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Concavity and Curve Sketching

In Section 4.3 we saw how the first derivative tells us where a function is increasing and
where it is decreasing. At a critical point of a differentiable function, the First Derivative
Test tells us whether there is a local maximum or a local minimum, or whether the graph
just continues to rise or fall there.

In this section we see how the second derivative gives information about the way the
graph of a differentiable function bends or turns. This additional information enables us to
capture key aspects of the behavior of a function and its graph, and then present these fea-
tures in a sketch of the graph.

Concavity

As you can see in Figure 4.25, the curve rises as x increases, but the portions de-
fined on the intervals and turn in different ways. As we approach the ori-
gin from the left along the curve, the curve turns to our right and falls below its tangents.
The slopes of the tangents are decreasing on the interval As we move away from
the origin along the curve to the right, the curve turns to our left and rises above its tan-
gents. The slopes of the tangents are increasing on the interval This turning or
bending behavior defines the concavity of the curve.

s0, q d .
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FIGURE 4.25 The graph of is
concave down on and concave up
on (Example 1a).s0, q d

s - q , 0d
ƒsxd = x3
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If has a second derivative, we can apply Corollary 3 of the Mean Value Theorem
to conclude that increases if on I, and decreases if ƒ– 6 0.ƒ– 7 0ƒ¿

y = ƒsxd

268 Chapter 4: Applications of Derivatives

DEFINITION Concave Up, Concave Down
The graph of a differentiable function is

(a) concave up on an open interval I if is increasing on I

(b) concave down on an open interval I if is decreasing on I.ƒ¿

ƒ¿

y = ƒsxd

The Second Derivative Test for Concavity

Let be twice-differentiable on an interval I.

1. If on I, the graph of ƒ over I is concave up.

2. If on I, the graph of ƒ over I is concave down.ƒ– 6 0

ƒ– 7 0

y = ƒsxd

If is twice-differentiable, we will use the notations and interchangeably
when denoting the second derivative.

EXAMPLE 1 Applying the Concavity Test

(a) The curve (Figure 4.25) is concave down on where 
and concave up on where 

(b) The curve (Figure 4.26) is concave up on because its second deriv-
ative is always positive.

EXAMPLE 2 Determining Concavity

Determine the concavity of 

Solution The graph of is concave down on where is
negative. It is concave up on where is positive (Figure 4.27).

Points of Inflection

The curve in Example 2 changes concavity at the point We call
a point of inflection of the curve.sp, 3d

sp, 3d .y = 3 + sin x

y– = -sin xsp, 2pd ,
y– = -sin xs0, pd ,y = 3 + sin x

y = 3 + sin x on [0, 2p] .

y– = 2
s - q , q dy = x2

y– = 6x 7 0.s0, q d
y– = 6x 6 0s - q , 0dy = x3

y–ƒ–y = ƒsxd
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FIGURE 4.26 The graph of is
concave up on every interval (Example
1b).

ƒsxd = x2

x

y
y � 3 � sinx 

� 2�0
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y'' � – sinx

FIGURE 4.27 Using the graph of to
determine the concavity of y (Example 2).

y–

DEFINITION Point of Inflection
A point where the graph of a function has a tangent line and where the concavity
changes is a point of inflection.

A point on a curve where is positive on one side and negative on the other is a
point of inflection. At such a point, is either zero (because derivatives have the Interme-
diate Value Property) or undefined. If y is a twice-differentiable function, at a
point of inflection and has a local maximum or minimum.y¿

y– = 0
y–

y–

4100 AWL/Thomas_ch04p244-324  8/20/04  9:02 AM  Page 268

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html


4.4 Concavity and Curve Sketching 269

EXAMPLE 3 An Inflection Point May Not Exist Where 

The curve has no inflection point at (Figure 4.28). Even though 
is zero there, it does not change sign.

EXAMPLE 4 An Inflection Point May Occur Where Does Not Exist

The curve has a point of inflection at (Figure 4.29), but does not exist
there.

We see from Example 3 that a zero second derivative does not always produce a point
of inflection. From Example 4, we see that inflection points can also occur where there is
no second derivative.

To study the motion of a body moving along a line as a function of time, we often are
interested in knowing when the body’s acceleration, given by the second derivative, is pos-
itive or negative. The points of inflection on the graph of the body’s position function re-
veal where the acceleration changes sign.

EXAMPLE 5 Studying Motion Along a Line

A particle is moving along a horizontal line with position function

Find the velocity and acceleration, and describe the motion of the particle.

Solution The velocity is

and the acceleration is

When the function s(t) is increasing, the particle is moving to the right; when s(t) is de-
creasing, the particle is moving to the left.

Notice that the first derivative is zero when and 

Intervals

Sign of 

Behavior of s increasing decreasing increasing

Particle motion right left right

The particle is moving to the right in the time intervals [0, 1) and and moving
to the left in (1, ). It is momentarily stationary (at rest), at and 

The acceleration is zero when 

Intervals

Sign of 

Graph of s concave down concave up

+-a � sfl

7>3 6 t0 6 t 6 7>3
t = 7>3.astd = s–std = 4s3t - 7d

t = 11>3.t = 111>3 s11>3, q d ,

+-+Y � sœ

11>3 6 t1 6 t 6 11>30 6 t 6 1

t = 11>3.t = 1sy = s¿d

astd = y¿std = s–std = 12t - 28 = 4s3t - 7d .

ystd = s¿std = 6t2
- 28t + 22 = 2st - 1ds3t - 11d ,

sstd = 2t3
- 14t2

+ 22t - 5, t Ú 0.

y– =

d2

dx2 ax1>3b =

d
dx

 a1
3

 x-2>3b = -
2
9

 x-5>3 .

y–x = 0y = x1>3
y–

y– = 12x2x = 0y = x4

y– = 0

x

y

0

1

1

2

–1

y � x4

y'' � 0

FIGURE 4.28 The graph of has
no inflection point at the origin, even
though there (Example 3).y– = 0

y = x4

x

y

0

y � x1/3y'' does not
exist.

FIGURE 4.29 A point where fails
to exist can be a point of inflection
(Example 4).

y–
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The accelerating force is directed toward the left during the time interval [0, ], is mo-
mentarily zero at and is directed toward the right thereafter.

Second Derivative Test for Local Extrema

Instead of looking for sign changes in at critical points, we can sometimes use the fol-
lowing test to determine the presence and character of local extrema.

ƒ¿

t = 7>3,
7>3

270 Chapter 4: Applications of Derivatives

THEOREM 5 Second Derivative Test for Local Extrema
Suppose is continuous on an open interval that contains 

1. If and then ƒ has a local maximum at 

2. If and then ƒ has a local minimum at 

3. If and then the test fails. The function ƒ may have a
local maximum, a local minimum, or neither.

ƒ–scd = 0,ƒ¿scd = 0

x = c .ƒ–scd 7 0,ƒ¿scd = 0

x = c .ƒ–scd 6 0,ƒ¿scd = 0

x = c .ƒ–

Proof Part (1). If then on some open interval I containing the
point c, since is continuous. Therefore, is decreasing on I. Since the sign
of changes from positive to negative at c so ƒ has a local maximum at c by the First De-
rivative Test.

The proof of Part (2) is similar.
For Part (3), consider the three functions and For each

function, the first and second derivatives are zero at Yet the function has a
local minimum there, has a local maximum, and is increasing in any
open interval containing (having neither a maximum nor a minimum there). Thus
the test fails.

This test requires us to know only at c itself and not in an interval about c. This
makes the test easy to apply. That’s the good news. The bad news is that the test is incon-
clusive if or if does not exist at . When this happens, use the First Deriva-
tive Test for local extreme values.

Together and tell us the shape of the function’s graph, that is, where the critical
points are located and what happens at a critical point, where the function is increasing
and where it is decreasing, and how the curve is turning or bending as defined by its con-
cavity. We use this information to sketch a graph of the function that captures its key fea-
tures.

EXAMPLE 6 Using and to Graph ƒ

Sketch a graph of the function

using the following steps.

(a) Identify where the extrema of ƒ occur.

(b) Find the intervals on which ƒ is increasing and the intervals on which ƒ is decreasing.

(c) Find where the graph of ƒ is concave up and where it is concave down.

(d) Sketch the general shape of the graph for ƒ.

