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Modular arithmetic 
In mathematics, modular arithmetic (sometimes called clock arithmetic) is a system of 
arithmetic for integers, where numbers "wrap around يلتف حول  " after they reach a certain 
value the modulus. 

[ The Swiss mathematician Leonhard Euler pioneered the modern approach to 
congruence in about 1750, when he explicitly introduced the idea of congruence modulo 
a number N.]  

[Modular arithmetic was further advanced by Carl Friedrich Gauss in his book 
Disquisitiones Arithmeticae, published in 1801.] 

 
 
Time-keeping on this clock uses arithmetic modulo 12. 

Simple Example: 

A familiar use of modular arithmetic is in the 12-hour clock, in which the day is divided 
into two 12-hour periods. If the time is 7:00 now, then 8 hours later it will be 3:00. 
Usual addition would suggest that the later time should be 7 + 8 = 15, but this is not the 
answer because clock time "wraps around" every 12 hours; in 12-hour time, there is no 
"15  o'clock".  Likewise, if the clock starts at 12:00 (noon) and 21 hours elapse, then the 
time will be 9:00 the next day, rather than 33:00. Since the hour number starts over after 
it reaches 12, this is arithmetic modulo 12.         12 is congruent not only to 12 itself, but 
also to 0, so the time called "12:00" could also be called "0:00", since 0 ≡ 12 mod 12. 

Congruence relation 
Modular arithmetic can be handled mathematically by introducing a congruence 
relation on the integers that is compatible with the operations of the ring of integers: 
addition, subtraction, and multiplication.  

For a positive integer n, two integers a and b are said to be congruent modulo n, 
written: 
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if their difference a − b is an integer multiple of n. The number n is called the 
modulus of the congruence. 

Example, 

 

because 38 − 2 = 36, which is a multiple of 12. 

The same rule holds for negative values: 

 
 

 

 

When a and b are either both positive or both negative, then     can 
also be thought of as asserting that both a / n and b / n have the same remainder. For 
instance: 

 

because both 38 / 12 and 14 / 12 have the same remainder,  2.   It is also the case that 
38 − 14 = 24 is an integer multiple of 12, which agrees with the prior definition of the 
congruence relation. 

This would have been clearer if the notation  ( a ≡n b )    had been used,  instead of the 
common traditional notation. 

The properties  that make this relation a congruence relation (respecting addition, 
subtraction, and multiplication) are the following: 

If 

 

and 

 

then: 
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•  
•  

It should be noted that the above two properties would still hold if the theory were 
expanded to include all real numbers, that is if      were not necessarily 
all integers.  

The next property, however, would fail if these variables were not all integers: 

•  

  

Ring of congruence classes  
Like any congruence relation, congruence modulo n is an equivalence relation, and the 
equivalence class of the integer a, denoted by  , is the set: 

 .  

This set, consisting of the integers congruent to a modulo n, is called the “congruence 
class” or “residue class” or simply “residue” of the integer a, modulo n.  

When the modulus n is known from the context, that residue may also be denoted   . 

The set of all congruence classes modulo n is denoted    or     

When n ≠ 0,     has n elements, and can be written as: 

 

 

We can define addition, subtraction, and multiplication on    by the following 
rules: 

•  
•  
•  

The verification that this is a proper definition uses the properties given before. 
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In this way,   becomes a commutative ring.  

 

 

Example, 

 in the ring    , we have 

 

as in the arithmetic for the 24-hour clock. 

 

The set   has a number of important mathematical properties that are foundational 
to various branches of mathematics. 

 

Remainders 
   The notion of modular arithmetic is related to that of the remainder in division. The 
operation of finding the remainder is sometimes referred to as the modulo operation and 
we may see 2 = 14 (mod 12).  

   The difference is in the use of congruency, indicated by "≡", and equality indicated by 
"=". Equality implies specifically the "common residue", the least non-negative member 
of an equivalence class. When working with modular arithmetic, each equivalence class 
is usually represented by its common residue, 

 For example  

38 ≡ 2 (mod 12) which can be found using long division. It follows that, while it is 
correct to say 38 ≡ 14 (mod 12), and 2 ≡ 14 (mod 12), it is incorrect to say 38 = 14 (mod 
12) (with "=" rather than "≡"). 

The difference is clearest when dividing a negative number, since in that case 
remainders are negative. Hence to express the remainder we would have to write −5 ≡ 
−17 (mod 12), rather than 7 = −17 (mod 12), since equivalence can only be said of 
common residues with the same sign. 
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   In computer science, it is the remainder operator that is usually indicated by 
either "%" (e.g. in C, Java, Javascript, Perl and Python) or "mod" (e.g. in Pascal, 
BASIC, SQL, Haskell), with exceptions (e.g. Excel).  

   These operators are commonly pronounced as "mod", but it is specifically a 
remainder that is computed (since in C++ negative number will be returned if the 
first argument is negative, and in Python a negative number will be returned if the 
second argument is negative). The function modulo instead of mod, like 38 ≡ 14 
(modulo 12) is sometimes used to indicate the common residue rather than a 
remainder (e.g. in Ruby). 

