 10.84 \text{ cm} \).

Solving Applied Optimization Problems

1. **Read the problem.** Read the problem until you understand it. What is given? What is the unknown quantity to be optimized?
2. **Draw a picture.** Label any part that may be important to the problem.
3. **Introduce variables.** List every relation in the picture and in the problem as an equation or algebraic expression, and identify the unknown variable.
4. **Write an equation for the unknown quantity.** If you can, express the unknown as a function of a single variable or in two equations in two unknowns. This may require considerable manipulation.
5. **Test the critical points and endpoints in the domain of the unknown.** Use what you know about the shape of the function’s graph. Use the first and second derivatives to identify and classify the function’s critical points.

Examples from Mathematics and Physics

EXAMPLE 3 Inscribing Rectangles

A rectangle is to be inscribed in a semicircle of radius 2. What is the largest area the rectangle can have, and what are its dimensions?

Solution Let \((x, \sqrt{4-x^2})\) be the coordinates of the corner of the rectangle obtained by placing the circle and rectangle in the coordinate plane (Figure 4.36). The length, height, and area of the rectangle can then be expressed in terms of the position \(x \) of the lower right-hand corner:

- **Length:** \(2x\)
- **Height:** \(\sqrt{4-x^2}\)
- **Area:** \(2x \cdot \sqrt{4-x^2}\)

Notice that the values of \(x \) are to be found in the interval \(0 \leq x \leq 2\), where the selected corner of the rectangle lies.

Our goal is to find the absolute maximum value of the function
\[A(x) = 2x\sqrt{4-x^2} \]
on the domain \([0, 2]\).
The derivative
\[
\frac{dA}{dx} = \frac{-2x^2}{\sqrt{4 - x^2}} + 2\sqrt{4 - x^2}
\]
is not defined when \(x = 2\) and is equal to zero when
\[
\frac{-2x^2}{\sqrt{4 - x^2}} + 2\sqrt{4 - x^2} = 0 \\
-2x^2 + 2(4 - x^2) = 0 \\
8 - 4x^2 = 0 \\
x^2 = 2 \text{ or } x = \pm \sqrt{2}.
\]
Of the two zeros, \(x = \sqrt{2}\) and \(x = -\sqrt{2}\), only \(x = \sqrt{2}\) lies in the interior of \(A\)'s domain and makes the critical-point list. The values of \(A\) at the endpoints and at this one critical point are

Critical-point value: \(A(\sqrt{2}) = 2\sqrt{2}\sqrt{4 - 2} = 4\)

Endpoints: \(A(0) = 0, \ A(2) = 0\).

The area has a maximum value of 4 when the rectangle is \(\sqrt{4 - x^2} = \sqrt{2}\) units high and \(2x = 2\sqrt{2}\) unit long.

EXAMPLE 4 Fermat’s Principle and Snell’s Law

The speed of light depends on the medium through which it travels, and is generally slower in denser media.

Fermat’s principle in optics states that light travels from one point to another along a path for which the time of travel is a minimum. Find the path that a ray of light will follow in going from a point \(A\) in a medium where the speed of light is \(c_1\) to a point \(B\) in a second medium where its speed is \(c_2\).

Solution Since light traveling from \(A\) to \(B\) follows the quickest route, we look for a path that will minimize the travel time. We assume that \(A\) and \(B\) lie in the \(xy\)-plane and that the line separating the two media is the \(x\)-axis (Figure 4.37).

In a uniform medium, where the speed of light remains constant, “shortest time” means “shortest path,” and the ray of light will follow a straight line. Thus the path from \(A\) to \(B\) will consist of a line segment from \(A\) to a boundary point \(P\), followed by another line segment from \(P\) to \(B\). Distance equals rate times time, so

\[
\text{Time} = \frac{\text{distance}}{\text{rate}}.
\]

The time required for light to travel from \(A\) to \(P\) is
\[
t_1 = \frac{AP}{c_1} = \frac{\sqrt{a^2 + x^2}}{c_1}.
\]

From \(P\) to \(B\), the time is
\[
t_2 = \frac{PB}{c_2} = \frac{\sqrt{b^2 + (d - x)^2}}{c_2}.
\]
The time from A to B is the sum of these:

$$t = t_1 + t_2 = \frac{\sqrt{a^2 + x^2}}{c_1} + \frac{\sqrt{b^2 + (d - x)^2}}{c_2}.$$

