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2 The real numbers as a complete ordered field

In this section are presented what can be thought of as “the rules of the game:”
the axioms of the real numbers. In this work, we present these axioms as
rules without justification. There are other approaches which can be used. For
example, another standard technique is to begin with the Peano axioms—the
axioms of the natural numbers—and build up to the real numbers through
several “completions” of this system. In such a setup, our axioms are theorems.

2.1 Field Axioms

This first set of axioms are called the field axioms because any object satisfying
them is called a field. They give the algebraic properties of the real numbers.

A field is a nonempty set F along with two functions, multiplication × :
F× F→ F and addition + : F× F→ F satisfying the following axioms.3

Axiom 1 (Associative Laws). If a, b, c ∈ F, then (a + b) + c = a + (b + c)
and (a× b)× c = a× (b× c).

Axiom 2 (Commutative Laws). If a, b ∈ F, then a+ b = b+ a and a× b =
b× a.

Axiom 3 (Distributive Law). If a, b, c ∈ F, then a× (b+ c) = a× b+ a× c.

Axiom 4 (Existence of identities). There are 0, 1 ∈ F such that a + 0 = a
and a× 1 = a, ∀a ∈ F.

Axiom 5 (Existence of an additive inverse). For each a ∈ F there is −a ∈
F such that a+ (−a) = 0.

Axiom 6 (Existence of a multiplicative inverse). For each a ∈ F \ {0}
there is a−1 ∈ F such that a× a−1 = 1.

Although these axioms seem to contain most of the properties of the real
numbers we normally use, there are other fields besides the real numbers.

Example 2.1. From elementary algebra we know that the rational numbers, Q,
are a field.

Example 2.2. Let F = {0, 1, 2} with with addition and multiplication calculated
modulo 3. It is easy to check that the field axioms are satisfied.

Theorem 2.1. The additive and multiplicative identities of a field F are unique.

Proof. Suppose e1 and e2 are both multiplicative identities in F. Then

e1 = e1 × e2 = e2,

so the multiplicative identity is unique. The proof for the additive identity is
essentially the same.

3The functions + and × are often called binary operations. The standard notation of
+(a, b) = a+ b and ×(a, b) = a× b is used here.
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Theorem 2.2. Let F be a field. If a, b ∈ F with b 6= 0, then −a and b−1 are
unique.

Proof. Suppose b1 and b2 are both multiplicative inverses for b 6= 0. Then, using
Axiom 1,

b1 = b1 × 1 = b1 × (b× b2) = (b1 × b)× b2 = 1× b2 = b2.

This shows the multiplicative inverse in unique. The proof is essentially the
same for the additive inverse.

From now on we will assume the standard notations for algebra; e. g., we
will write ab instead of a× b and a/b instead of a× b−1. There are many other
properties of fields which could be proved here, but they correspond to the usual
properties of the real numbers learned in beginning algebra, so we omit them.

Problem 8. Prove that if a, b ∈ F, where F is a field, then (−a)b = −(ab) =
a(−b).
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2.2 Order Axiom

The axiom of this section gives us the order properties of the real numbers.

Axiom 7 (Order axiom.). There is a set P ⊂ F such that

(i) If a, b ∈ P , then a+ b, ab ∈ P .

(ii) If a ∈ F, then exactly one of the following is true: a ∈ P , −a ∈ P or a = 0.

Of course, the P is known as the set of positive elements of F. Using Axiom
7(ii), we see that F is divided into three pairwise disjoint sets: P , {0} and
{−x : x ∈ P}. The latter of these is the set of negative elements of F.

Definition 2.1. We write a < b or b > a, if b− a ∈ P . The meanings of a ≤ b
and b ≥ a are now as expected.

Example 2.3. The rational numbers Q are an ordered field. This example shows
there are ordered fields which are not equal to R.

Extra Credit 2. Prove there is no set P ⊂ Z3 which makes Z3 into an ordered
field.

Following are a few standard properties of ordered fields.

Theorem 2.3. a 6= 0 iff a2 > 0.

