
1

NUMBER SYSTEMS

1.1 Introduction

There are several number systems which we normally use, such as decimal, binary,

octal, hexadecimal, etc. Amongst them we are most familiar with the decimal number

system. These systems are classified according to the values of the base of the number

system. The number system having the value of the base as 10 is called a decimal

number system, whereas that with a base of 2 is called a binary number system.

Likewise, the number systems having base 8 and 16 are called octal and hexadecimal

number systems respectively.

With a decimal system we have 10 different digits, which are 0, 1, 2, 3, 4, 5, 6, 7, 8,

and 9. But a binary system has only 2 different digits: 0 and 1. Hence, a binary

number cannot have any digit other than 0 or 1. So to deal with a binary number

system is quite easier than a decimal system. Now, in a digital world, we can think in

binary nature, e.g., a light can be either off or on. There is no state in between these

two. So we generally use the binary system when we deal with the digital world. Here

comes the utility of a binary system. We can express everything in the world with the

help of only two digits i.e., 0 and 1. For example, if we want to express 2510 in binary

we may write 110012. The right most digit in a number system is called the ‘Least

Significant Bit’ (LSB) or ‘Least Significant Digit’ (LSD). And the left most digit in a

number system is called the ‘Most Significant Bit’ (MSB) or ‘Most Significant Digit’

(MSD). Now normally when we deal with different number systems we specify the

base as the subscript to make it clear which number system is being used.

In an octal number system there are 8 digits 0, 1, 2, 3, 4, 5, 6, and 7. Hence, any octal

number cannot have any digit greater than 7. Similarly, a hexadecimal number system

has 16 digits 0 to 9 and the rest of the six digits are specified by letter symbols as A,B,

C, D, E, and F. Here A, B, C, D, E, and F represent decimal 10, 11, 12, 13, 14, and 15

respectively. Octal and hexadecimal codes are useful to write assembly level

language.

In general, we can express any number in any base or radix “X.” Any number with

base X, having n digits to the left and m digits to the right of the decimal point, can be

expressed as:

where an is the digit in the nth position. The coefficient an is termed as the MSD or

Most Significant Digit and bm is termed as the LSD or the Least Significant Digit.

2

1.2 CONVERSION BETWEEN NUMBER SYSTEMS

It is often required to convert a number in a particular number system to any other

number system, e.g., it may be required to convert a decimal number to binary or

octal or hexadecimal. The reverse is also true, i.e., a binary number may be converted

into decimal and so on.

1.2.1 Decimal-to-binary Conversion

Now to convert a number in decimal to a number in binary we have to divide the

decimal number by 2 repeatedly, until the quotient of zero is obtained. This method of

repeated division by 2 is called the ‘double-dabble’ method. The remainders are noted

down for each of the division steps. Then the column of the remainder is read in

reverse order i.e., from bottom to top order. We try to show the method with an

example shown in Example 1.1.

Example 1.1. Convert (26)10 into a binary number.

Solution:

Hence the converted binary number is (11010)2.

1.2.2 Decimal-to-octal Conversion

Similarly, to convert a number in decimal to a number in octal we have to divide the

decimal number by 8 repeatedly, until the quotient of zero is obtained. This method of

repeated division by 8 is called ‘octal-dabble.’ The remainders are noted down for

each of the division steps. Then the column of the remainder is read from bottom to

top order, just as in the case of the double-dabble method. We try to illustrate the

method with an example shown in Example 1.2.

3

Example 1.2. Convert (426)10 into an octal number.

Solution:

Hence the converted octal number is (652)8.

1.2.3 Decimal-to-hexadecimal Conversion

The same steps are repeated to convert a number in decimal to a number in

hexadecimal. Only here we have to divide the decimal number by 16 repeatedly, until

the quotient of zero is obtained. This method of repeated division by 16 is called ‘hex-

dabble.’ The remainders are noted down for each of the division steps. Then the

column of the remainder is read from bottom to top order as in the two previous cases.

We try to discuss the method with an example shown in Example 1.3.