This equation expresses t as a differentiable function of x whose domain is $[0, d]$. We want to find the absolute minimum value of t on this closed interval. We find the derivative

$$\frac{dt}{dx} = \frac{x}{c_1 \sqrt{a^2 + x^2}} - \frac{d - x}{c_2 \sqrt{b^2 + (d - x)^2}}.$$

In terms of the angles θ_1 and θ_2 in Figure 4.37,

$$\frac{dt}{dx} = \frac{\sin \theta_1}{c_1} - \frac{\sin \theta_2}{c_2}.$$

If we restrict x to the interval $0 \leq x \leq d$, then t has a negative derivative at $x = 0$ and a positive derivative at $x = d$. By the Intermediate Value Theorem for Derivatives (Section 3.1), there is a point $x_0 \in [0, d]$ where $\frac{dt}{dx} = 0$ (Figure 4.38). There is only one such point because $\frac{dt}{dx}$ is an increasing function of x (Exercise 54). At this point

$$\frac{\sin \theta_1}{c_1} = \frac{\sin \theta_2}{c_2}.$$

This equation is Snell’s Law or the Law of Refraction, and is an important principle in the theory of optics. It describes the path the ray of light follows.

Examples from Economics

In these examples we point out two ways that calculus makes a contribution to economics. The first has to do with maximizing profit. The second has to do with minimizing average cost.

Suppose that

- $r(x)$ = the revenue from selling x items
- $c(x)$ = the cost of producing the x items
- $p(x) = r(x) - c(x)$ = the profit from producing and selling x items.

The **marginal revenue**, **marginal cost**, and **marginal profit** when producing and selling x items are

$$\frac{dr}{dx} = \text{marginal revenue},$$

$$\frac{dc}{dx} = \text{marginal cost},$$

$$\frac{dp}{dx} = \text{marginal profit}.$$

The first observation is about the relationship of p to these derivatives.

If $r(x)$ and $c(x)$ are differentiable for all $x > 0$, and if $p(x) = r(x) - c(x)$ has a maximum value, it occurs at a production level at which $p'(x) = 0$. Since $p'(x) = r'(x) - c'(x)$, $p'(x) = 0$ implies that

$$r'(x) - c'(x) = 0 \quad \text{or} \quad r'(x) = c'(x).$$
Therefore

At a production level yielding maximum profit, marginal revenue equals marginal cost (Figure 4.39).

EXAMPLE 5 Maximizing Profit

Suppose that \(r(x) = 9x \) and \(c(x) = x^3 - 6x^2 + 15x \), where \(x \) represents thousands of units. Is there a production level that maximizes profit? If so, what is it?

Solution Notice that \(r'(x) = 9 \) and \(c'(x) = 3x^2 - 12x + 15 \).

\[
3x^2 - 12x + 15 = 9 \quad \text{Set } c'(x) = r'(x).
\]

\[
3x^2 - 12x + 6 = 0
\]

The two solutions of the quadratic equation are

\[
x_1 = \frac{12 - \sqrt{72}}{6} = 2 - \sqrt{2} \approx 0.586 \quad \text{and}
\]

\[
x_2 = \frac{12 + \sqrt{72}}{6} = 2 + \sqrt{2} \approx 3.414.
\]

The possible production levels for maximum profit are \(x \approx 0.586 \) thousand units or \(x \approx 3.414 \) thousand units. The second derivative of \(p(x) = r(x) - c(x) \) is \(p''(x) = -c''(x) \) since \(r''(x) \) is everywhere zero. Thus, \(p''(x) = 6(2 - x) \) which is negative at \(x = 2 + \sqrt{2} \) and positive at \(x = 2 - \sqrt{2} \). By the Second Derivative Test, a maximum profit occurs at about \(x = 3.414 \) (where revenue exceeds costs) and maximum loss occurs at about \(x = 0.586 \). The graph of \(r(x) \) is shown in Figure 4.40.
EXAMPLE 6 Minimizing Costs

A cabinetmaker uses plantation-farmed mahogany to produce 5 furnishings each day. Each delivery of one container of wood is $5000, whereas the storage of that material is $10 per day per unit stored, where a unit is the amount of material needed by her to produce 1 furnishing. How much material should be ordered each time and how often should the material be delivered to minimize her average daily cost in the production cycle between deliveries?