Proof. (⇒) If a > 0, then a2 > 0 by Axiom 7(a). If a < 0, then −a > 0 by
Axiom 7(b) and above, a2 = 1a2 = (−1)(−1)a2 = (−a)2 > 0.

(⇐) Since 02 = 0, this is obvious.

Theorem 2.4. If F is an ordered field and a, b, c ∈ F, then

(a) a < b ⇐⇒ a+ c < b+ c,

(b) a < b ∧ b < c =⇒ a < c,

(c) a < b ∧ c > 0 =⇒ ac < bc,

(d) a < b ∧ c < 0 =⇒ ac > bc.

Proof. (a) a < b ⇐⇒ b− a ∈ P ⇐⇒ (b+ c)− (a+ c) ∈ P ⇐⇒ a+ c < b+ c.
(b) By supposition, both b − a, c − b ∈ P . Using the fact that P is closed

under addition, we see (b− a) + (c− b) = c− a ∈ P . Therefore, c > a.
(c) Since b−a ∈ P and c ∈ P and P is closed under multiplication, c(b−a) =

cb− ca ∈ P and, therefore, ac < bc.
(d) By assumption, b− a,−c ∈ P . Apply part (c) and Problem 8.

Theorem 2.5 (Two out of three rule). Let F be an ordered field and a, b, c ∈
F. If ab = c and any two of a, b or c are positive, then so is the third.
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Proof. If a > 0 and b > 0, then Axiom 7(a) implies c > 0. Next, suppose a > 0
and c > 0. In order to force a contradiction, suppose b ≤ 0. In this case, Axiom
7(b) shows

0 ≤ a(−b) = −(ab) = −c < 0,

which is impossible.

Corollary 2.6. Let F be an ordered field and a ∈ F. If a > 0, then a−1 > 0. If
a < 0, then a−1 < 0.

Proof. The proof is Problem 9.

Problem 9. Prove Corollary 2.6.

Suppose a > 0. Since 1a = a, Theorem 2.5 implies 1 > 0. Applying Theorem
2.4, we see that 1 + 1 > 1 > 0. It’s clear that by induction, we can find a copy
of N in any ordered field. Similarly, Z and Q also have unique copies in any
ordered field.

The standard notation for intervals will be used on an ordered field, F; i. e.,
(a, b) = {x ∈ F : a < x < b}, (a,∞) = {x ∈ F : a < x}, [a, b] = {x ∈ F : a ≤ x ≤
b}, etc.

2.2.1 Metric Properties

The order axiom on a field F allows us to introduce the idea of a distance
between points in F. To do this, we begin with the following familiar definition.

Definition 2.2. Let F be an ordered field. The absolute value function on F is
a function | · | : F→ F defined as

|x| =
{
x, x ≥ 0
−x, x < 0

.

The most important properties of the absolute value function are contained
in the following theorem.

Theorem 2.7. Let F be an ordered field. Then

(a) |x| ≥ 0 for all x ∈ F and |x| = 0 ⇐⇒ x = 0;

(b) |x| = | − x| for all x ∈ F;

(c) −|x| ≤ x ≤ |x| for all x ∈ F;

(d) |x| ≤ y ⇐⇒ −y ≤ x ≤ y; and,

(e) |x+ y| ≤ |x|+ |y| for all x, y ∈ F.

Proof. (a) The fact that |x| ≥ 0 for all x ∈ F follows from Axiom 7(b). Since
0 = −0, the second part is clear.
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(b) If x ≥ 0, then −x ≤ 0 so that | − x| = −(−x) = x = |x|. If x < 0, then
−x > 0 and |x| = −x = | − x|.

(c) If x ≥ 0, then −|x| = −x ≤ x = |x|. If x < 0, then −|x| = −(−x) = x <
−x = |x|.

(d) This is left as an exercise.

(e) Add the two sets of inequalities −|x| ≤ x ≤ |x| and −|y| ≤ y ≤ |y| to see
−(|x|+ |y|) ≤ x+ y ≤ |x|+ |y|. Now apply (d).