ƒsxd = x4
- 4x3

+ 10

ƒ–ƒ¿

ƒ–ƒ¿

x = cƒ–ƒ– = 0

ƒ–

x = 0
y = x3y = -x4

y = x4x = 0.
y = x3 .y = x4, y = -x4 ,

ƒ¿

ƒ¿scd = 0,ƒ¿ƒ–

ƒ–sxd 6 0ƒ–scd 6 0,

f ' � 0, f '' � 0
⇒ local max

f ' � 0, f '' � 0
⇒ local min
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4.4 Concavity and Curve Sketching 271

(e) Plot some specific points, such as local maximum and minimum points, points of in-
flection, and intercepts. Then sketch the curve.

Solution ƒ is continuous since exists. The domain of ƒ is
and the domain of is also Thus, the critical points of ƒ occur

only at the zeros of Since

the first derivative is zero at and 

Intervals

Sign of 

Behavior of ƒ decreasing decreasing increasing

(a) Using the First Derivative Test for local extrema and the table above, we see that there
is no extremum at and a local minimum at 

(b) Using the table above, we see that ƒ is decreasing on and [0, 3], and increas-
ing on 

(c) is zero at and 

Intervals

Sign of 

Behavior of ƒ concave up concave down concave up

We see that ƒ is concave up on the intervals and and concave down on
(0, 2).

(d) Summarizing the information in the two tables above, we obtain

decreasing decreasing decreasing increasing

concave up concave down concave up concave up

The general shape of the curve is

3<x2<x<30<x<2x<0

s2, q d ,s - q , 0d

+-+ƒœ

2 6 x0 6 x 6 2x 6 0

x = 2.x = 0ƒ–sxd = 12x2
- 24x = 12xsx - 2d

[3, q d .
s - q , 0]

x = 3.x = 0

+--ƒœ

3 6 x0 6 x 6 3x 6 0

x = 3.x = 0

ƒ¿sxd = 4x3
- 12x2

= 4x2sx - 3d

ƒ¿ .
s - q , q d .ƒ¿s - q , q d ,

ƒ¿sxd = 4x3
- 12x2

conc
down

conc
up

conc
up

conc
up

decr decr incrdecr

infl
point

infl
point

local
min

0 2 3

General shape.
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(e) Plot the curve’s intercepts (if possible) and the points where and are zero. Indicate
any local extreme values and inflection points. Use the general shape as a guide to sketch
the curve. (Plot additional points as needed.) Figure 4.30 shows the graph of ƒ.

The steps in Example 6 help in giving a procedure for graphing to capture the key fea-
tures of a function and its graph.

y–y¿

272 Chapter 4: Applications of Derivatives
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Local
minimum

Inflection
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y � x4 � 4x3 � 10

(2, –6)

(3, –17)

FIGURE 4.30 The graph of 
(Example 6).x4

- 4x3
+ 10

ƒsxd =

Strategy for Graphing y � ƒ(x)
1. Identify the domain of ƒ and any symmetries the curve may have.

2. Find and 

3. Find the critical points of ƒ, and identify the function’s behavior at each one.

4. Find where the curve is increasing and where it is decreasing.

5. Find the points of inflection, if any occur, and determine the concavity of the
curve.

6. Identify any asymptotes.

7. Plot key points, such as the intercepts and the points found in Steps 3–5, and
sketch the curve.

y– .y¿

EXAMPLE 7 Using the Graphing Strategy

Sketch the graph of 

Solution

1. The domain of ƒ is and there are no symmetries about either axis or the
origin (Section 1.4).

2. Find and

3. Behavior at critical points. The critical points occur only at where 
(Step 2) since exists everywhere over the domain of ƒ. At 

yielding a relative minimum by the Second Derivative Test. At
yielding a relative maximum by the Second Derivative Test.

We will see in Step 6 that both are absolute extrema as well.
x = 1, ƒ–s1d = -1 6 0
ƒ–(-1) = 1 7 0

x = -1,ƒ¿

ƒ¿sxd = 0x = ;1

 =

4xsx2
- 3d

s1 + x2d3

 ƒ–sxd =

s1 + x2d2 # 2s -2xd - 2s1 - x2d[2s1 + x2d # 2x]

s1 + x2d4

 =

2s1 - x2d
s1 + x2d2

 ƒ¿sxd =

s1 + x2d # 2sx + 1d - sx + 1d2 # 2x

s1 + x2d2

 ƒsxd =

sx + 1d2

1 + x2

ƒ– .ƒ¿

s - q , q d

ƒsxd =

sx + 1d2

1 + x2 .

at
x = 0
y-intercept sy = 1d

x = -1,x-intercept at

Critical points:
x = -1, x = 1

After some algebra
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4.4 Concavity and Curve Sketching 273

4. Increasing and decreasing. We see that on the interval the derivative
and the curve is decreasing. On the interval and the

curve is increasing; it is decreasing on where again.

5. Inflection points. Notice that the denominator of the second derivative (Step 2) is 

always positive. The second derivative is zero when and The

second derivative changes sign at each of these points: negative on 

positive on negative on and positive again on Thus

each point is a point of inflection. The curve is concave down on the interval
concave up on concave down on and concave

up again on 

6. Asymptotes. Expanding the numerator of ƒ(x) and then dividing both numerator and
denominator by gives

Expanding numerator

Dividing by 

We see that as and that as Thus, the line
is a horizontal asymptote.

Since ƒ decreases on and then increases on we know that
is a local minimum. Although ƒ decreases on it never crosses the

horizontal asymptote on that interval (it approaches the asymptote from
above). So the graph never becomes negative, and is an absolute mini-
mum as well. Likewise, is an absolute maximum because the graph never
crosses the asymptote on the interval approaching it from below.
Therefore, there are no vertical asymptotes (the range of ƒ is ).

7. The graph of ƒ is sketched in Figure 4.31. Notice how the graph is concave down as it
approaches the horizontal asymptote as and concave up in its ap-
proach to as 

Learning About Functions from Derivatives

As we saw in Examples 6 and 7, we can learn almost everything we need to know about a
twice-differentiable function by examining its first derivative. We can find
where the function’s graph rises and falls and where any local extrema are assumed. We
can differentiate to learn how the graph bends as it passes over the intervals of rise and
fall. We can determine the shape of the function’s graph. Information we cannot get from
the derivative is how to place the graph in the xy-plane. But, as we discovered in Section
4.2, the only additional information we need to position the graph is the value of ƒ at one
point. The derivative does not give us information about the asymptotes, which are found
using limits (Sections 2.4 and 2.5).

y¿

y = ƒsxd

x : q .y = 1
x : - q ,y = 1

0 … y … 2
s - q , -1d ,y = 1

ƒs1d = 2
ƒs -1d = 0

y = 1
s1, q d ,ƒs -1d = 0

s -1, 1d ,s - q , -1d
y = 1

x : - q .ƒsxd : 1-x : qƒsxd : 1+

x2 =

1 + s2>xd + s1>x2d

s1>x2d + 1
.

 ƒsxd =

sx + 1d2

1 + x2 =

x2
+ 2x + 1
1 + x2

x2

A23, q B . A0, 23 B ,A -23, 0 B ,A - q , -23 B ,
A23, q B .A0, 23 B ,A -23, 0 B , A - q , -23 B ,

23.x = -23, 0 ,ƒ–

ƒ¿sxd 6 0s1, q d
s -1, 1d, ƒ¿sxd 7 0ƒ¿sxd 6 0,

s - q , -1d

–1 1

1

2

x

y

(1, 2)

Point of inflection
where x � �3

Point of inflection
where x � ��3

Horizontal
asymptote

y � 1

FIGURE 4.31 The graph of 

(Example 7).

y =

sx + 1d2

1 + x2
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y''  changes sign

oror

or

y � f (x) y � f (x) y � f (x)

Differentiable ⇒
smooth, connected; graph
may rise and fall

y' � 0 ⇒ rises from
left to right;
may be wavy

y' � 0 ⇒ falls from
left to right;
may be wavy

y'' � 0 ⇒ concave up
throughout; no waves; graph
may rise or fall

y'' � 0 ⇒ concave down
throughout; no waves;
graph may rise or fall

Inflection point

y' changes sign ⇒ graph
has local maximum or local
minimum

y' � 0  and  y'' � 0
at a point; graph has
local maximum

y' � 0  and  y'' � 0
at a point; graph has
local minimum
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274 Chapter 4: Applications of Derivatives

EXERCISES 4.4

Analyzing Graphed Functions
Identify the inflection points and local maxima and minima of the
functions graphed in Exercises 1–8. Identify the intervals on which
the functions are concave up and concave down.

1. 2.

