
1 
 

 

NUMBER SYSTEMS 

1.1 Introduction 

There are several number systems which we normally use, such as decimal, binary, 

octal, hexadecimal, etc. Amongst them we are most familiar with the decimal number 

system. These systems are classified according to the values of the base of the number 

system. The number system having the value of the base as 10 is called a decimal 

number system, whereas that with a base of 2 is called a binary number system. 

Likewise, the number systems having base 8 and 16 are called octal and hexadecimal 

number systems respectively. 

With a decimal system we have 10 different digits, which are 0, 1, 2, 3, 4, 5, 6, 7, 8, 

and 9. But a binary system has only 2 different digits: 0 and 1. Hence, a binary 

number cannot have any digit other than 0 or 1. So to deal with a binary number 

system is quite easier than a decimal system. Now, in a digital world, we can think in 

binary nature, e.g., a light can be either off or on. There is no state in between these 

two. So we generally use the binary system when we deal with the digital world. Here 

comes the utility of a binary system. We can express everything in the world with the 

help of only two digits i.e., 0 and 1. For example, if we want to express 2510 in binary 

we may write 110012. The right most digit in a number system is called the ‘Least 

Significant Bit’ (LSB) or ‘Least Significant Digit’ (LSD). And the left most digit in a 

number system is called the ‘Most Significant Bit’ (MSB) or ‘Most Significant Digit’ 

(MSD). Now normally when we deal with different number systems we specify the 

base as the subscript to make it clear which number system is being used. 

In an octal number system there are 8 digits 0, 1, 2, 3, 4, 5, 6, and 7. Hence, any octal 

number cannot have any digit greater than 7. Similarly, a hexadecimal number system 

has 16 digits 0 to 9 and the rest of the six digits are specified by letter symbols as A,B, 

C, D, E, and F. Here A, B, C, D, E, and F represent decimal 10, 11, 12, 13, 14, and 15 

respectively. Octal and hexadecimal codes are useful to write assembly level 

language. 

 

In general, we can express any number in any base or radix “X.” Any number with 

base X, having n digits to the left and m digits to the right of the decimal point, can be 

expressed as: 

 

 

 

where an is the digit in the nth position. The coefficient an is termed as the MSD or 

Most Significant Digit and bm is termed as the LSD or the Least Significant Digit. 
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1.2 CONVERSION BETWEEN NUMBER SYSTEMS 

It is often required to convert a number in a particular number system to any other 

number system, e.g., it may be required to convert a decimal number to binary or 

octal or hexadecimal. The reverse is also true, i.e., a binary number may be converted 

into decimal and so on. 

 

1.2.1 Decimal-to-binary Conversion 

Now to convert a number in decimal to a number in binary we have to divide the 

decimal number by 2 repeatedly, until the quotient of zero is obtained. This method of 

repeated division by 2 is called the ‘double-dabble’ method. The remainders are noted 

down for each of the division steps. Then the column of the remainder is read in 

reverse order i.e., from bottom to top order. We try to show the method with an 

example shown in Example 1.1. 

Example 1.1. Convert (26)10 into a binary number. 

Solution: 

 

 

 

 

 

 

 

 

 

 

Hence the converted binary number is (11010)2. 

1.2.2 Decimal-to-octal Conversion 

Similarly, to convert a number in decimal to a number in octal we have to divide the 

decimal number by 8 repeatedly, until the quotient of zero is obtained. This method of 

repeated division by 8 is called ‘octal-dabble.’ The remainders are noted down for 

each of the division steps. Then the column of the remainder is read from bottom to 

top order, just as in the case of the double-dabble method. We try to illustrate the 

method with an example shown in Example 1.2. 
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Example 1.2. Convert (426)10 into an octal number. 

Solution: 

 

 

 

 

 

 

 

 

Hence the converted octal number is (652)8. 

 

1.2.3 Decimal-to-hexadecimal Conversion 

The same steps are repeated to convert a number in decimal to a number in 

hexadecimal. Only here we have to divide the decimal number by 16 repeatedly, until 

the quotient of zero is obtained. This method of repeated division by 16 is called ‘hex-

dabble.’ The remainders are noted down for each of the division steps. Then the 

column of the remainder is read from bottom to top order as in the two previous cases. 

We try to discuss the method with an example shown in Example 1.3. 