Definition 2.3. Let S be a set and d : S × S → R satisfy

(a) for all x, y ∈ S, d(x, y) ≥ 0 and d(x, y) = 0 ⇐⇒ x = y,

(b) for all x, y ∈ S, d(x, y) = d(y, x), and

(c) for all x, y, z ∈ S, d(x, z) ≤ d(x, y) + d(y, z).

Then the function d is a metric on S.

A metric is a function which defines the distance between any two points of
a set.

Example 2.4. Let S be a set and define d : S × S → S by

d(x, y) =

{
1, x 6= y

0, x = y
.

It is easy to prove that d is a metric on S. This trivial metric is called the
discrete metric.

Theorem 2.8. If F is an ordered field, then d(x, y) = |x− y| is a metric on F.

Proof. This easily follows from various parts of Theorem 2.7

Problem 10. Prove |x| ≤ y iff −y ≤ x ≤ y.
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2.3 The Completeness Axiom

Definition 2.4. A subset S of an ordered field F is bounded above, if there
exists M ∈ F such that M ≥ x for all x ∈ S. A subset S of an ordered field
F is bounded below, if there exists m ∈ F such that m ≤ x for all x ∈ S. The
elements M and m are called upper and lower bounds for S, respectively.

Definition 2.5. Suppose F is an ordered field and S is bounded above in F. A
number B ∈ F is called a least upper bound of S if

(a) B is an upper bound for S, and

(b) if α is any upper bound for S, then B ≤ α.

Generally, we denote B = lubS.
Suppose F is an ordered field and S is bounded below in F. A number b ∈ F

is called a greatest lower bound of S if

(a) b is a lower bound for S, and

(b) if α is any lower bound for S, then b ≥ α.

Generally, we denote b = glbS.

Axiom 8 (Completeness). Every set which is bounded above has a least up-
per bound.

This is the final axiom. Any set which satisfies all eight axioms is called
a complete ordered field. We assume the existence of a complete ordered field,
called the real numbers. The real numbers are denoted by R.

It can be shown that if F1 and F2 are both complete ordered fields, then they
are the same, in the following sense. There exists a unique bijective function
i : F1 → F2 such that i(a + b) = i(a) + i(b), i(ab) = i(a)i(b) and a < b ⇐⇒
i(a) < i(b). Such a function i is called an order isomorphism. The existence of
such an order isomorphism shows that the real numbers are essentially unique.
Further discussion of this would take us too far afield. More reading on this
topic can be done in [2].

Theorem 2.9. If A ⊂ R is bounded above, then it has a unique least upper
bound. If A ⊂ R is bounded below, then it has a unique greatest lower bound.

Proof. Suppose a1 and a2 are both least upper bounds for A. By the definition
of least upper bound, a1 ≤ a2 ≤ a1 implies a1 = a2. The proof is similar for the
greatest lower bound.

Theorem 2.10. α = lubA iff (α,∞)∩A = ∅ and for all ε > 0, (α−ε, α]∩A 6=
∅. Similarly, β = glbA iff (−∞, β)∩A = ∅ and for all ε > 0, [β, β+ε)∩A 6= ∅.

Proof. We will prove the first statement, concerning the least upper bound. The
second statement, concerning the greatest lower bound, follows similarly.
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(⇒) If x ∈ (α,∞) ∩ A, then α cannot be an upper bound of A, which is a
contradiction. If there is an ε > 0 such that (α−ε, α]∩A = ∅, then from above,
we conclude (α− ε,∞) ∩A = ∅. This implies α− ε/2 is an upper bound for A
which is less than α = lubA. This contradiction shows (α− ε, α] ∩A 6= ∅.

(⇐) The assumption that (α,∞) ∩ A = ∅ implies α ≥ lubA. On the other
hand, suppose lubA < α. By assumption, there is an x ∈ (lubA,α) ∩ A. This
is clearly a contradiction, since lubA < x ∈ A. Therefore, α = lubA.

Corollary 2.11. If α = lubA and α /∈ A, then for all ε > 0, (α−ε, α]∩A is an
infinite set. Similarly, if β = lubA and β /∈ A, then for all ε > 0, (β− ε, β]∩A
is an infinite set.