Example 1.3. Convert (348)10 into a hexadecimal number.

Solution:

Hence the converted hexadecimal number is (15C)16.

1.2.4 Binary-to-decimal Conversion

Now we discuss the reverse method, i.e., the method of conversion of binary, octal, or

hexadecimal numbers to decimal numbers. Now we have to keep in mind that each of

the binary, octal, or hexadecimal number system is a positional number system, i.e.,

each of the digits in the number systems discussed above has a positional weight as in

the case of the decimal system. We illustrate the process with the help of examples.

4

Example 1.4. Convert (10110)2 into a decimal number.

Solution. The binary number given is 1 0 1 1 0

Positional weights 4 3 2 1 0

The positional weights for each of the digits are written in italics below each digit.

Hence the decimal equivalent number is given as:

1 × 24 + 0 × 23 + 1 × 22 + 1 × 21 + 0 × 20

= 16 + 0 + 4 + 2 + 0

= (22)10.

Hence we find that here, for the sake of conversion, we have to multiply each bit with

its positional weights depending on the base of the number system.

1.2.5 Octal-to-decimal Conversion

Example 1.5. Convert 34628 into a decimal number.

Solution. The octal number given is 3 4 6 2

Positional weights 3 2 1 0

The positional weights for each of the digits are written in italics below each digit.

Hence the decimal equivalent number is given as:

3 × 83 + 4 × 82 + 6 × 81 + 2 × 80

= 1536 + 256 + 48 + 2

= (1842)10.

1.2.6 Hexadecimal-to-decimal Conversion

Example 1.6. Convert 42AD16 into a decimal number.

Solution. The hexadecimal number given is 4 2 A D

Positional weights 3 2 1 0

The positional weights for each of the digits are written in italics below each digit.

Hence the decimal equivalent number is given as:

4 × 163 + 2 × 162 + 10 × 161 + 13 × 160

= 16384 + 512 + 160 + 13

= (17069)10.

1.2.7 Fractional Conversion

So far we have dealt with the conversion of integer numbers only. Now if the number

contains the fractional part we have to deal in a different way when converting the

number from a different number system (i.e., binary, octal, or hexadecimal) to a

decimal number system or vice versa. We illustrate this with examples.

Example 1.7. Convert 1010.0112 into a decimal number.

Solution. The binary number given is 1 0 1 0. 0 1 1

Positional weights 3 2 1 0 -1-2-3

The positional weights for each of the digits are written in italics below each digit.

5

Hence the decimal equivalent number is given as:

1 × 23 + 0 × 22 + 1 × 21 + 0 × 20 + 0 × 2–1 + 1 × 2–2 + 1 × 2–3

= 8 + 0 + 2 + 0 + 0 + 0.25 + 0.125

= (10.375)10.

Example 1.8. Convert 362.358 into a decimal number.

Solution. The octal number given is 3 6 2. 3 5

Positional weights 2 1 0 -1-2

The positional weights for each of the digits are written in italics below each digit.

Hence the decimal equivalent number is given as:

3 × 82 + 6 × 81 + 2 × 80 + 3 × 8–1 + 5 × 8–2

= 192 + 48 + 2 + 0.375 + 0.078125

= (242.453125)10.

Example 1.9. Convert 42A.1216 into a decimal number.

Solution. The hexadecimal number given is 4 2 A. 1 2

Positional weights 2 1 0 -1-2

The positional weights for each of the digits are written in italics below each digit.

Hence the decimal equivalent number is given as:

4 × 162 + 2 × 161 + 10 × 160 + 1 × 16–1 + 1 × 16–2

= 1024 + 32 + 10 + 0.0625 + 0.00390625

= (1066.06640625)10.

Example 1.10. Convert 25.62510 into a binary number.

Therefore, (25)10 = (11001)2.

Fractional Part:

6

i.e., (0.625)10 = (0.101)2

Therefore, (25.625)10 = (11001.101)2

1.2.8 Conversion from a Binary to Octal Number and Vice Versa

We know that the maximum digit in an octal number system is 7, which can be

represented as 1112 in a binary system. Hence, starting from the LSB, we group three

digits at a time and replace them by the decimal equivalent of those groups and we get

the final octal number.