Solution If she asks for a delivery every \(x \) days, then she must order \(5x \) units to have enough material for that delivery cycle. The average amount in storage is approximately one-half of the delivery amount, or \(5x/2 \). Thus, the cost of delivery and storage for each cycle is approximately

\[
\text{Cost per cycle} = \text{delivery costs} + \text{storage costs} = 5000 + \left(\frac{5x}{2}\right) \cdot x \cdot 10.
\]

We compute the average daily cost \(c(x) \) by dividing the cost per cycle by the number of days \(x \) in the cycle (see Figure 4.41).

\[
c(x) = \frac{5000}{x} + 25x, \quad x > 0.
\]

As \(x \to 0 \) and as \(x \to \infty \), the average daily cost becomes large. So we expect a minimum to exist, but where? Our goal is to determine the number of days \(x \) between deliveries that provides the absolute minimum cost.

We find the critical points by determining where the derivative is equal to zero:

\[
c'(x) = -\frac{5000}{x^2} + 25 = 0
\]

\[
x = \pm \sqrt{200} \approx \pm 14.14.
\]

Of the two critical points, only \(\sqrt{200} \) lies in the domain of \(c(x) \). The critical-point value of the average daily cost is

\[
c\left(\sqrt{200}\right) = \frac{5000}{\sqrt{200}} + 25\sqrt{200} = 500\sqrt{2} \approx 707.11.
\]

We note that \(c(x) \) is defined over the open interval \((0, \infty)\) with \(c''(x) = 10000/x^3 > 0 \). Thus, an absolute minimum exists at \(x = \sqrt{200} \approx 14.14 \) days.

The cabinetmaker should schedule a delivery of \(5(14) = 70 \) units of the exotic wood every 14 days.

In Examples 5 and 6 we allowed the number of items \(x \) to be any positive real number. In reality it usually only makes sense for \(x \) to be a positive integer (or zero). If we must round our answers, should we round up or down?

EXAMPLE 7 Sensitivity of the Minimum Cost

Should we round the number of days between deliveries up or down for the best solution in Example 6?
Solution The average daily cost will increase by about $0.03 if we round down from 14.14 to 14 days:

\[
c(14) = \frac{5000}{14} + 25(14) = 707.14
\]

and

\[
c(14) - c(14.14) = 707.14 - 707.11 = 0.03.
\]

On the other hand, \(c(15) = 708.33\), and our cost would increase by \(708.33 - 707.11 = 1.22\) if we round up. Thus, it is better that we round \(x\) down to 14 days.
EXERCISES 4.5

Whenever you are maximizing or minimizing a function of a single variable, we urge you to graph it over the domain that is appropriate to the problem you are solving. The graph will provide insight before you calculate and will furnish a visual context for understanding your answer.

Applications in Geometry

1. Minimizing perimeter What is the smallest perimeter possible for a rectangle whose area is 16 in.², and what are its dimensions?

2. Show that among all rectangles with an 8-m perimeter, the one with largest area is a square.

3. The figure shows a rectangle inscribed in an isosceles right triangle whose hypotenuse is 2 units long.
 a. Express the y-coordinate of P in terms of x. (Hint: Write an equation for the line AB.)
 b. Express the area of the rectangle in terms of x.
 c. What is the largest area the rectangle can have, and what are its dimensions?

4. A rectangle has its base on the x-axis and its upper two vertices on the parabola $y = 12 - x^2$. What is the largest area the rectangle can have, and what are its dimensions?

5. You are planning to make an open rectangular box from an 8-in.-by-15-in. piece of cardboard by cutting congruent squares from the corners and folding up the sides. What are the dimensions of the box of largest volume you can make this way, and what is its volume?

6. You are planning to close off a corner of the first quadrant with a line segment 20 units long running from $(a, 0)$ to $(0, b)$. Show that the area of the triangle enclosed by the segment is largest when $a = b$.

7. The best fencing plan A rectangular plot of farmland will be bounded on one side by a river and on the other three sides by a single-strand electric fence. With 800m of wire at your disposal, what is the largest area you can enclose, and what are its dimensions?

8. The shortest fence A rectangular pea patch is to be enclosed by a fence and divided into two equal parts by another fence parallel to one of the sides. What dimensions for the outer rectangle will require the smallest total length of fence? How much fence will be needed?