Proof. For each n ∈ N, use Theorem 2.10 to choose xn ∈ (α−1/n, α]∩A. Given
ε > 0 let N ∈ N be large enough so that 0 < 1/N < ε. Then, {xn : n ≥ N} ⊂
(α− ε, α] ∩A, and the corollary is proved.

Problem 11. Let A ⊂ R be bounded above and

B = {x : x is an upper bound of A}.

Prove lubA = glbB.

If a set A is not bounded above, then it is usual to write lubA =∞. Notice
that the symbol “∞” is not a number. It is really a short way to say that there
is no number which is an upper bound for A. Similarly, if B has no lower bound,
then glbB = −∞.

An interesting observation is that lub ∅ = −∞ and glb ∅ = ∞. To see the
first of these, notice that every M ∈ R is an upper bound for the empty set.
This is because, given M , there is no x ∈ A such that x ≥M . Thus, the set of
upper bounds for A has no lower bound.

Theorem 2.12 (Archimedean Principle). If a ∈ R, then there exists na ∈
N such that na > a.

Proof. If the theorem is false, then a is an upper bound for N. Let α = lubN.
According to Theorem 2.10 there is an m ∈ N such that m > α − 1. But, this
is a contradiction because α = lubN < m+ 1 ∈ N.

Some other variations on this theme are in the following corollary.

Corollary 2.13. Let a, b ∈ R with a > 0.

(a) There is an n ∈ N such that an > b.

(b) There is an n ∈ N such that 0 < 1/n < a.

(c) There is an n ∈ N such that n− 1 ≤ a < n.

Proof. (a) Use Theorem 2.12 to find n ∈ N where 0 < b/a < n.
(b) Let b = 1 in part (a).
(c) Theorem 2.12 guarantees that S = {n ∈ N : n > a} 6= ∅}. If n is the

least element of this set, then n− 1 /∈ S and n− 1 ≤ a < n.
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2.4 Existence of
√

2

All of the above still does not establish that Q is different from R. Since Q ⊂ R,
we must find a real number which is not rational. The following two propositions
show that

√
2 ∈ R \Q.

Theorem 2.14. There is a positive α ∈ R such that α2 = 2.

Proof. Let S = {x > 0 : x2 < 2}. Then 1 ∈ S, so S 6= ∅. If x ≥ 2, then
Theorem 2.4(c) implies x2 ≥ 4 > 2, so S is bounded above. Let α = lubS. It
will be shown that α2 = 2.

Suppose first that α2 < 2. This assumption implies (2 − α2)/(2α + 1) > 0.
According to Corollary 2.13, there is an n ∈ N large enough so that

0 <
1
n
<

2− α2

2α+ 1
=⇒ 0 <

2α+ 1
n

< 2− α2.

Therefore, (
α+

1
n

)2

= α2 +
2α
n

+
1
n2

= α2 +
1
n

(
2α+

1
n

)
< α2 +

(2α+ 1)
n

< α2 + (2− α2) = 2

contradicts the fact that α = lubS.
Next, assume α2 > 2. In this case, choose n ∈ N so that

0 <
1
n
<
α2 − 2

2α
=⇒ 0 <

2α
n
< α2 − 2.

Then (
α− 1

n

)2

= α2 − 2α
n

+
1
n2

> α2 − 2α
n
> α2 − (α2 − 2) = 2,

again contradicts that α = lubS.
Therefore, α2 = 2.

Theorem 2.15. There is no α ∈ Q such that α2 = 2.

Proof. Assume to the contrary that there is α ∈ Q with α2 = 2. Then there are
p, q ∈ N such that α = p/q and p and q are relatively prime. Now,(

p

q

)2

= 2 =⇒ p2 = 2q2 (1)

shows p2 is even. Since the square of an odd number is odd, p must be even; i. e.,
p = 2r for some f ∈ N. Substituting this into (1), shows 2r2 = q2. The same
argument as above establishes q is also even. This contradicts the assumption
that p and q are relatively prime. Therefore, no such α exists.