0
x

y

y �      � 2x2 � 4x4

4

0
x

y

y �      �     � 2x �x3

3
1
3

x2

2

3. 4.

0
x

y

y �     x1/3(x2 � 7)9
14

0
x

y

y �    (x2 � 1)2/33
4
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4.4 Concavity and Curve Sketching 275

5. 6.

7. 8.

Graphing Equations
Use the steps of the graphing procedure on page 272 to graph the
equations in Exercises 9–40. Include the coordinates of any local ex-
treme points and inflection points.

9. 10.

11. 12.

13. 14.

15. 16.

17.

18.

19.

20.

21.

22.

23.

24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39.

40. y = 2 ƒ x - 4 ƒ

y = 2 ƒ x ƒ = e2-x,  x … 02x,    x 7 0

y = ƒ x2
- 2x ƒy = ƒ x2

- 1 ƒ

y =

x3

3x2
+ 1

y =

x2
- 3

x - 2
, x Z 2

y = s2 - x2d3>2y = x28 - x2

y = x2>3sx - 5dy = x2>3 a5
2

- xb
y = 5x2>5

- 2xy = 2x - 3x2>3
y = x4>5y = x2>5
y = x3>5y = x1>5

y = x - sin x, 0 … x … 2p

y = x + sin x, 0 … x … 2p

y = x ax
2

- 5b4

y = x5
- 5x4

= x4sx - 5d
y = x4

+ 2x3
= x3sx + 2d

y = 4x3
- x4

= x3s4 - xd
y = -x4

+ 6x2
- 4 = x2s6 - x2d - 4

y = x4
- 2x2

= x2sx2
- 2d

y = 1 - sx + 1d3y = sx - 2d3
+ 1

y = 1 - 9x - 6x2
- x3y = -2x3

+ 6x2
- 3

y = xs6 - 2xd2y = x3
- 3x + 3

y = 6 - 2x - x2y = x2
- 4x + 3

x

y

y � sin �x�, –2� � x � 2�

0

NOT TO SCALE

x

y

y � tan x � 4x, –     � x ��
2

�
2

00
x

y

–

y � x � sin 2x, –       � x �2�
3

2�
3

2�
3

2�
3

Sketching the General Shape Knowing y�
Each of Exercises 41–62 gives the first derivative of a continuous
function Find and then use steps 2–4 of the graphing
procedure on page 272 to sketch the general shape of the graph of ƒ.

41. 42.

43. 44.

45. 46.

47. 48.

49.

50.

51. 52.

53.

54.

55.

56.

57. 58.

59. 60.

61.

62.

Sketching y from Graphs of y� and y �
Each of Exercises 63–66 shows the graphs of the first and second de-
rivatives of a function Copy the picture and add to it a
sketch of the approximate graph of ƒ, given that the graph passes
through the point P.

63. 64.

65.

y � f '(x)

y � f ''(x)

P

0
x

y

y � f '(x)

y � f ''(x)
P

x

y

y � f '(x)

y � f ''(x)

P

x

y

y = ƒsxd .

y¿ = e -x2,  x … 0

x2,  x 7 0

y¿ = 2 ƒ x ƒ = e -2x,  x … 0

2x,  x 7 0

y¿ = x-4>5sx + 1dy¿ = x-2>3sx - 1d
y¿ = sx - 2d-1>3y¿ = sx + 1d-2>3

y¿ = sin t, 0 … t … 2p

y¿ = cos t, 0 … t … 2p

y¿ = 1 - cot2 u, 0 6 u 6 p

y¿ = tan2 u - 1, -

p

2
6 u 6

p

2

y¿ = csc2 
u

2
, 0 6 u 6 2py¿ = cot 

u

2
, 0 6 u 6 2p

y¿ = tan x, -

p

2
6 x 6

p

2

y¿ = sec2 x, -

p

2
6 x 6

p

2

y¿ = sx2
- 2xdsx - 5d2y¿ = s8x - 5x2ds4 - xd2

y¿ = sx - 1d2s2x + 3dy¿ = xsx2
- 12d

y¿ = x2s2 - xdy¿ = xsx - 3d2

y¿ = x2
- x - 6y¿ = 2 + x - x2

y–y = ƒsxd .

x

y

0–� 3�
2

y � 2 cos x � �2 x,  –� � x �
3�
2
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66.

Theory and Examples
67. The accompanying figure shows a portion of the graph of a twice-

differentiable function At each of the five labeled
points, classify and as positive, negative, or zero.

68. Sketch a smooth connected curve with

69. Sketch the graph of a twice-differentiable function with
the following properties. Label coordinates where possible.

x y Derivatives

2 1

4 4

6 7

70. Sketch the graph of a twice-differentiable function that
passes through the points and
(2, 2) and whose first two derivatives have the following sign
patterns:

y–: - + -

-1 1

y¿: + - + -

-2 0 2

s -2, 2d, s -1, 1d, s0, 0d, s1, 1d
y = ƒsxd

y¿ 6 0, y– 6 0x 7 6

y¿ = 0, y– 6 0

y¿ 7 0, y– 6 04 6 x 6 6

y¿ 7 0, y– = 0

y¿ 7 0, y– 7 02 6 x 6 4

y¿ = 0, y– 7 0

y¿ 6 0, y– 7 0x 6 2

y = ƒsxd

ƒ–sxd 7 0 for x 7 0. ƒ¿sxd 7 0 for ƒ x ƒ 7 2,

ƒ–sxd 6 0 for x 6 0,  ƒs2d = 0,

ƒ¿sxd 6 0 for ƒ x ƒ 6 2,  ƒs0d = 4,

ƒ¿s2d = ƒ¿s -2d = 0,  ƒs -2d = 8,

y = ƒsxd

y � f (x)
S

TR

Q
P

x

y

0

y–y¿

y = ƒsxd .

y � f '(x)

y � f ''(x)

P

0
x

y Motion Along a Line The graphs in Exercises 71 and 72 show the
position of a body moving back and forth on a coordinate
line. (a) When is the body moving away from the origin? Toward the
origin? At approximately what times is the (b) velocity equal to zero?
(c) Acceleration equal to zero? (d) When is the acceleration positive?
Negative?

71.

72.

73. Marginal cost The accompanying graph shows the hypotheti-
cal cost of manufacturing x items. At approximately
what production level does the marginal cost change from de-
creasing to increasing?

74. The accompanying graph shows the monthly revenue of the Wid-
get Corporation for the last 12 years. During approximately what
time intervals was the marginal revenue increasing? decreasing?

t

y

y � r(t)

50 10

C
os

t

c � f (x)

Thousands of units produced
20 40 60 80 100120

x

c

c = ƒsxd

D
is

pl
ac

em
en

t

s � f (t)

D
is

pl
ac

em
en

t

Time (sec)

5 10 150
t

s

D
is

pl
ac

em
en

t

s � f (t)

Time (sec)

5 10 150
t

s

s = ƒstd
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4.4 Concavity and Curve Sketching 277

75. Suppose the derivative of the function is

At what points, if any, does the graph of ƒ have a local minimum,
local maximum, or point of inflection? (Hint: Draw the sign pat-
tern for )

76. Suppose the derivative of the function is

At what points, if any, does the graph of ƒ have a local minimum,
local maximum, or point of inflection?

77. For sketch a curve that has and
Can anything be said about the concavity of such a

curve? Give reasons for your answer.

78. Can anything be said about the graph of a function that
has a continuous second derivative that is never zero? Give rea-
sons for your answer.

79. If b, c, and d are constants, for what value of b will the curve
have a point of inflection at 

Give reasons for your answer.

80. Horizontal tangents True, or false? Explain.

a. The graph of every polynomial of even degree (largest
exponent even) has at least one horizontal tangent.

b. The graph of every polynomial of odd degree (largest
exponent odd) has at least one horizontal tangent.

81. Parabolas

a. Find the coordinates of the vertex of the parabola

b. When is the parabola concave up? Concave down? Give
reasons for your answers.

82. Is it true that the concavity of the graph of a twice-differentiable
function changes every time Give reasons
for your answer.

83. Quadratic curves What can you say about the inflection points
of a quadratic curve Give reasons for
your answer.

84. Cubic curves What can you say about the inflection points of a
cubic curve Give reasons for
your answer.

COMPUTER EXPLORATIONS

In Exercises 85–88, find the inflection points (if any) on the graph of
the function and the coordinates of the points on the graph where the
function has a local maximum or local minimum value. Then graph
the function in a region large enough to show all these points simulta-
neously. Add to your picture the graphs of the function’s first and sec-
ond derivatives. How are the values at which these graphs intersect the

y = ax3
+ bx2

+ cx + d, a Z 0?

y = ax2
+ bx + c, a Z 0?