Example 1.3. Convert (348)10 into a hexadecimal number. 

Solution: 

 

 

 

 

 

 

 

Hence the converted hexadecimal number is (15C)16. 

1.2.4 Binary-to-decimal Conversion 

Now we discuss the reverse method, i.e., the method of conversion of binary, octal, or 

hexadecimal numbers to decimal numbers. Now we have to keep in mind that each of 

the binary, octal, or hexadecimal number system is a positional number system, i.e., 

each of the digits in the number systems discussed above has a positional weight as in 

the case of the decimal system. We illustrate the process with the help of examples. 
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Example 1.4. Convert (10110)2 into a decimal number. 

Solution.  The binary number given is 1 0 1 1 0 

Positional weights                4 3 2 1 0 

The positional weights for each of the digits are written in italics below each digit. 

Hence the decimal equivalent number is given as: 

1 × 24 + 0 × 23 + 1 × 22 + 1 × 21 + 0 × 20 

= 16 + 0 + 4 + 2 + 0 

= (22)10. 

Hence we find that here, for the sake of conversion, we have to multiply each bit with 

its positional weights depending on the base of the number system. 

 

1.2.5 Octal-to-decimal Conversion 

Example 1.5. Convert 34628 into a decimal number. 

Solution.  The octal number given is 3 4 6 2 

Positional weights             3 2 1 0 

 

The positional weights for each of the digits are written in italics below each digit. 

Hence the decimal equivalent number is given as: 

3 × 83 + 4 × 82 + 6 × 81 + 2 × 80 

= 1536 + 256 + 48 + 2 

= (1842)10. 

 

1.2.6 Hexadecimal-to-decimal Conversion 

Example 1.6. Convert 42AD16 into a decimal number. 

Solution. The hexadecimal number given is 4 2 A D 

Positional weights      3 2 1 0 

The positional weights for each of the digits are written in italics below each digit. 

Hence the decimal equivalent number is given as: 

4 × 163 + 2 × 162 + 10 × 161 + 13 × 160 

= 16384 + 512 + 160 + 13 

= (17069)10. 

 

1.2.7 Fractional Conversion 

So far we have dealt with the conversion of integer numbers only. Now if the number 

contains the fractional part we have to deal in a different way when converting the 

number from a different number system (i.e., binary, octal, or hexadecimal) to a 

decimal number system or vice versa. We illustrate this with examples. 

Example 1.7. Convert 1010.0112 into a decimal number. 

Solution.   The binary number given is 1 0 1 0. 0 1 1 

Positional weights               3 2 1 0 -1-2-3 

The positional weights for each of the digits are written in italics below each digit. 
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Hence the decimal equivalent number is given as: 

1 × 23 + 0 × 22 + 1 × 21 + 0 × 20 + 0 × 2–1 + 1 × 2–2 + 1 × 2–3 

= 8 + 0 + 2 + 0 + 0 + 0.25 + 0.125 

= (10.375)10. 

Example 1.8. Convert 362.358 into a decimal number. 

Solution. The octal number given is 3 6 2. 3 5 

Positional weights     2 1 0 -1-2 

The positional weights for each of the digits are written in italics below each digit. 

Hence the decimal equivalent number is given as: 

3 × 82 + 6 × 81 + 2 × 80 + 3 × 8–1 + 5 × 8–2 

= 192 + 48 + 2 + 0.375 + 0.078125 

= (242.453125)10. 

 

Example 1.9. Convert 42A.1216 into a decimal number. 

Solution. The hexadecimal number given is 4 2 A. 1 2 

Positional weights                  2 1 0 -1-2 

The positional weights for each of the digits are written in italics below each digit. 

Hence the decimal equivalent number is given as: 

4 × 162 + 2 × 161 + 10 × 160 + 1 × 16–1 + 1 × 16–2 

= 1024 + 32 + 10 + 0.0625 + 0.00390625 

= (1066.06640625)10. 

Example 1.10. Convert 25.62510 into a binary number. 

 

 

 

 

 

 

 

Therefore, (25)10 = (11001)2. 

Fractional Part: 
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i.e., (0.625)10 = (0.101)2 

Therefore, (25.625)10 = (11001.101)2 

1.2.8 Conversion from a Binary to Octal Number and Vice Versa 

We know that the maximum digit in an octal number system is 7, which can be 

represented as 1112 in a binary system. Hence, starting from the LSB, we group three 

digits at a time and replace them by the decimal equivalent of those groups and we get 

the final octal number. 