Example 1.11. Convert 1011010102 into an equivalent octal number.

Solution. The binary number given is 101101010

Starting with LSB and grouping 3 bits 101 101 010

Octal equivalent 5 5 2

Hence the octal equivalent number is (552)8.

Example 1.12. Convert 10111102 into an equivalent octal number.

Solution. The binary number given is 1011110

Starting with LSB and grouping 3 bits 001 011 110

Octal equivalent 1 3 6

Hence the octal equivalent number is (136)8.

Since at the time of grouping the three digits in Example 1.14 starting from the LSB,

we find that the third group cannot be completed, since only one 1 is left out in the

third group, so we complete the group by adding two 0s in the MSB side. This is

called left padding of the number with 0. Now if the number has a fractional part then

there will be two different classes of groups—one for the integer part starting from the

left of the decimal point and proceeding toward the left and the second one starting

from the right of the decimal point and proceeding toward the right. If, for the second

class, any 1 is left out, we complete the group by adding two 0s on the right side. This

is called right-padding.

Example 1.13. Convert 1101.01112 into an equivalent octal number.

Solution. The binary number given is 1101.0111

Grouping 3 bits 001 101. 011 100

Octal equivalent: 1 5 3 4

Hence the octal number is (15.34)8.

Now if the octal number is given and you're asked to convert it into its binary

equivalent, then each octal digit is converted into a 3-bit-equivalent binary number

and combining all those digits we get the final binary equivalent.

Example 1.14. Convert 2358 into an equivalent binary number.

Solution. The octal number given is 2 3 5

3-bit binary equivalent 010 011 101

Hence the binary number is (010011101)2.

7

Example 1.15. Convert 47.3218 into an equivalent binary number.

Solution. The octal number given is 4 7 3 2 1

3-bit binary equivalent 100 111 011 010 001

Hence the binary number is (100111.011010001)2.

1.2.9 Conversion from a Binary to Hexadecimal Number and Vice Versa

We know that the maximum digit in a hexadecimal system is 15, which can be

represented by 11112 in a binary system. Hence, starting from the LSB, we group four

digits at a time and replace them with the hexadecimal equivalent of those groups and

we get the final hexadecimal number.

Example 1.16. Convert 110101102 into an equivalent hexadecimal number.

Solution. The binary number given is 11010110

Starting with LSB and grouping 4 bits 1101 0110

Hexadecimal equivalent D 6

Hence the hexadecimal equivalent number is (D6)16.

Example 1.17. Convert 1100111102 into an equivalent hexadecimal number.

Solution. The binary number given is 110011110

Starting with LSB and grouping 4 bits 0001 1001 1110

Hexadecimal equivalent 1 9 E

Hence the hexadecimal equivalent number is (19E)16.

Since at the time of grouping of four digits starting from the LSB, in Example 1.19 we

find that the third group cannot be completed, since only one 1 is left out, so we

complete the group by adding three 0s to the MSB side. Now if the number has a

fractional part, as in the case of octal numbers, then there will be two different classes

of groups—one for the integer part starting from the left of the decimal point and

proceeding toward the left and the second one starting from the right of the decimal

point and proceeding toward the right. If, for the second class, any uncompleted group

is left out, we complete the group by adding 0s on the right side.

Example 1.18. Convert 111011.0112 into an equivalent hexadecimal number.

Solution. The binary number given is 111011.011

Grouping 4 bits 0011 1011. 0110

Hexadecimal equivalent 3 B 6

Hence the hexadecimal equivalent number is (3B.6)16.

Now if the hexadecimal number is given and you're asked to convert it into its binary

equivalent, then each hexadecimal digit is converted into a 4-bit-equivalent binary

number and by combining all those digits we get the final binary equivalent.

8

Example 1.19. Convert 29C16 into an equivalent binary number.

Solution. The hexadecimal number given is 2 9 C

4-bit binary equivalent 0010 1001 1100

Hence the equivalent binary number is (001010011100)2.