9. Designing a tank Your iron works has contracted to design and build a square-based, open-top, rectangular steel holding tank for a paper company. The tank is to be made by welding thin stainless steel plates together along their edges. As the production engineer, your job is to find dimensions for the base and height that will make the tank weigh as little as possible.
 a. What dimensions do you tell the shop to use?
 b. Briefly describe how you took weight into account.

10. Catching rainwater A open-top rectangular tank with a square base x ft on a side and y ft deep is to be built with its top flush with the ground to catch runoff water. The costs associated with the tank involve not only the material from which the tank is made but also an excavation charge proportional to the product xy.
 a. If the total cost is $c = 5(x^2 + 4xy) + 10xy$, what values of x and y will minimize it?
 b. Give a possible scenario for the cost function in part (a).
11. **Designing a poster** You are designing a rectangular poster to contain 50 in.\(^2\) of printing with a 4-in. margin at the top and bottom and a 2-in. margin at each side. What overall dimensions will minimize the amount of paper used?

12. Find the volume of the largest right circular cone that can be inscribed in a sphere of radius 3.

13. Two sides of a triangle have lengths \(a\) and \(b\), and the angle between them is \(\theta\). What value of \(\theta\) will maximize the triangle’s area? (Hint: \(A = \frac{1}{2}ab \sin \theta\).)

14. **Designing a can** What are the dimensions of the lightest open-top right circular cylindrical can that will hold a volume of 1000 cm\(^3\)? Compare the result here with the result in Example 2.

15. **Designing a can** You are designing a right circular cylindrical can whose manufacture will take waste into account. There is no waste in cutting the aluminum for the side, but the top and bottom of radius \(r\) will be cut from squares that measure 2\(r\) units on a side. The total amount of aluminum used up by the can will therefore be

\[
A = 8r^2 + 2\pi rh
\]

rather than the \(A = 2\pi r^2 + 2\pi rh\) in Example 2. In Example 2, the ratio of \(h\) to \(r\) for the most economical can was 2 to 1. What is the ratio now?

16. **Designing a box with a lid** A piece of cardboard measures 10 in. by 15 in. Two equal squares are removed from the corners of a 10-in. side as shown in the figure. Two equal rectangles are removed from the other corners so that the tabs can be folded to form a rectangular box with lid.

a. Write a formula \(V(x)\) for the volume of the box.

b. Find the domain of \(V\) for the problem situation and graph \(V\) over this domain.

c. Use a graphical method to find the maximum volume and the value of \(x\) that gives it.

d. Confirm your result in part (c) analytically.

17. **Designing a suitcase** A 24-in.-by-36-in. sheet of cardboard is folded in half to form a 24-in.-by-18-in. rectangle as shown in the accompanying figure. Then four congruent squares of side length \(x\) are cut from the corners of the folded rectangle. The sheet is unfolded, and the six tabs are folded up to form a box with sides and a lid.

a. Write a formula \(V(x)\) for the volume of the box.

b. Find the domain of \(V\) for the problem situation and graph \(V\) over this domain.

c. Use a graphical method to find the maximum volume and the value of \(x\) that gives it.

d. Confirm your result in part (c) analytically.

e. Find a value of \(x\) that yields a volume of 1120 in.\(^3\).

f. Write a paragraph describing the issues that arise in part (b).

18. A rectangle is to be inscribed under the arch of the curve \(y = 4 \cos (0.5x)\) from \(x = -\pi\) to \(x = \pi\). What are the dimensions of the rectangle with largest area, and what is the largest area?

19. Find the dimensions of a right circular cylinder of maximum volume that can be inscribed in a sphere of radius 10 cm. What is the maximum volume?

20. a. The U.S. Postal Service will accept a box for domestic shipment only if the sum of its length and girth (distance around) does not exceed 108 in. What dimensions will give a box with a square end the largest possible volume?
4.5 Applied Optimization Problems

21. (Continuation of Exercise 20.)
 a. Suppose that instead of having a box with square ends you have a box with square sides so that its dimensions are h by h by w and the girth is $2h + 2w$. What dimensions will give the box its largest volume now?
 b. Graph the volume as a function of h and compare what you see with your answer in part (a).