ƒ–sxd = 0?y = ƒsxd

y = ax2
+ bx + c, a Z 0.

x = 1?y = x3
+ bx2

+ cx + d

y = ƒsxd

ƒ¿sxd = 1>x .
ƒs1d = 0y = ƒsxdx 7 0,

y¿ = sx - 1d2sx - 2dsx - 4d .

y = ƒsxd
y¿ .

y¿ = sx - 1d2sx - 2d .

y = ƒsxd x-axis related to the graph of the function? In what other ways are the
graphs of the derivatives related to the graph of the function?

85. 86.

87.

88.

89. Graph and its first two derivatives to-
gether. Comment on the behavior of ƒ in relation to the signs and
values of and 

90. Graph and its second derivative together for
Comment on the behavior of the graph of ƒ in rela-

tion to the signs and values of 

91. a. On a common screen, graph for and
nearby positive and negative values of k. How does the value
of k seem to affect the shape of the graph?

b. Find As you will see, is a quadratic function of x.
Find the discriminant of the quadratic (the discriminant of

is ). For what values of k is the
discriminant positive? Zero? Negative? For what values of k
does have two zeros? One or no zeros? Now explain what
the value of k has to do with the shape of the graph of ƒ.

c. Experiment with other values of k. What appears to happen as
as 

92. a. On a common screen, graph 
for and some nearby integer values of k.

How does the value of k seem to affect the shape of the graph?

b. Find As you will see, is a quadratic function of x.
What is the discriminant of this quadratic (see Exercise
91(b))? For what values of k is the discriminant positive?
Zero? Negative? For what values of k does have two
zeros? One or no zeros? Now explain what the value of k has
to do with the shape of the graph of ƒ.

93. a. Graph for Then use calculus
to confirm what the screen shows about concavity, rise, and
fall. (Depending on your grapher, you may have to enter 
as to obtain a plot for negative values of x.)

b. Does the curve have a cusp at or does it just have a
corner with different right-hand and left-hand derivatives?

94. a. Graph for Then use cal-
culus to confirm what the screen shows about concavity, rise,
and fall. What concavity does the curve have to the left of the
origin? (Depending on your grapher, you may have to enter

as to obtain a plot for negative values of x.)

b. Does the curve have a cusp at or does it just have a
corner with different right-hand and left-hand derivatives?

95. Does the curve have a horizontal tangent near
Give reasons for your answer.x = -3?

y = x2
+ 3 sin 2x

x = 0,

sx2d1>3x2>3

-0.5 … x … 1.5 .y = 9x2>3sx - 1d

x = 0,

sx2d1>3 x2>3
-3 … x … 3.y = x2>3sx2

- 2d

ƒ–sxd

ƒ–sxdƒ–sxd .

k = -4,-2 …  x … 2
ƒsxd = x4

+ kx3
+ 6x2,

k : q ?k : - q ?

ƒ¿

b2
- 4acax2

+ bx + c

ƒ¿sxdƒ¿sxd .

k = 0ƒsxd = x3
+ kx

ƒ– .
0 … x … 2p .

ƒsxd = x cos x

ƒ– .ƒ¿

ƒsxd = 2x4
- 4x2

+ 1

y =

x4

4
-

x3

3
- 4x2

+ 12x + 20

y =

4
5

 x5
+ 16x2

- 25

y = x3
- 12x2y = x5

- 5x4
- 240
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Applied Optimization Problems

To optimize something means to maximize or minimize some aspect of it. What are the di-
mensions of a rectangle with fixed perimeter having maximum area? What is the least ex-
pensive shape for a cylindrical can? What is the size of the most profitable production
run? The differential calculus is a powerful tool for solving problems that call for maxi-
mizing or minimizing a function. In this section we solve a variety of optimization prob-
lems from business, mathematics, physics, and economics.

Examples from Business and Industry

EXAMPLE 1 Fabricating a Box

An open-top box is to be made by cutting small congruent squares from the corners of a
12-in.-by-12-in. sheet of tin and bending up the sides. How large should the squares cut
from the corners be to make the box hold as much as possible?

Solution We start with a picture (Figure 4.32). In the figure, the corner squares are x in.
on a side. The volume of the box is a function of this variable:

Since the sides of the sheet of tin are only 12 in. long, and the domain of V is the in-
terval 

A graph of V (Figure 4.33) suggests a minimum value of 0 at and and a
maximum near To learn more, we examine the first derivative of V with respect to x:

Of the two zeros, and only lies in the interior of the function’s domain
and makes the critical-point list. The values of V at this one critical point and two end-
points are

The maximum volume is The cutout squares should be 2 in. on a side.

EXAMPLE 2 Designing an Efficient Cylindrical Can

You have been asked to design a 1-liter can shaped like a right circular cylinder (Figure
4.34). What dimensions will use the least material?

Solution Volume of can: If r and h are measured in centimeters, then the volume of the
can in cubic centimeters is

Surface area of can: A = 2pr2
+ 2prh

1 liter = 1000 cm3pr2h = 1000.

128 in.3 .

Endpoint values:  Vs0d = 0, Vs6d = 0.

 Critical-point value: Vs2d = 128

x = 2x = 6,x = 2

dV
dx

= 144 - 96x + 12x2
= 12s12 - 8x + x2d = 12s2 - xds6 - xd .

x = 2.
x = 6x = 0

0 … x … 6.
x … 6

V = hlwVsxd = xs12 - 2xd2
= 144x - 48x2

+ 4x3 .

4.5 

12

12

12

x

x
x

x

x

xx

(a)

(b)

12 � 2x

12 � 2x

FIGURE 4.32 An open box made by
cutting the corners from a square sheet of
tin. What size corners maximize the box’s
volume (Example 1)?

x

y

0

min

2 6

min

V
ol

um
e

 

Maximum

y � x(12 – 2x)2,
0 � x � 6

NOT TO SCALE

FIGURE 4.33 The volume of the box in
Figure 4.32 graphed as a function of x.

()*

circular
ends

()*

circular
wall
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4.5 Applied Optimization Problems 279

How can we interpret the phrase “least material”? First, it is customary to ignore the thickness
of the material and the waste in manufacturing.Then we ask for dimensions r and h that make
the total surface area as small as possible while satisfying the constraint 

To express the surface area as a function of one variable, we solve for one of the vari-
ables in and substitute that expression into the surface area formula. Solving
for h is easier:

Thus,

Our goal is to find a value of that minimizes the value of A. Figure 4.35 suggests
that such a value exists.

r 7 0

 = 2pr2
+

2000
r .

 = 2pr2
+ 2pr a1000

pr2 b
 A = 2pr2

+ 2prh

h =

1000
pr2 .

pr2h = 1000

pr2h = 1000.

h

22r

FIGURE 4.34 This 1-L can uses the least
material when (Example 2).h = 2r

r

A

0

min

Tall and 
thin can

Short and
wide can

2000——r

3

A � 2�r2 �           ,  r � 0

500
�

Tall and thin

Short and wide

FIGURE 4.35 The graph of is concave up.A = 2pr2
+ 2000>r

Notice from the graph that for small r (a tall thin container, like a piece of pipe), the
term dominates and A is large. For large r (a short wide container, like a pizza
pan), the term dominates and A again is large.

Since A is differentiable on an interval with no endpoints, it can have a mini-
mum value only where its first derivative is zero.

Set 

Multiply by 

Solve for r.

What happens at r = 23 500>p?

 r =
3 A500
p L 5.42

r2 . 4pr3
= 2000

dA>dr = 0 . 0 = 4pr -

2000
r2

 
dA
dr

= 4pr -

2000
r2

r 7 0,
2pr2

2000>r
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The second derivative

is positive throughout the domain of A. The graph is therefore everywhere concave up and
the value of A at an absolute minimum.

The corresponding value of h (after a little algebra) is

The 1-L can that uses the least material has height equal to the diameter, here with
and h L 10.84 cm.r L 5.42 cm

h =

1000
pr2 = 2 A3 500

p = 2r .

r = 23 500>p

d2A
dr2 = 4p +

4000
r3

280 Chapter 4: Applications of Derivatives

Solving Applied Optimization Problems
1. Read the problem. Read the problem until you understand it. What is given?