Example 1.11. Convert 1011010102 into an equivalent octal number. 

Solution. The binary number given is 101101010 

Starting with LSB and grouping 3 bits 101 101 010 

Octal equivalent              5     5     2 

Hence the octal equivalent number is (552)8.  

Example 1.12. Convert 10111102 into an equivalent octal number. 

Solution. The binary number given is 1011110 

Starting with LSB and grouping 3 bits 001 011 110 

Octal equivalent              1    3     6 

Hence the octal equivalent number is (136)8. 

Since at the time of grouping the three digits in Example 1.14 starting from the LSB, 

we find that the third group cannot be completed, since only one 1 is left out in the 

third group, so we complete the group by adding two 0s in the MSB side. This is 

called left padding of the number with 0. Now if the number has a fractional part then 

there will be two different classes of groups—one for the integer part starting from the 

left of the decimal point and proceeding toward the left and the second one starting 

from the right of the decimal point and proceeding toward the right. If, for the second 

class, any 1 is left out, we complete the group by adding two 0s on the right side. This 

is called right-padding. 

 

Example 1.13. Convert 1101.01112 into an equivalent octal number. 

Solution. The binary number given is 1101.0111 

Grouping 3 bits    001 101. 011 100 

Octal equivalent:   1      5      3    4 

Hence the octal number is (15.34)8. 

Now if the octal number is given and you're asked to convert it into its binary 

equivalent, then each octal digit is converted into a 3-bit-equivalent binary number 

and combining all those digits we get the final binary equivalent. 

Example 1.14. Convert 2358 into an equivalent binary number. 

Solution. The octal number given is 2 3 5 

3-bit binary equivalent 010 011 101 

Hence the binary number is (010011101)2. 
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Example 1.15. Convert 47.3218 into an equivalent binary number. 

Solution. The octal number given is  4     7     3    2     1 

3-bit binary equivalent        100  111 011 010 001 

Hence the binary number is (100111.011010001)2. 

 

1.2.9 Conversion from a Binary to Hexadecimal Number and Vice Versa 

We know that the maximum digit in a hexadecimal system is 15, which can be 

represented by 11112 in a binary system. Hence, starting from the LSB, we group four 

digits at a time and replace them with the hexadecimal equivalent of those groups and 

we get the final hexadecimal number. 

 

Example 1.16. Convert 110101102 into an equivalent hexadecimal number. 

Solution. The binary number given is 11010110 

Starting with LSB and grouping 4 bits 1101 0110 

Hexadecimal equivalent D 6 

Hence the hexadecimal equivalent number is (D6)16. 

 

Example 1.17. Convert 1100111102 into an equivalent hexadecimal number. 

Solution. The binary number given is 110011110 

Starting with LSB and grouping 4 bits 0001 1001 1110 

Hexadecimal equivalent                          1       9       E 

Hence the hexadecimal equivalent number is (19E)16. 

Since at the time of grouping of four digits starting from the LSB, in Example 1.19 we 

find that the third group cannot be completed, since only one 1 is left out, so we 

complete the group by adding three 0s to the MSB side. Now if the number has a 

fractional part, as in the case of octal numbers, then there will be two different classes 

of groups—one for the integer part starting from the left of the decimal point and 

proceeding toward the left and the second one starting from the right of the decimal 

point and proceeding toward the right. If, for the second class, any uncompleted group 

is left out, we complete the group by adding 0s on the right side. 

 

Example 1.18. Convert 111011.0112 into an equivalent hexadecimal number. 

Solution. The binary number given is 111011.011 

Grouping 4 bits               0011 1011. 0110 

Hexadecimal equivalent   3       B         6 

Hence the hexadecimal equivalent number is (3B.6)16. 

Now if the hexadecimal number is given and you're asked to convert it into its binary 

equivalent, then each hexadecimal digit is converted into a 4-bit-equivalent binary 

number and by combining all those digits we get the final binary equivalent. 
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Example 1.19. Convert 29C16 into an equivalent binary number. 

Solution. The hexadecimal number given is 2 9 C 

4-bit binary equivalent 0010 1001 1100 

Hence the equivalent binary number is (001010011100)2. 