22. A window is in the form of a rectangle surmounted by a semicircle. The rectangle is of clear glass, whereas the semicircle is of tinted glass that transmits only half as much light per unit area as clear glass does. The total perimeter is fixed. Find the proportions of the window that will admit the most light. Neglect the thickness of the frame.

23. A silo (base not included) is to be constructed in the form of a cylinder surmounted by a hemisphere. The cost of construction per square unit of surface area is twice as great for the hemisphere as it is for the cylindrical sidewall. Determine the dimensions to be used if the volume is fixed and the cost of construction is to be kept to a minimum. Neglect the thickness of the silo and waste in construction.

24. The trough in the figure is to be made to the dimensions shown. Only the angle θ can be varied. What value of θ will maximize the trough's volume?

25. Paper folding A rectangular sheet of 8.5-in.-by-11-in. paper is placed on a flat surface. One of the corners is placed on the opposite longer edge, as shown in the figure, and held there as the paper is smoothed flat. The problem is to make the length of the crease as small as possible. Call the length L. Try it with paper.
 a. Show that $L^2 = 2x^3/(2x - 8.5)$.
 b. What value of x minimizes L^2?
 c. What is the minimum value of L?

26. Constructing cylinders Compare the answers to the following two construction problems.
 a. A rectangular sheet of perimeter 36 cm and dimensions x cm by y cm to be rolled into a cylinder as shown in part (a) of the figure. What values of x and y give the largest volume?
 b. The same sheet is to be revolved about one of the sides of length y to sweep out the cylinder as shown in part (b) of the figure. What values of x and y give the largest volume?
28. What value of \(a \) makes \(f(x) = x^2 + (a/x) \) have
 a. a local minimum at \(x = 2 \) ?
 b. a point of inflection at \(x = 1 \) ?

29. Show that \(f(x) = x^2 + (a/x) \) cannot have a local maximum for any value of \(a \).

30. What values of \(a \) and \(b \) make \(f(x) = x^3 + ax^2 + bx \) have
 a. a local maximum at \(x = -1 \) and a local minimum at \(x = 3 \) ?
 b. a local minimum at \(x = 4 \) and a point of inflection at \(x = 1 \) ?

Physical Applications

31. Vertical motion

The height of an object moving vertically is given by

\[s = -16t^2 + 96t + 112, \]

with \(s \) in feet and \(t \) in seconds. Find

a. the object’s velocity when \(t = 0 \)
 b. its maximum height and when it occurs
 c. its velocity when \(s = 0 \).

32. Quickest route

Jane is 2 mi offshore in a boat and wishes to reach a coastal village 6 mi down a straight shoreline from the point nearest the boat. She can row 2 mph and can walk 5 mph. Where should she land her boat to reach the village in the least amount of time?

33. Shortest beam

The 8-ft wall shown here stands 27 ft from the building. Find the length of the shortest straight beam that will reach to the side of the building from the ground outside the wall.

34. Strength of a beam

The strength \(S \) of a rectangular wooden beam is proportional to its width times the square of its depth. (See accompanying figure.)

35. Stiffness of a beam

The stiffness \(S \) of a rectangular beam is proportional to its width times the cube of its depth.

a. Find the dimensions of the strongest beam that can be cut from a 12-in.-diameter cylindrical log.

b. Graph \(S \) as a function of the beam’s width \(w \), assuming the proportionality constant to be \(k = 1 \). Reconcile what you see with your answer in part (a).

c. On the same screen, graph \(S \) as a function of the beam’s depth \(d \), again taking \(k = 1 \). Compare the graphs with one another and with your answer in part (a). What would be the effect of changing to some other value of \(k \)? Try it.

36. Motion on a line

The positions of two particles on the \(s \)-axis are \(s_1 = \sin t \) and \(s_2 = \sin (t + \pi/3) \), with \(s_1 \) and \(s_2 \) in meters and \(t \) in seconds.

a. At what time(s) in the interval \(0 \leq t \leq 2\pi \) do the particles meet?

b. What is the farthest apart that the particles ever get?

c. When in the interval \(0 \leq t \leq 2\pi \) is the distance between the particles changing the fastest?