Example 1.20. Convert 9E.AF216 into an equivalent binary number.

Solution. The hexadecimal number given is 9 E A F 2

4-bit binary equivalent 1001 1110 1010 1111 0010

Hence the equivalent binary number is (10011110.101011110010)2.

1.2.10 Conversion from an Octal to Hexadecimal Number and Vice Versa

Conversion from octal to hexadecimal and vice versa is sometimes required. To

convert an octal number into a hexadecimal number the following steps are to be

followed:

(i) First convert the octal number to its binary equivalent (as already discussed

above).

(ii) Then form groups of 4 bits, starting from the LSB.

(iii) Then write the equivalent hexadecimal number for each group of 4 bits.

Similarly, for converting a hexadecimal number into an octal number the following

steps are to be followed:

(i) First convert the hexadecimal number to its binary equivalent.

(ii) Then form groups of 3 bits, starting from the LSB.

(iii) Then write the equivalent octal number for each group of 3 bits.

Example 1.21. Convert the following hexadecimal numbers into equivalent octal

numbers.

(a) A72E (b) 4.BF85

Solution:

(a) Given hexadecimal number is A 7 2 E

Binary equivalent is 1010 0111 0010 1110

= 1010011100101110

Forming groups of 3 bits from the LSB 001 010 011 100 101 110

Octal equivalent 1 2 3 4 5 6

Hence the octal equivalent of (A72E)16 is (123456)8.

(b) Given hexadecimal number is 4 B F 8 5

Binary equivalent is 0100 1011 1111 1000 0101

= 0100.1011111110000101

Forming groups of 3 bits 100. 101 111 111 000 010 100

Octal equivalent 4 5 7 7 0 2 4

9

Hence the octal equivalent of (4.BF85)16 is (4.577024)8.

Example 1.22. Convert (247)8 into an equivalent hexadecimal number.

Solution. Given octal number is 2 4 7

Binary equivalent is 010 100 111

= 010100111

Forming groups of 4 bits from the LSB 1010 0111

Hexadecimal equivalent A 7

Hence the hexadecimal equivalent of (247)8 is (A7)16.

Example 1.23. Convert (36.532)8 into an equivalent hexadecimal number.

Solution. Given octal number is 3 6 5 3 2

Binary equivalent is 011 110 101 011 010

=011110.101011010

Forming groups of 4 bits 0001 1110. 1010 1101

Hexadecimal equivalent 1 E. A D

Hence the hexadecimal equivalent of (36.532)8 is (1E.AD)16.

1.3 Binary Arithmetic

1.3.1 Binary Addition

The four basic rules for adding binary digits (bits) are as follows:

0+0=0 Sum of 0 with a carry 0

0+1=1 Sum of 1 with a carry 0

1+0=1 Sum of 1 with a carry 0

1+1=1 0 Sum of 0 with a carry 1

Examples:

110 6 111 7 1111 15

100 4 011 3 1100 12

_____ _____ _____ _____ _____ ___

1010 10 1010 10 11011 27

1.3.2 Binary Subtraction

The four basic rules for subtracting are as follows:

0-0=0

1-1=0

1-0=1

0-1=1 0-1 with a borrow of 1

+ + + + +

11

Examples:

 11 3 11 3 101

 01 1 10 2 011

_____ _____ _____ _____ _____

 10 2 01 1 010

 5 110 6 101101 45

 3 101 5 001110 14

_____ _____ _____ _____ _____

 2 001 1 011111 31

1.4 1's And 2's Complement of Binary Number

The 1's complement and the 2's complement of binary number are important because

they permit the representation of negative numbers.

Binary Number 1 0 1 1 0 0 1 0

1'sComplement 0 1 0 0 1 1 0 1

2's Complement of a binary number is found by adding 1 to the LSB of the 1's

Complement.

2's Complement= (1's Complement) +1

Binary number 10110010

1'scomplement 01001101

Add 1 + 1

--

2's complement 01001110

- - - - -

- - - - -

