
 1

(1)

Modular arithmetic
In mathematics, modular arithmetic (sometimes called clock arithmetic) is a system of
arithmetic for integers, where numbers "wrap around يلتف حول " after they reach a certain
value the modulus.

[The Swiss mathematician Leonhard Euler pioneered the modern approach to
congruence in about 1750, when he explicitly introduced the idea of congruence modulo
a number N.]

[Modular arithmetic was further advanced by Carl Friedrich Gauss in his book
Disquisitiones Arithmeticae, published in 1801.]

Time-keeping on this clock uses arithmetic modulo 12.

Simple Example:

A familiar use of modular arithmetic is in the 12-hour clock, in which the day is divided
into two 12-hour periods. If the time is 7:00 now, then 8 hours later it will be 3:00.
Usual addition would suggest that the later time should be 7 + 8 = 15, but this is not the
answer because clock time "wraps around" every 12 hours; in 12-hour time, there is no
"15 o'clock". Likewise, if the clock starts at 12:00 (noon) and 21 hours elapse, then the
time will be 9:00 the next day, rather than 33:00. Since the hour number starts over after
it reaches 12, this is arithmetic modulo 12. 12 is congruent not only to 12 itself, but
also to 0, so the time called "12:00" could also be called "0:00", since 0 ≡ 12 mod 12.

Congruence relation
Modular arithmetic can be handled mathematically by introducing a congruence
relation on the integers that is compatible with the operations of the ring of integers:
addition, subtraction, and multiplication.

For a positive integer n, two integers a and b are said to be congruent modulo n,
written:

 2

if their difference a − b is an integer multiple of n. The number n is called the
modulus of the congruence.

Example,

because 38 − 2 = 36, which is a multiple of 12.

The same rule holds for negative values:

When a and b are either both positive or both negative, then can
also be thought of as asserting that both a / n and b / n have the same remainder. For
instance:

because both 38 / 12 and 14 / 12 have the same remainder, 2. It is also the case that
38 − 14 = 24 is an integer multiple of 12, which agrees with the prior definition of the
congruence relation.

This would have been clearer if the notation (a ≡n b) had been used, instead of the
common traditional notation.

The properties that make this relation a congruence relation (respecting addition,
subtraction, and multiplication) are the following:

If

and

then:

 3

•
•

It should be noted that the above two properties would still hold if the theory were
expanded to include all real numbers, that is if were not necessarily
all integers.

The next property, however, would fail if these variables were not all integers:

•

Ring of congruence classes
Like any congruence relation, congruence modulo n is an equivalence relation, and the
equivalence class of the integer a, denoted by , is the set:

 .

This set, consisting of the integers congruent to a modulo n, is called the “congruence
class” or “residue class” or simply “residue” of the integer a, modulo n.

When the modulus n is known from the context, that residue may also be denoted .

The set of all congruence classes modulo n is denoted or

When n ≠ 0, has n elements, and can be written as:

We can define addition, subtraction, and multiplication on by the following
rules:

•
•
•

The verification that this is a proper definition uses the properties given before.

 4

In this way, becomes a commutative ring.

Example,

 in the ring , we have

as in the arithmetic for the 24-hour clock.

The set has a number of important mathematical properties that are foundational
to various branches of mathematics.

Remainders
 The notion of modular arithmetic is related to that of the remainder in division. The
operation of finding the remainder is sometimes referred to as the modulo operation and
we may see 2 = 14 (mod 12).

 The difference is in the use of congruency, indicated by "≡", and equality indicated by
"=". Equality implies specifically the "common residue", the least non-negative member
of an equivalence class. When working with modular arithmetic, each equivalence class
is usually represented by its common residue,

 For example

38 ≡ 2 (mod 12) which can be found using long division. It follows that, while it is
correct to say 38 ≡ 14 (mod 12), and 2 ≡ 14 (mod 12), it is incorrect to say 38 = 14 (mod
12) (with "=" rather than "≡").

The difference is clearest when dividing a negative number, since in that case
remainders are negative. Hence to express the remainder we would have to write −5 ≡
−17 (mod 12), rather than 7 = −17 (mod 12), since equivalence can only be said of
common residues with the same sign.

 5

 In computer science, it is the remainder operator that is usually indicated by
either "%" (e.g. in C, Java, Javascript, Perl and Python) or "mod" (e.g. in Pascal,
BASIC, SQL, Haskell), with exceptions (e.g. Excel).

 These operators are commonly pronounced as "mod", but it is specifically a
remainder that is computed (since in C++ negative number will be returned if the
first argument is negative, and in Python a negative number will be returned if the
second argument is negative). The function modulo instead of mod, like 38 ≡ 14
(modulo 12) is sometimes used to indicate the common residue rather than a
remainder (e.g. in Ruby).