 

Example 1.20. Convert 9E.AF216 into an equivalent binary number. 

Solution. The hexadecimal number given is 9 E A F 2 

4-bit binary equivalent                   1001 1110 1010 1111 0010 

Hence the equivalent binary number is (10011110.101011110010)2. 

 

1.2.10 Conversion from an Octal to Hexadecimal Number and Vice Versa 

Conversion from octal to hexadecimal and vice versa is sometimes required. To 

convert an octal number into a hexadecimal number the following steps are to be 

followed: 

(i) First convert the octal number to its binary equivalent (as already discussed 

above). 

(ii) Then form groups of 4 bits, starting from the LSB. 

(iii) Then write the equivalent hexadecimal number for each group of 4 bits. 

 

Similarly, for converting a hexadecimal number into an octal number the following 

steps are to be followed: 

(i) First convert the hexadecimal number to its binary equivalent. 

(ii) Then form groups of 3 bits, starting from the LSB. 

(iii) Then write the equivalent octal number for each group of 3 bits. 

Example 1.21. Convert the following hexadecimal numbers into equivalent octal 

numbers. 

(a) A72E   (b) 4.BF85 

Solution: 

(a)  Given hexadecimal number is A 7 2 E 

Binary equivalent is 1010 0111 0010 1110 

= 1010011100101110 

Forming groups of 3 bits from the LSB  001 010 011 100 101 110 

Octal equivalent                1     2     3      4     5    6 

Hence the octal equivalent of (A72E)16 is (123456)8. 

(b)  Given hexadecimal number is 4 B F 8 5 

Binary equivalent is 0100 1011 1111 1000 0101 

= 0100.1011111110000101 

Forming groups of 3 bits     100. 101 111 111 000 010 100 

Octal equivalent                    4       5     7     7     0     2     4 
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Hence the octal equivalent of (4.BF85)16 is (4.577024)8. 

Example 1.22. Convert (247)8 into an equivalent hexadecimal number. 

Solution.  Given octal number is 2     4     7 

Binary equivalent is              010  100  111 

= 010100111 

Forming groups of 4 bits from the LSB 1010 0111 

Hexadecimal equivalent          A      7 

Hence the hexadecimal equivalent of (247)8 is (A7)16. 

Example 1.23. Convert (36.532)8 into an equivalent hexadecimal number. 

Solution.  Given octal number is  3      6      5       3      2 

Binary equivalent is   011  110   101   011  010 

=011110.101011010 

Forming groups of 4 bits 0001 1110. 1010 1101 

Hexadecimal equivalent 1 E. A D 

Hence the hexadecimal equivalent of (36.532)8 is (1E.AD)16. 

1.3 Binary Arithmetic 

1.3.1 Binary Addition 

The four basic rules for adding binary digits (bits) are as follows: 

0+0=0 Sum of 0 with a carry 0 

0+1=1 Sum of 1 with a carry 0 

1+0=1 Sum of 1 with a carry 0 

1+1=1 0 Sum of 0 with a carry 1  

Examples:  

110 6  111    7  1111  15 

100 4  011    3  1100  12 

_____                       _____  _____  _____  _____  ___ 

1010                            10  1010  10  11011  27 

 

1.3.2 Binary Subtraction 

The four basic rules for subtracting are as follows: 

0-0=0 

1-1=0 

1-0=1 

0-1=1 0-1 with a borrow of 1 

+ + + + + 



11 
 

Examples:  

  11    3    11     3   101  

  01    1    10     2   011 

_____ _____  _____  _____  _____ 

 10    2    01     1   010 

 

   5  110    6  101101 45 

   3  101    5  001110 14  

_____ _____  _____  _____  _____ 

   2  001    1  011111 31 

1.4 1's And 2's Complement of Binary Number 

The 1's complement and the 2's complement of binary number are important because 

they permit the representation of negative numbers. 

Binary Number            1     0     1     1     0     0      1     0 

 

 

 

 

 

1'sComplement             0      1      0     0      1      1      0      1 

2's Complement of a binary number is found by adding 1 to the LSB of the 1's 

Complement. 

2's Complement= (1's Complement) +1 

 

Binary number   10110010 

1'scomplement  01001101 

Add 1             +              1 

---------------------------------------- 

2's complement            01001110 
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