37. Frictionless cart

A small frictionless cart, attached to the wall by a spring, is pulled 10 cm from its rest position and released at time \(t = 0 \) to roll back and forth for 4 sec. Its position at time \(t \) is

\[s = 10 \cos \pi t. \]

a. What is the cart’s maximum speed? When is the cart moving that fast? Where is it then? What is the magnitude of the acceleration then?

b. Where is the cart when the magnitude of the acceleration is greatest? What is the cart’s speed then?
38. Two masses hanging side by side from springs have positions
 \(s_1 = 2 \sin t \) and \(s_2 = \sin 2t \), respectively.

 a. At what times in the interval \(0 < t \) do the masses pass each
 other? (Hint: \(\sin 2t = 2 \sin t \cos t \)).

 b. When in the interval \(0 \leq t \leq 2\pi \) is the vertical distance
 between the masses the greatest? What is this distance? (Hint:
 \(\cos 2t = 2 \cos^2 t - 1 \)).

39. **Distance between two ships** At noon, ship \(A \) was 12 nautical
 miles due north of ship \(B \). Ship \(A \) was sailing south at 12 knots
 (nautical miles per hour; a nautical mile is 2000 yd) and continued
 to do so all day. Ship \(B \) was sailing east at 8 knots and continued
 to do so all day.

 a. Start counting time with \(t = 0 \) at noon and express the
 distance \(s \) between the ships as a function of \(t \).

 b. How rapidly was the distance between the ships changing at
 noon? One hour later?

 c. The visibility that day was 5 nautical miles. Did the ships ever
 sight each other?

 d. Graph \(s \) and \(ds/dt \) together as functions of \(t \) for \(-1 \leq t \leq 3 \),
 using different colors if possible. Compare the graphs and
 reconcile what you see with your answers in parts (b) and (c).

 e. The graph of \(ds/dt \) looks as if it might have a horizontal
 asymptote in the first quadrant. This in turn suggests that
 \(ds/dt \) approaches a limiting value as \(t \to \infty \). What is
 this value? What is its relation to the ships’ individual
 speeds?

40. **Fermat’s principle in optics** Fermat’s principle in optics states
 that light always travels from one point to another along a path
 that minimizes the travel time. Light from a source \(A \) is reflected
 by a plane mirror to a receiver at point \(B \), as shown in the figure.
 Show that for the light to obey Fermat’s principle, the angle of
 incidence must equal the angle of reflection, both measured from
 the line normal to the reflecting surface. (This result can also be
 derived without calculus. There is a purely geometric argument,
 which you may prefer.)

41. **Tin pest** When metallic tin is kept below 13.2°C, it slowly
 becomes brittle and crumbles to a gray powder. Tin objects eventually
 crumble to this gray powder spontaneously if kept in a cold
 climate for years. The Europeans who saw tin organ pipes in their
 churches crumble away years ago called the change **tin pest**
 because it seemed to be contagious, and indeed it was, for the gray
 powder is a catalyst for its own formation.

 A catalyst for a chemical reaction is a substance that controls
 the rate of reaction without undergoing any permanent
 change in itself. An **autocatalytic reaction** is one whose product is
 a catalyst for its own formation. Such a reaction may proceed
 slowly at first if the amount of catalyst present is small and slowly
 again at the end, when most of the original substance is used up.
 But in between, when both the substance and its catalyst product
 are abundant, the reaction proceeds at a faster pace.

 In some cases, it is reasonable to assume that the rate
 \(v = dx/dt \) of the reaction is proportional both to the amount of
 the original substance present and to the amount of product. That
 is, \(v \) may be considered to be a function of \(x \) alone, and

 \[
 v = kx(a - x) = kax - kx^2,
 \]

 where

 \(x = \) the amount of product

 \(a = \) the amount of substance at the beginning

 \(k = \) a positive constant.

 At what value of \(x \) does the rate \(v \) have a maximum? What is the
 maximum value of \(v \)?

42. **Airplane landing path** An airplane is flying at altitude \(H \) when it
 begins its descent to an airport runway that is at horizontal ground
 distance \(L \) from the airplane, as shown in the figure. Assume that
 the landing path of the airplane is the graph of a cubic polynomial
 function

 \[
 y = ax^3 + bx^2 + cx + d,
 \]

 where \(y(-L) = H \) and \(y(0) = 0 \).

 a. What is \(dy/dx \) at \(x = 0 \)?

 b. What is \(dy/dx \) at \(x = -L \)?

 c. Use the values for \(dy/dx \) at \(x = 0 \) and \(x = -L \) together with
 \(y(0) = 0 \) and \(y(-L) = H \) to show that

 \[
 y(x) = H \left[2 \left(\frac{x}{L} \right)^3 + 3 \left(\frac{x}{L} \right)^2 \right].
 \]
Business and Economics

43. It costs you \(c \) dollars each to manufacture and distribute backpacks. If the backpacks sell at \(x \) dollars each, the number sold is given by

\[n = \frac{a}{x - c} + b(100 - x), \]

where \(a \) and \(b \) are positive constants. What selling price will bring a maximum profit?