What is the unknown quantity to be optimized?

2. Draw a picture. Label any part that may be important to the problem.

3. Introduce variables. List every relation in the picture and in the problem as
an equation or algebraic expression, and identify the unknown variable.

4. Write an equation for the unknown quantity. If you can, express the un-
known as a function of a single variable or in two equations in two un-
knowns. This may require considerable manipulation.

5. Test the critical points and endpoints in the domain of the unknown. Use
what you know about the shape of the function’s graph. Use the first and sec-
ond derivatives to identify and classify the function’s critical points.

Examples from Mathematics and Physics

EXAMPLE 3 Inscribing Rectangles

A rectangle is to be inscribed in a semicircle of radius 2. What is the largest area the rec-
tangle can have, and what are its dimensions?

Solution Let be the coordinates of the corner of the rectangle obtained by
placing the circle and rectangle in the coordinate plane (Figure 4.36). The length, height,
and area of the rectangle can then be expressed in terms of the position x of the lower
right-hand corner:

Notice that the values of x are to be found in the interval where the selected
corner of the rectangle lies.

Our goal is to find the absolute maximum value of the function

on the domain [0, 2].

Asxd = 2x24 - x2

0 … x … 2,

Length: 2x,  Height: 24 - x2, Area: 2x # 24 - x2 .

sx, 24 - x2d

x

y

0 2x–2 –x

2

x2 � y2 � 4

x, �4 � x2

FIGURE 4.36 The rectangle inscribed in
the semicircle in Example 3.
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4.5 Applied Optimization Problems 281

The derivative

is not defined when and is equal to zero when

Of the two zeros, and only lies in the interior of A’s do-
main and makes the critical-point list. The values of A at the endpoints and at this one crit-
ical point are

The area has a maximum value of 4 when the rectangle is high and
long.

EXAMPLE 4 Fermat’s Principle and Snell’s Law

The speed of light depends on the medium through which it travels, and is generally slower
in denser media.

Fermat’s principle in optics states that light travels from one point to another along a
path for which the time of travel is a minimum. Find the path that a ray of light will follow
in going from a point A in a medium where the speed of light is to a point B in a second
medium where its speed is 

Solution Since light traveling from A to B follows the quickest route, we look for a path
that will minimize the travel time. We assume that A and B lie in the xy-plane and that the
line separating the two media is the x-axis (Figure 4.37).

In a uniform medium, where the speed of light remains constant, “shortest time”
means “shortest path,” and the ray of light will follow a straight line. Thus the path from A
to B will consist of a line segment from A to a boundary point P, followed by another line
segment from P to B. Distance equals rate times time, so

The time required for light to travel from A to P is

From P to B, the time is

t2 =
PB
c2

=

2b2
+ sd - xd2

c2
.

t1 =
AP
c1

=

2a2
+ x2

c1
.

Time =

distance
rate .

c2 .
c1

2x = 222 unit
24 - x2

= 22 units

Endpoint values:  As0d = 0, As2d = 0.

 Critical-point value: A A22 B = 22224 - 2 = 4

x = 22x = -22,x = 22

 x2
= 2 or x = ;22.

 8 - 4x2
= 0

 -2x2
+ 2s4 - x2d = 0

 
-2x224 - x2

+ 224 - x2
= 0

x = 2

dA
dx

=

-2x224 - x2
+ 224 - x2

HISTORICAL BIOGRAPHY

Willebrord Snell van Royen
(1580–1626)

Angle of
incidence

Medium 1

Angle of
refractionMedium 2

x

y

0 x d
P

B

b

a

A

�1

�1

�2

d � x

FIGURE 4.37 A light ray refracted
(deflected from its path) as it passes
from one medium to a denser medium
(Example 4).

4100 AWL/Thomas_ch04p244-324  8/20/04  9:02 AM  Page 281

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html
bounce04.html?4_3_a


The time from A to B is the sum of these:

This equation expresses t as a differentiable function of x whose domain is [0, d]. We want
to find the absolute minimum value of t on this closed interval. We find the derivative

In terms of the and in Figure 4.37,

If we restrict x to the interval then t has a negative derivative at and a
positive derivative at By the Intermediate Value Theorem for Derivatives (Section
3.1), there is a point where (Figure 4.38). There is only one such
point because is an increasing function of x (Exercise 54). At this point

This equation is Snell’s Law or the Law of Refraction, and is an important principle in
the theory of optics. It describes the path the ray of light follows.

Examples from Economics

In these examples we point out two ways that calculus makes a contribution to economics.
The first has to do with maximizing profit. The second has to do with minimizing average
cost.

Suppose that

The marginal revenue, marginal cost, and marginal profit when producing and selling x
items are

The first observation is about the relationship of p to these derivatives.
If r(x) and c(x) are differentiable for all and if has a

maximum value, it occurs at a production level at which Since 
implies that

r¿sxd - c¿sxd = 0 or r¿sxd = c¿sxd .

r¿sxd - c¿sxd,  p¿sxd = 0
p¿sxd =p¿sxd = 0.

p sxd = r sxd - csxdx 7 0,

 
dp
dx

= marginal profit .

 
dc
dx

= marginal cost ,

 
dr
dx

= marginal revenue,

 p sxd = rsxd - csxd = the profit from producing and selling x items.

 csxd = the cost of producing the x items

 rsxd = the revenue from selling x items

sin u1
c1

=

sin u2
c2

.

dt>dx
dt>dx = 0x0 H [0, d]

x = d .
x = 00 … x … d ,

dt
dx

=

sin u1
c1

-

sin u2
c2

.

u2angles  u1

dt
dx

=

x

c12a2
+ x2

-

d - x

c22b2
+ sd - xd2

.

t = t1 + t2 =

2a2
+ x2

c1
+

2b2
+ sd - xd2

c2
.

282 Chapter 4: Applications of Derivatives

x

0

� � � � � � � � � � � � � �

d

x

0

� � � � � � � � � � � � � �

d
x0

dt/dx
positive

dt/dx
zero

dt/dx
negative

FIGURE 4.38 The sign pattern of 
in Example 4.

dt>dx
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4.5 Applied Optimization Problems 283

Therefore

At a production level yielding maximum profit, marginal revenue equals mar-
ginal cost (Figure 4.39).

EXAMPLE 5 Maximizing Profit

Suppose that and where x represents thousands of
units. Is there a production level that maximizes profit? If so, what is it?

Solution Notice that and 

Set

The two solutions of the quadratic equation are

The possible production levels for maximum profit are x L 0.586 thousand units or x L

3.414 thousand units. The second derivative of is 
since is everywhere zero. Thus, which is negative at 
and positive at By the Second Derivative Test, a maximum profit occurs at
about (where revenue exceeds costs) and maximum loss occurs at about

The graph of r(x) is shown in Figure 4.40.x = 0.586.
x = 3.414

x = 2 - 22.
x = 2 + 22p–sxd = 6s2 - xdr–sxd

p–sxd = -c–sxdp sxd = rsxd - csxd

 x2 =

12 + 272
6

= 2 + 22 L 3.414.

 x1 =

12 - 272
6

= 2 - 22 L 0.586 and

 3x2
- 12x + 6 = 0

c¿sxd = r¿sxd . 3x2
- 12x + 15 = 9

c¿sxd = 3x2
- 12x + 15.r¿sxd = 9

csxd = x3
- 6x2

+ 15x ,rsxd = 9x

x

y

0

D
ol

la
rs

Items produced

Break-even point

B

Cost c(x)

Local maximum for loss (minimum profit), c'(x) � r'(x)

Revenue r(x)

Maximum profit, c'(x) � r'(x)

FIGURE 4.39 The graph of a typical cost function starts concave down and later turns concave up. It
crosses the revenue curve at the break-even point B. To the left of B, the company operates at a loss. To
the right, the company operates at a profit, with the maximum profit occurring where 
Farther to the right, cost exceeds revenue (perhaps because of a combination of rising labor and
material costs and market saturation) and production levels become unprofitable again.

c¿sxd = r¿sxd .

x

y

0 2

Maximum
for profit

Local maximum for loss

c(x) � x3 � 6x2 � 15x

NOT TO SCALE

r(x) � 9x

2 � �2 2 � �2

FIGURE 4.40 The cost and revenue
curves for Example 5.
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EXAMPLE 6 Minimizing Costs

A cabinetmaker uses plantation-farmed mahogany to produce 5 furnishings each day.
Each delivery of one container of wood is $5000, whereas the storage of that material is
$10 per day per unit stored, where a unit is the amount of material needed by her to pro-
duce 1 furnishing. How much material should be ordered each time and how often should
the material be delivered to minimize her average daily cost in the production cycle be-
tween deliveries?