Parentheses are sometimes dropped from the expression, e.g. 38 ≡ 14 mod 12 or 2 = 14 
mod 12, or placed around the divisor e.g. 38 ≡ 14 mod (12). Notation such as 38(mod 12) 
has also been observed, but is ambiguous without contextual clarification. 

 

Functional representation of the remainder operation 

The remainder operation can be represented using the floor function.  

If b ≡ a (mod n), where n > 0, then if the remainder b is calculated 

 

Where     is the largest integer less than or equal to     ,  then 

 

If instead a remainder b in the range   { −n  ≤  b  <  0 } is required, then 

 

 

Residue systems 
   Each residue class modulo n may be represented by any one of its members, although 
we usually represent each residue class by the smallest nonnegative integer which 
belongs to that class (since this is the proper remainder which results from division). Note 
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that any two members of different residue classes modulo n are incongruent modulo n. 
Furthermore, every integer belongs to one and only one residue class modulo n.  

The set of integers {0, 1, 2, ..., n - 1} is called the least residue system modulo n. Any 
set of n integers, no two of which are congruent modulo n, is called a complete residue 
system modulo n. 

It is clear that the least residue system is a complete residue system, and that a complete 
residue system is simply a set containing precisely one representative of each residue 
class modulo n.[4] The least residue system modulo 4 is {0, 1, 2, 3}. Some other complete 
residue systems modulo 4 are: 

• {1,2,3,4} 
• {13,14,15,16} 
• {-2,-1,0,1} 
• {-13,4,17,18} 
• {-5,0,6,21} 
• {27,32,37,42} 

Some sets which are not complete residue systems modulo 4 are: 

• {-5,0,6,22} since 6 is congruent to 22 modulo 4. 
• {5,15} since a complete residue system modulo 4 must have exactly 4 

incongruent residue classes. 

 

Reduced residue systems 

Any set of  φ(n)  integers that are relatively prime to n and that are mutually incongruent 
modulo n, where φ(n) denotes Euler's totient function, is called a reduced residue 
system modulo n. 

 The example above, {5,15} is an example of a reduced residue system modulo 4. 

 

 

Applications 
- Modular arithmetic is referenced in number theory, group theory, ring theory, knot 
theory, abstract algebra, cryptography, computer science, chemistry and the visual and 
musical arts. 
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- It is one of the foundations of number theory, touching on almost every aspect of its 
study, and provides key examples for group theory, ring theory and abstract algebra. 

- Modular arithmetic is often used to calculate checksums that are used within identifiers 
- International Bank Account Numbers (IBANs) for example make use of modulo 97 
arithmetic to trap user input errors in bank account numbers. 

- In cryptography, modular arithmetic directly underpins public key systems such 
as RSA and Diffie-Hellman, as well as providing finite fields which underlie elliptic 
curves, and is used in a variety of symmetric key algorithms including AES, IDEA, 
and RC4. 

- In computer science, modular arithmetic is often applied in bitwise operations and other 
operations involving fixed-width, cyclic data structures. The modulo operation, as 
implemented in many programming languages and calculators, is an application of 
modular arithmetic that is often used in this context. XOR is the sum of 2 bits, modulo 2. 

- In chemistry, the last digit of the CAS registry number (a number which is unique for 
each chemical compound) is a check digit, which is calculated by taking the last digit of 
the first two parts of the CAS registry number times 1, the next digit times 2, the next 
digit times 3 etc., adding all these up and computing the sum modulo 10. 

- In music, arithmetic modulo 12 is used in the consideration of the system of twelve-tone 
equal temperament, where octave and enharmonic equivalency occurs (that is, pitches in 
a 1�2 or 2�1 ratio are equivalent, and C-sharp is considered the same as D-flat). 

- The method of casting out nines offers a quick check of decimal arithmetic 
computations performed by hand. It is based on modular arithmetic modulo 9, and 
specifically on the crucial property that 10 ≡ 1 (mod 9). 

- Arithmetic modulo 7 is especially important in determining the day of the week in the 
Gregorian calendar. In particular, Zeller's congruence and the doomsday algorithm make 
heavy use of modulo-7 arithmetic. 

- More generally, modular arithmetic also has application in disciplines such as law (see 
e.g., apportionment), economics, (see e.g., game theory) and other areas of the social 
sciences, where proportional division and allocation of resources plays a central part of 
the analysis. 

Computational complexity 
Since modular arithmetic has such a wide range of applications, it is important to know 
how hard it is to solve a system of congruences. A linear system of congruences can be 
solved in polynomial time with a form of Gaussian elimination, for details see linear 
congruence theorem. Algorithms, such as Montgomery reduction, also exist to allow 
simple arithmetic operations, such as multiplication and exponentiation modulo n, to be 
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performed efficiently on large numbers. Solving a system of non-linear modular 
arithmetic equations is NP-complete.  

*******************                ************ 

 