44. You operate a tour service that offers the following rates:

$200 per person if 50 people (the minimum number to book the tour) go on the tour.

For each additional person, up to a maximum of 80 people total, the rate per person is reduced by $2.

It costs $6000 (a fixed cost) plus $32 per person to conduct the tour. How many people does it take to maximize your profit?

45. Wilson lot size formula One of the formulas for inventory management says that the average weekly cost of ordering, paying for, and holding merchandise is

\[A(q) = \frac{km}{q} + cm + \frac{hq}{2}, \]

where \(q \) is the quantity you order when things run low (shoes, radios, brooms, or whatever the item might be), \(k \) is the cost of placing an order (the same, no matter how often you order), \(c \) is the cost of one item (a constant), \(m \) is the number of items sold each week (a constant), and \(h \) is the weekly holding cost per item (a constant that takes into account things such as space, utilities, insurance, and security).

a. Your job, as the inventory manager for your store, is to find the quantity that will minimize \(A(q) \). What is it? (The formula you get for the answer is called the Wilson lot size formula.)

b. Shipping costs sometimes depend on order size. When they do, it is more realistic to replace \(k \) by \(k + bq \), the sum of \(k \) and a constant multiple of \(q \). What is the most economical quantity to order now?

46. Production level Prove that the production level (if any) at which average cost is smallest is a level at which the average cost equals marginal cost.

47. Show that if \(r(x) = 6x \) and \(c(x) = x^3 - 6x^2 + 15x \) are your revenue and cost functions, then the best you can do is break even (have revenue equal cost).

48. Production level Suppose that \(c(x) = x^3 - 20x^2 + 20,000x \) is the cost of manufacturing \(x \) items. Find a production level that will minimize the average cost of making \(x \) items.

49. Average daily cost In Example 6, assume for any material that a cost of \(d \) is incurred per delivery, the storage cost is \(s \) dollars per unit stored per day, and the production rate is \(p \) units per day.

a. How much should be delivered every \(d \) days?

b. Show that

\[\text{cost per cycle} = d + \frac{px}{2}. \]

c. Find the time between deliveries \(x^* \) and the amount to deliver that minimizes the average daily cost of delivery and storage.

d. Show that \(x^* \) occurs at the intersection of the hyperbola

\[y = \frac{d}{x} \]

and the line \(y = \frac{px}{2} \).

50. Minimizing average cost Suppose that \(c(x) = 2000 + 96x + 4x^{3/2} \), where \(x \) represents thousands of units. Is there a production level that minimizes average cost? If so, what is it?

Medicine

51. Sensitivity to medicine (Continuation of Exercise 50, Section 3.2.) Find the amount of medicine to which the body is most sensitive by finding the value of \(M \) that maximizes the derivative \(dR/dM \), where

\[R = M^2 \left(\frac{C}{2} - \frac{M}{3} \right) \]

and \(C \) is a constant.

52. How we cough

a. When we cough, the trachea (windpipe) contracts to increase the velocity of the air going out. This raises the question of how much it should contract to maximize the velocity and whether it really contracts that much when we cough.

Under reasonable assumptions about the elasticity of the tracheal wall and about how the air near the wall is slowed by friction, the average flow velocity \(v \) can be modeled by the equation

\[v = c(r_0 - r)^2 \text{ cm/sec}, \quad \frac{r_0}{2} \leq r \leq r_0, \]

where \(r_0 \) is the rest radius of the trachea in centimeters and \(c \) is a positive constant whose value depends in part on the length of the trachea.