Solution If she asks for a delivery every x days, then she must order 5x units to have
enough material for that delivery cycle. The average amount in storage is approximately
one-half of the delivery amount, or 5 . Thus, the cost of delivery and storage for each
cycle is approximately

We compute the average daily cost c(x) by dividing the cost per cycle by the number of
days x in the cycle (see Figure 4.41).

As and as the average daily cost becomes large. So we expect a minimum
to exist, but where? Our goal is to determine the number of days x between deliveries that
provides the absolute minimum cost.

We find the critical points by determining where the derivative is equal to zero:

Of the two critical points, only lies in the domain of c(x). The critical-point value of
the average daily cost is

We note that c(x) is defined over the open interval with 
Thus, an absolute minimum exists at 

The cabinetmaker should schedule a delivery of of the exotic wood
every 14 days.

In Examples 5 and 6 we allowed the number of items x to be any positive real number.
In reality it usually only makes sense for x to be a positive integer (or zero). If we must
round our answers, should we round up or down?

EXAMPLE 7 Sensitivity of the Minimum Cost

Should we round the number of days between deliveries up or down for the best solution in
Example 6?

5s14d = 70 units
x = 2200 L 14.14 days.

c–sxd = 10000>x3
7 0.s0, q d

c A2200 B =

50002200
+ 252200 = 50022 L $707.11.

2200

 x = ;2200 L ;14.14.

 c¿sxd = -

5000
x2 + 25 = 0

x : q ,x : 0

csxd =

5000
x + 25x, x 7 0.

Cost per cycle = 5000   +    a5x
2
b    #    x   #    10

Cost per cycle = delivery costs + storage costs

x>2

284 Chapter 4: Applications of Derivatives

()*

delivery
cost

()*

number of
days stored

()*

storage cost
per day

()*

average
amount stored

y

C
os

t

y � 25x

y �

x
x min

Cycle length

c(x) �         � 25x5000
x

5000
x

FIGURE 4.41 The average daily cost c(x)
is the sum of a hyperbola and a linear
function (Example 6).
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4.5 Applied Optimization Problems 285

Solution The average daily cost will increase by about $0.03 if we round down from
14.14 to 14 days:

and

On the other hand, and our cost would increase by 
if we round up. Thus, it is better that we round x down to 14 days.$707.11 = $1.22

$708.33 -cs15d = $708.33,

cs14d - cs14.14d = $707.14 - $707.11 = $0.03.

cs14d =

5000
14

+ 25s14d = $707.14
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4.5 Applied Optimization Problems 285

EXERCISES 4.5

Whenever you are maximizing or minimizing a function of a single vari-
able, we urge you to graph it over the domain that is appropriate to the
problem you are solving. The graph will provide insight before you cal-
culate and will furnish a visual context for understanding your answer.

Applications in Geometry
1. Minimizing perimeter What is the smallest perimeter possible

for a rectangle whose area is and what are its dimensions?

2. Show that among all rectangles with an 8-m perimeter, the one
with largest area is a square.

3. The figure shows a rectangle inscribed in an isosceles right trian-
gle whose hypotenuse is 2 units long.

a. Express the y-coordinate of P in terms of x. (Hint: Write an
equation for the line AB.)

b. Express the area of the rectangle in terms of x.

c. What is the largest area the rectangle can have, and what are
its dimensions?

4. A rectangle has its base on the x-axis and its upper two vertices on
the parabola What is the largest area the rectangle
can have, and what are its dimensions?

5. You are planning to make an open rectangular box from an 8-in.-
by-15-in. piece of cardboard by cutting congruent squares from
the corners and folding up the sides. What are the dimensions of

y = 12 - x2 .

x

y

0 1

B

A
x–1

P(x, ?)

16 in.2 ,

the box of largest volume you can make this way, and what is its
volume?

6. You are planning to close off a corner of the first quadrant with a
line segment 20 units long running from (a, 0) to (0, b). Show that
the area of the triangle enclosed by the segment is largest when

7. The best fencing plan A rectangular plot of farmland will be
bounded on one side by a river and on the other three sides by a
single-strand electric fence. With 800m of wire at your disposal,
what is the largest area you can enclose, and what are its dimen-
sions?

8. The shortest fence A rectangular pea patch is to be en-
closed by a fence and divided into two equal parts by another
fence parallel to one of the sides. What dimensions for the outer
rectangle will require the smallest total length of fence? How
much fence will be needed?

9. Designing a tank Your iron works has contracted to design and
build a square-based, open-top, rectangular steel holding
tank for a paper company. The tank is to be made by welding thin
stainless steel plates together along their edges. As the production
engineer, your job is to find dimensions for the base and height
that will make the tank weigh as little as possible.

a. What dimensions do you tell the shop to use?

b. Briefly describe how you took weight into account.

10. Catching rainwater A open-top rectangular tank with
a square base x ft on a side and y ft deep is to be built with its top
flush with the ground to catch runoff water. The costs associated
with the tank involve not only the material from which the tank is
made but also an excavation charge proportional to the product xy.

a. If the total cost is

what values of x and y will minimize it?

b. Give a possible scenario for the cost function in part (a).

c = 5sx2
+ 4xyd + 10xy ,

1125 ft3

500 ft3 ,

216 m2

a = b .
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11. Designing a poster You are designing a rectangular poster to
contain of printing with a 4-in. margin at the top and bot-
tom and a 2-in. margin at each side. What overall dimensions will
minimize the amount of paper used?

12. Find the volume of the largest right circular cone that can be in-
scribed in a sphere of radius 3.

13. Two sides of a triangle have lengths a and b, and the angle be-
tween them is What value of will maximize the triangle’s
area? (Hint: )

14. Designing a can What are the dimensions of the lightest open-
top right circular cylindrical can that will hold a volume of

Compare the result here with the result in Example 2.

15. Designing a can You are designing a right circular
cylindrical can whose manufacture will take waste into account.
There is no waste in cutting the aluminum for the side, but the top
and bottom of radius r will be cut from squares that measure 2r
units on a side. The total amount of aluminum used up by the can
will therefore be

rather than the in Example 2. In Example 2,
the ratio of h to r for the most economical can was 2 to 1. What is
the ratio now?

16. Designing a box with a lid A piece of cardboard measures 10
in. by 15 in. Two equal squares are removed from the corners of a
10-in. side as shown in the figure. Two equal rectangles are re-
moved from the other corners so that the tabs can be folded to
form a rectangular box with lid.

a. Write a formula V(x) for the volume of the box.

b. Find the domain of V for the problem situation and graph V
over this domain.

10"

xx

x

x x

x

15"

Base Lid

x x

N
O

T
  T

O
  S

C
A

L
E

A = 2pr2
+ 2prh

A = 8r2
+ 2prh

1000 cm3

1000 cm3 ?

A = s1>2dab sin u .
uu .

y

x

3

3

50 in.2
c. Use a graphical method to find the maximum volume and the

value of x that gives it.

d. Confirm your result in part (c) analytically.

17. Designing a suitcase A 24-in.-by-36-in. sheet of cardboard is
folded in half to form a 24-in.-by-18-in. rectangle as shown in the
accompanying figure. Then four congruent squares of side length
x are cut from the corners of the folded rectangle. The sheet is
unfolded, and the six tabs are folded up to form a box with sides
and a lid.

a. Write a formula V(x) for the volume of the box.

b. Find the domain of V for the problem situation and graph V
over this domain.

c. Use a graphical method to find the maximum volume and the
value of x that gives it.

d. Confirm your result in part (c) analytically.

e. Find a value of x that yields a volume of 

f. Write a paragraph describing the issues that arise in part (b).

18. A rectangle is to be inscribed under the arch of the curve
from to What are the dimen-

sions of the rectangle with largest area, and what is the largest
area?

19. Find the dimensions of a right circular cylinder of maximum vol-
ume that can be inscribed in a sphere of radius 10 cm. What is the
maximum volume?

20. a. The U.S. Postal Service will accept a box for domestic ship-
ment only if the sum of its length and girth (distance around)
does not exceed 108 in. What dimensions will give a box with
a square end the largest possible volume?

x = p .x = -py = 4 cos s0.5xd

24"

36"

x

24"

x

x x

x x

x x

18"

24"

36"

Base

The sheet is then unfolded.