Parentheses are sometimes dropped from the expression, e.g. 38 ≡ 14 mod 12 or 2 = 14
mod 12, or placed around the divisor e.g. 38 ≡ 14 mod (12). Notation such as 38(mod 12)
has also been observed, but is ambiguous without contextual clarification.

Functional representation of the remainder operation

The remainder operation can be represented using the floor function.

If b ≡ a (mod n), where n > 0, then if the remainder b is calculated

Where is the largest integer less than or equal to , then

If instead a remainder b in the range { −n ≤ b < 0 } is required, then

Residue systems
 Each residue class modulo n may be represented by any one of its members, although
we usually represent each residue class by the smallest nonnegative integer which
belongs to that class (since this is the proper remainder which results from division). Note

 6

that any two members of different residue classes modulo n are incongruent modulo n.
Furthermore, every integer belongs to one and only one residue class modulo n.

The set of integers {0, 1, 2, ..., n - 1} is called the least residue system modulo n. Any
set of n integers, no two of which are congruent modulo n, is called a complete residue
system modulo n.

It is clear that the least residue system is a complete residue system, and that a complete
residue system is simply a set containing precisely one representative of each residue
class modulo n.[4] The least residue system modulo 4 is {0, 1, 2, 3}. Some other complete
residue systems modulo 4 are:

• {1,2,3,4}
• {13,14,15,16}
• {-2,-1,0,1}
• {-13,4,17,18}
• {-5,0,6,21}
• {27,32,37,42}

Some sets which are not complete residue systems modulo 4 are:

• {-5,0,6,22} since 6 is congruent to 22 modulo 4.
• {5,15} since a complete residue system modulo 4 must have exactly 4

incongruent residue classes.

Reduced residue systems

Any set of φ(n) integers that are relatively prime to n and that are mutually incongruent
modulo n, where φ(n) denotes Euler's totient function, is called a reduced residue
system modulo n.

 The example above, {5,15} is an example of a reduced residue system modulo 4.

Applications
- Modular arithmetic is referenced in number theory, group theory, ring theory, knot
theory, abstract algebra, cryptography, computer science, chemistry and the visual and
musical arts.

 7

- It is one of the foundations of number theory, touching on almost every aspect of its
study, and provides key examples for group theory, ring theory and abstract algebra.

- Modular arithmetic is often used to calculate checksums that are used within identifiers
- International Bank Account Numbers (IBANs) for example make use of modulo 97
arithmetic to trap user input errors in bank account numbers.

- In cryptography, modular arithmetic directly underpins public key systems such
as RSA and Diffie-Hellman, as well as providing finite fields which underlie elliptic
curves, and is used in a variety of symmetric key algorithms including AES, IDEA,
and RC4.

- In computer science, modular arithmetic is often applied in bitwise operations and other
operations involving fixed-width, cyclic data structures. The modulo operation, as
implemented in many programming languages and calculators, is an application of
modular arithmetic that is often used in this context. XOR is the sum of 2 bits, modulo 2.

- In chemistry, the last digit of the CAS registry number (a number which is unique for
each chemical compound) is a check digit, which is calculated by taking the last digit of
the first two parts of the CAS registry number times 1, the next digit times 2, the next
digit times 3 etc., adding all these up and computing the sum modulo 10.

- In music, arithmetic modulo 12 is used in the consideration of the system of twelve-tone
equal temperament, where octave and enharmonic equivalency occurs (that is, pitches in
a 1�2 or 2�1 ratio are equivalent, and C-sharp is considered the same as D-flat).

- The method of casting out nines offers a quick check of decimal arithmetic
computations performed by hand. It is based on modular arithmetic modulo 9, and
specifically on the crucial property that 10 ≡ 1 (mod 9).

- Arithmetic modulo 7 is especially important in determining the day of the week in the
Gregorian calendar. In particular, Zeller's congruence and the doomsday algorithm make
heavy use of modulo-7 arithmetic.

- More generally, modular arithmetic also has application in disciplines such as law (see
e.g., apportionment), economics, (see e.g., game theory) and other areas of the social
sciences, where proportional division and allocation of resources plays a central part of
the analysis.

Computational complexity
Since modular arithmetic has such a wide range of applications, it is important to know
how hard it is to solve a system of congruences. A linear system of congruences can be
solved in polynomial time with a form of Gaussian elimination, for details see linear
congruence theorem. Algorithms, such as Montgomery reduction, also exist to allow
simple arithmetic operations, such as multiplication and exponentiation modulo n, to be

 8

performed efficiently on large numbers. Solving a system of non-linear modular
arithmetic equations is NP-complete.

******************* ************