Show that \(v \) is greatest when \(r = (2/3)r_0 \), that is, when the trachea is about 33% contracted. The remarkable fact is that X-ray photographs confirm that the trachea contracts about this much during a cough.

b. Take \(r_0 \) to be 0.5 and \(c \) to be 1 and graph \(v \) over the interval \(0 \leq r \leq 0.5 \). Compare what you see with the claim that \(v \) is at a maximum when \(r = (2/3)r_0 \).
4.5 Applied Optimization Problems

53. **An inequality for positive integers**
 Show that if \(a, b, c, \) and \(d \) are positive integers, then
 \[
 \frac{(a^2 + 1)(b^2 + 1)(c^2 + 1)(d^2 + 1)}{abcd} \geq 16.
 \]

54. **The derivative \(df/dx \) in Example 4**
 a. Show that
 \[
 f(x) = \frac{x}{\sqrt{a^2 + x^2}}
 \]
 is an increasing function of \(x \).
 b. Show that
 \[
 g(x) = \frac{d - x}{\sqrt{b^2 + (d - x)^2}}
 \]
 is a decreasing function of \(x \).
 c. Show that
 \[
 \frac{dt}{dx} = \frac{x}{c_1\sqrt{a^2 + x^2}} - \frac{d - x}{c_2\sqrt{b^2 + (d - x)^2}}
 \]
 is an increasing function of \(x \).

55. Let \(f(x) \) and \(g(x) \) be the differentiable functions graphed here.
 Point \(c \) is the point where the vertical distance between the curves
 is the greatest. Is there something special about the tangents to the
 two curves at \(c \)? Give reasons for your answer.

56. You have been asked to determine whether the function \(f(x) = 3 + 4 \cos x + \cos 2x \) is ever negative.
 a. Explain why you need to consider values of \(x \) only in the
 interval \([0, 2\pi]\).
 b. Is \(f \) ever negative? Explain.

57. a. The function \(y = \cot x - \sqrt{2} \csc x \) has an absolute maximum
 value on the interval \(0 < x < \pi \). Find it.
 b. Graph the function and compare what you see with your
 answer in part (a).

58. a. The function \(y = \tan x + 3 \cot x \) has an absolute minimum
 value on the interval \(0 < x < \pi/2 \). Find it.
 b. Graph the function and compare what you see with your
 answer in part (a).

59. a. How close does the curve \(y = \sqrt{x} \) come to the point \((3/2, 0)\)?
 (Hint: If you minimize the square of the distance, you can
 avoid square roots.)
 b. Graph the distance function and \(y = \sqrt{x} \) together and
 reconcile what you see with your answer in part (a).

60. a. How close does the semicircle \(y = \sqrt{16 - x^2} \) come to the
 point \((1, \sqrt{3})\)?
 b. Graph the distance function and \(y = \sqrt{16 - x^2} \) together and
 reconcile what you see with your answer in part (a).

COMPUTER EXPLORATIONS

In Exercises 61 and 62, you may find it helpful to use a CAS.

61. **Generalized cone problem**
 A cone of height \(h \) and radius \(r \) is
 constructed from a flat, circular disk of radius \(a \) in. by removing a
 sector \(AOC \) of arc length \(x \) in. and then connecting the edges \(OA \)
 and \(OC \).
 a. Find a formula for the volume \(V \) of the cone in terms of \(x \) and \(a \).
 b. Find \(r \) and \(h \) in the cone of maximum volume for \(a = 4, 5, 6, 8 \).
 c. Find a simple relationship between \(r \) and \(h \) that is independent
 of \(a \) for the cone of maximum volume. Explain how you
 arrived at your relationship.

62. **Circumscribing an ellipse**
 Let \(P(x, a) \) and \(Q(-x, a) \) be two points on the upper half of the ellipse
 \[
 \frac{x^2}{100} + \frac{(y - 5)^2}{25} = 1
 \]
 centered at \((0, 5)\). A triangle \(RST \) is formed by using the tangent
 lines to the ellipse at \(Q \) and \(P \) as shown in the figure.
292 Chapter 4: Applications of Derivatives

a. Show that the area of the triangle is

\[A(x) = -f'(x) \left[x - \frac{f(x)}{f'(x)} \right]^2. \]

where \(y = f(x) \) is the function representing the upper half of the ellipse.

b. What is the domain of \(A \)? Draw the graph of \(A \). How are the asymptotes of the graph related to the problem situation?

c. Determine the height of the triangle with minimum area. How is it related to the \(y \) coordinate of the center of the ellipse?

d. Repeat parts (a) through (c) for the ellipse centered at \((0, B)\). Show that the triangle has minimum area when its height is \(3B \).