1120 in.3 .
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4.5 Applied Optimization Problems 287

b. Graph the volume of a 108-in. box (length plus girth equals
108 in.) as a function of its length and compare what you see
with your answer in part (a).

21. (Continuation of Exercise 20.)

a. Suppose that instead of having a box with square ends you
have a box with square sides so that its dimensions are h by h
by w and the girth is What dimensions will give the
box its largest volume now?

b. Graph the volume as a function of h and compare what you
see with your answer in part (a).

22. A window is in the form of a rectangle surmounted by a semicir-
cle. The rectangle is of clear glass, whereas the semicircle is of
tinted glass that transmits only half as much light per unit area as
clear glass does. The total perimeter is fixed. Find the proportions
of the window that will admit the most light. Neglect the thick-
ness of the frame.

23. A silo (base not included) is to be constructed in the form of a
cylinder surmounted by a hemisphere. The cost of construction
per square unit of surface area is twice as great for the hemisphere
as it is for the cylindrical sidewall. Determine the dimensions to
be used if the volume is fixed and the cost of construction is to be
kept to a minimum. Neglect the thickness of the silo and waste in
construction.

w

Girth

h

h

2h + 2w .

Square end

Girth � distance
around here

Length

24. The trough in the figure is to be made to the dimensions shown.
Only the angle can be varied. What value of will maximize the
trough’s volume?

25. Paper folding A rectangular sheet of 8.5-in.-by-11-in. paper is
placed on a flat surface. One of the corners is placed on the oppo-
site longer edge, as shown in the figure, and held there as the pa-
per is smoothed flat. The problem is to make the length of the
crease as small as possible. Call the length L. Try it with paper.

a. Show that 

b. What value of x minimizes 

c. What is the minimum value of L?

26. Constructing cylinders Compare the answers to the following
two construction problems.

a. A rectangular sheet of perimeter 36 cm and dimensions x cm
by y cm to be rolled into a cylinder as shown in part (a) of the
figure. What values of x and y give the largest volume?

b. The same sheet is to be revolved about one of the sides of
length y to sweep out the cylinder as shown in part (b) of the
figure. What values of x and y give the largest volume?

x

y

y

(a)

Circumference � x
y

x

(b)

Crease

D C

BPA
x

x

L

R

Q (originally at A)
�L2 � x2

L2 ?

L2
= 2x3>s2x - 8.5d .

��

20'

1'

1'

1'

uu

T

T
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27. Constructing cones A right triangle whose hypotenuse is
long is revolved about one of its legs to generate a right

circular cone. Find the radius, height, and volume of the cone of
greatest volume that can be made this way.

28. What value of a makes have

a. a local minimum at 

b. a point of inflection at 

29. Show that cannot have a local maximum for
any value of a.

30. What values of a and b make have

a. a local maximum at and a local minimum at 

b. a local minimum at and a point of inflection at 

Physical Applications
31. Vertical motion The height of an object moving vertically is

given by

with s in feet and t in seconds. Find

a. the object’s velocity when 

b. its maximum height and when it occurs

c. its velocity when 

32. Quickest route Jane is 2 mi offshore in a boat and wishes to
reach a coastal village 6 mi down a straight shoreline from the
point nearest the boat. She can row 2 mph and can walk 5 mph.
Where should she land her boat to reach the village in the least
amount of time?

33. Shortest beam The 8-ft wall shown here stands 27 ft from the
building. Find the length of the shortest straight beam that will
reach to the side of the building from the ground outside the wall.

34. Strength of a beam The strength S of a rectangular wooden
beam is proportional to its width times the square of its depth.
(See accompanying figure.)

Building

27'

Beam

8' wall

s = 0.

t = 0

s = -16t2
+ 96t + 112,

x = 1?x = 4

x = 3?x = -1

ƒsxd = x3
+ ax2

+ bx

ƒsxd = x2
+ sa>xd

x = 1?

x = 2?

ƒsxd = x2
+ sa>xd

h

r

�3

23 m
a. Find the dimensions of the strongest beam that can be cut

from a 12-in.-diameter cylindrical log.

b. Graph S as a function of the beam’s width w, assuming the
proportionality constant to be Reconcile what you see
with your answer in part (a).

c. On the same screen, graph S as a function of the beam’s depth
d, again taking Compare the graphs with one another
and with your answer in part (a). What would be the effect of
changing to some other value of k? Try it.

35. Stiffness of a beam The stiffness S of a rectangular beam is
proportional to its width times the cube of its depth.

a. Find the dimensions of the stiffest beam that can be cut from
a 12-in.-diameter cylindrical log.

b. Graph S as a function of the beam’s width w, assuming the
proportionality constant to be Reconcile what you see
with your answer in part (a).

c. On the same screen, graph S as a function of the beam’s depth
d, again taking Compare the graphs with one another
and with your answer in part (a). What would be the effect of
changing to some other value of k? Try it.

36. Motion on a line The positions of two particles on the s-axis
are with and in meters
and t in seconds.

a. At what time(s) in the interval do the particles meet?

b. What is the farthest apart that the particles ever get?

c. When in the interval is the distance between the
particles changing the fastest?

37. Frictionless cart A small frictionless cart, attached to the wall
by a spring, is pulled 10 cm from its rest position and released at
time to roll back and forth for 4 sec. Its position at time t is

a. What is the cart’s maximum speed? When is the cart moving
that fast? Where is it then? What is the magnitude of the
acceleration then?

b. Where is the cart when the magnitude of the acceleration is
greatest? What is the cart’s speed then?

0 10
s

s = 10 cos pt .
t = 0

0 … t … 2p

0 … t … 2p

s2s1s1 = sin t and s2 = sin st + p>3d ,

k = 1.

k = 1.

12"
d

w

k = 1.

k = 1.
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4.5 Applied Optimization Problems 289

38. Two masses hanging side by side from springs have positions
respectively.

a. At what times in the interval do the masses pass each
other? (Hint: )

b. When in the interval is the vertical distance
between the masses the greatest? What is this distance? (Hint:

)

39. Distance between two ships At noon, ship A was 12 nautical
miles due north of ship B. Ship A was sailing south at 12 knots
(nautical miles per hour; a nautical mile is 2000 yd) and contin-
ued to do so all day. Ship B was sailing east at 8 knots and contin-
ued to do so all day.

a. Start counting time with at noon and express the
distance s between the ships as a function of t.

b. How rapidly was the distance between the ships changing at
noon? One hour later?

c. The visibility that day was 5 nautical miles. Did the ships ever
sight each other?

d. Graph s and together as functions of 
using different colors if possible. Compare the graphs and
reconcile what you see with your answers in parts (b) and (c).

e. The graph of looks as if it might have a horizontal
asymptote in the first quadrant. This in turn suggests that

approaches a limiting value as What is 
this value? What is its relation to the ships’ individual 
speeds?

40. Fermat’s principle in optics Fermat’s principle in optics states
that light always travels from one point to another along a path
that minimizes the travel time. Light from a source A is reflected
by a plane mirror to a receiver at point B, as shown in the figure.
Show that for the light to obey Fermat’s principle, the angle of in-
cidence must equal the angle of reflection, both measured from
the line normal to the reflecting surface. (This result can also be
derived without calculus. There is a purely geometric argument,
which you may prefer.)

t : q .ds>dt

ds>dt

t for -1 … t … 3,ds>dt

t = 0

s

0

m2

s1

s2

m1

cos 2t = 2 cos2 t - 1.

0 … t … 2p

sin 2t = 2 sin t cos t .
0 6 t

s1 = 2 sin t and s2 = sin 2t ,

41. Tin pest When metallic tin is kept below 13.2°C, it slowly be-
comes brittle and crumbles to a gray powder. Tin objects eventu-
ally crumble to this gray powder spontaneously if kept in a cold
climate for years. The Europeans who saw tin organ pipes in their
churches crumble away years ago called the change tin pest be-
cause it seemed to be contagious, and indeed it was, for the gray
powder is a catalyst for its own formation.

A catalyst for a chemical reaction is a substance that con-
trols the rate of reaction without undergoing any permanent
change in itself. An autocatalytic reaction is one whose product is
a catalyst for its own formation. Such a reaction may proceed
slowly at first if the amount of catalyst present is small and slowly
again at the end, when most of the original substance is used up.
But in between, when both the substance and its catalyst product
are abundant, the reaction proceeds at a faster pace.

In some cases, it is reasonable to assume that the rate
of the reaction is proportional both to the amount of

the original substance present and to the amount of product. That
is, y may be considered to be a function of x alone, and

where

At what value of x does the rate y have a maximum? What is the
maximum value of y?

42. Airplane landing path An airplane is flying at altitude H when it
begins its descent to an airport runway that is at horizontal ground
distance L from the airplane, as shown in the figure. Assume that
the landing path of the airplane is the graph of a cubic polyno-
mial function 
and 

a. What is 

b. What is 

c. Use the values for and together with
to show that

y sxd = H c2 ax
L
b3

+ 3 ax
L
b2 d .

y s0d = 0 and y s -Ld = H
x = -Ldy>dx at x = 0

dy>dx at x = -L?

dy>dx at x = 0?

y s0d = 0.
y = ax3

+ bx2
+ cx + d,  where y s -Ld = H

 k = a positive constant .

 a = the amount of substance at the beginning

 x = the amount of product

y = kxsa - xd = kax - kx2 ,

y = dx>dt

B

Plane mirror

Light
source

Angle of
incidence

Light
receiver

Normal

Angle of
reflection

A
�1 �2

T
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Business and Economics
43. It costs you c dollars each to manufacture and distribute back-

packs. If the backpacks sell at x dollars each, the number sold is
given by

where a and b are positive constants. What selling price will bring
a maximum profit?

44. You operate a tour service that offers the following rates:

$200 per person if 50 people (the minimum number to book
the tour) go on the tour.

For each additional person, up to a maximum of 80 people to-
tal, the rate per person is reduced by $2.

It costs $6000 (a fixed cost) plus $32 per person to conduct the
tour. How many people does it take to maximize your profit?

45. Wilson lot size formula One of the formulas for inventory
management says that the average weekly cost of ordering, paying
for, and holding merchandise is

where q is the quantity you order when things run low (shoes, ra-
dios, brooms, or whatever the item might be), k is the cost of plac-
ing an order (the same, no matter how often you order), c is the
cost of one item (a constant), m is the number of items sold each
week (a constant), and h is the weekly holding cost per item (a
constant that takes into account things such as space, utilities, in-
surance, and security).

a. Your job, as the inventory manager for your store, is to find
the quantity that will minimize A(q). What is it? (The formula
you get for the answer is called the Wilson lot size formula.)

b. Shipping costs sometimes depend on order size. When they
do, it is more realistic to replace the sum of k
and a constant multiple of q. What is the most economical
quantity to order now?

46. Production level Prove that the production level (if any) at
which average cost is smallest is a level at which the average cost
equals marginal cost.

47. Show that if are your rev-
enue and cost functions, then the best you can do is break even
(have revenue equal cost).

rsxd = 6x and csxd = x3
- 6x2

+ 15x

k by k + bq ,

Asqd =

km
q + cm +

hq

2
,

n =

a
x - c + bs100 - xd ,

Landing path y

x

H = Cruising altitude
Airport

L

48. Production level Suppose that is
the cost of manufacturing x items. Find a production level that
will minimize the average cost of making x items.

49. Average daily cost In Example 6, assume for any material that
a cost of d is incurred per delivery, the storage cost is s dollars per
unit stored per day, and the production rate is p units per day.

a. How much should be delivered every x days?

b. Show that

c. Find the time between deliveries and the amount to deliver
that minimizes the average daily cost of delivery and storage.

d. Show that occurs at the intersection of the hyperbola
and the line 

50. Minimizing average cost Suppose that 
where x represents thousands of units. Is there a production

level that minimizes average cost? If so, what is it?

Medicine
51. Sensitivity to medicine (Continuation of Exercise 50, Section

3.2.) Find the amount of medicine to which the body is most sen-
sitive by finding the value of M that maximizes the derivative

, where

and C is a constant.

52. How we cough

a. When we cough, the trachea (windpipe) contracts to increase
the velocity of the air going out. This raises the questions of
how much it should contract to maximize the velocity and
whether it really contracts that much when we cough.

Under reasonable assumptions about the elasticity of the
tracheal wall and about how the air near the wall is slowed by
friction, the average flow velocity y can be modeled by the
equation

where is the rest radius of the trachea in centimeters and
c is a positive constant whose value depends in part on the
length of the trachea.

Show that y is greatest when that is, when
the trachea is about 33% contracted. The remarkable fact is
that X-ray photographs confirm that the trachea contracts
about this much during a cough.

b. Take to be 0.5 and c to be 1 and graph y over the interval
Compare what you see with the claim that y is

at a maximum when r = s2>3dr0 .
0 … r … 0.5 .

r0

r = s2>3dr0 ,

r0

y = csr0 - rdr2 cm>sec, r0

2
… r … r0 ,

R = M2 aC
2

-

M
3
b

dR>dM

4x3>2 ,
csxd = 2000 + 96x +

y = psx>2.y = d>x x*

x*

cost per cycle = d +

px

2
 sx .

csxd = x3
- 20x2

+ 20,000x
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4.5 Applied Optimization Problems 291

Theory and Examples
53. An inequality for positive integers Show that if a, b, c, and d

are positive integers, then

54. The derivative in Example 4

a. Show that

is an increasing function of x.

b. Show that

is a decreasing function of x.

c. Show that

is an increasing function of x.

55. Let ƒ(x) and g(x) be the differentiable functions graphed here.
Point c is the point where the vertical distance between the curves
is the greatest. Is there anything special about the tangents to the
two curves at c? Give reasons for your answer.

56. You have been asked to determine whether the function 
is ever negative.

a. Explain why you need to consider values of x only in the
interval 

b. Is ƒ ever negative? Explain.

57. a. The function has an absolute maximum
value on the interval Find it.

b. Graph the function and compare what you see with your
answer in part (a).

58. a. The function has an absolute minimum
value on the interval Find it.

b. Graph the function and compare what you see with your
answer in part (a).

0 6 x 6 p>2.
y = tan x + 3 cot x

0 6 x 6 p .
y = cot x - 22 csc x

[0, 2p] .

3 + 4 cos x + cos 2x
ƒsxd =

x
a c b

y � f (x)

y � g(x)

dt
dx

=

x

c12a2
+ x2

-

d - x

c22b2
+ sd - xd2

g sxd =

d - x2b2
+ sd - xd2

ƒsxd =

x2a2
+ x2

dt>dx

sa2
+ 1dsb2

+ 1dsc2
+ 1dsd2

+ 1d
abcd

Ú 16.

59. a. How close does the curve come to the point ( , 0)?
(Hint: If you minimize the square of the distance, you can
avoid square roots.)

b. Graph the distance function and together and
reconcile what you see with your answer in part (a).

60. a. How close does the semicircle come to the
point 

b. Graph the distance function and together and
reconcile what you see with your answer in part (a).

COMPUTER EXPLORATIONS

In Exercises 61 and 62, you may find it helpful to use a CAS.

61. Generalized cone problem A cone of height h and radius r is
constructed from a flat, circular disk of radius a in. by removing a
sector AOC of arc length x in. and then connecting the edges OA
and OC.

a. Find a formula for the volume V of the cone in terms of x and a.

b. Find r and h in the cone of maximum volume for

c. Find a simple relationship between r and h that is independent
of a for the cone of maximum volume. Explain how you
arrived at your relationship.

a = 4, 5, 6, 8 .

y = 216 - x2

A1, 23 B ? y = 216 - x2

(x, �x)

0 3
2, 0

y

x

y � �x







y = 2x

3>2y = 2x

T

T

T

T

O

A

C

a

a O A

C

h

r

4"

x

NOT TO SCALE

62. Circumscribing an ellipse Let P(x, a) and be two
points on the upper half of the ellipse

centered at (0, 5). A triangle RST is formed by using the tangent
lines to the ellipse at Q and P as shown in the figure.

x2

100
+

sy - 5d2

25
= 1

Qs -x, ad
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a. Show that the area of the triangle is

Asxd = -ƒ¿sxd cx -

ƒsxd
ƒ¿sxd

d2 ,

y

x

P(x, a)Q(–x, a)

R

S T

5

where is the function representing the upper half of
the ellipse.

b. What is the domain of A? Draw the graph of A. How are the
asymptotes of the graph related to the problem situation?

c. Determine the height of the triangle with minimum area. How
is it related to the y coordinate of the center of the ellipse?

d. Repeat parts (a) through (c) for the ellipse

centered at (0, B). Show that the triangle has minimum area
when its height is 3B.

x2

C2 +

sy - Bd2

B2 = 1

y = ƒsxd
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