SOLUTIONS MANUAL
 M. MORRIS MANO

COMPUTER SYSTEM ARCHITECTURE

Third Edition

Solutions Manual
 Computer System Architecture

TABLE OF CONTENTS

Chapter 1 4
Chapter 2 11
Chapter 3 16
Chapter 4 20
Chapter 5 26
Chapter 6 34
Chapter 7 45
Chapter 8 51
Chapter 9 59
Chapter 10 63
Chapter 11 80
Chapter 12 89
Chapter 13 95

CHAPTER 1

1.1

A B C	$\mathrm{A} \cdot \mathrm{B} \cdot \mathrm{C}$	$(\mathrm{A} \cdot \mathrm{B} \cdot \mathrm{C})^{\prime}$	A^{\prime}	B^{\prime}	C^{\prime}	$\mathrm{A}^{\prime}+\mathrm{B}^{\prime}+\mathrm{C}^{\prime}$
00	0	1	1	1	1	1
00	0	1	1	1	0	1
010	0	1	1	0	1	1
01	0	1	1	0	0	1
100	0	1	0	1	1	1
101	0	1	0	1	0	1
110	0	1	0	0	1	1
11	1	0	0	0	0	0

1.2

A	B	C	$\mathrm{A} \oplus \mathrm{B}$
0	$\mathrm{~A} \oplus \mathrm{~B} \oplus \mathrm{C}$		
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0
1			

1.3

(a) $A+A B=A(1+B)=A$
(b) $A B+A B^{\prime}=A\left(B+B^{\prime}\right)=A$
(c) $A^{\prime} B C+A C=C\left(A^{\prime} B+A\right)=C\left(A^{\prime}+A\right)(B+A)=(A+B) C$
(d) $A^{\prime} B+A B C^{\prime}+A B C=A^{\prime} B+A B\left(C^{\prime}+C\right)=A^{\prime} B+A B=B\left(A^{\prime}+A\right)=B$
1.4
(a) $A B+A\left(C D+C D^{\prime}\right)=A B+A C\left(D+D^{\prime}\right)=A(B+C)$
(b) $\quad\left(B C^{\prime}+A^{\prime} D\right)\left(A B^{\prime}+C D^{\prime}\right)$

$$
=\frac{\mathrm{ABB}^{\prime} \mathrm{C}^{\prime}}{0}+\frac{\mathrm{A}^{\prime} \mathrm{AB}^{\prime} \mathrm{D}}{0}+\frac{\mathrm{BCC}^{\prime} \mathrm{D}^{\prime}}{0}+\frac{\mathrm{A}^{\prime} \mathrm{CD}^{\prime} \mathrm{D}}{0}=0
$$

1.5
(a) $\quad(\mathrm{A}+\mathrm{B})^{\prime}\left(\mathrm{A}^{\prime}+\mathrm{B}^{\prime}\right)=\left(\mathrm{A}^{\prime} \mathrm{B}^{\prime}\right)(\mathrm{AB})=0$
(b) $A+A^{\prime} B+A^{\prime} B^{\prime}=A+A^{\prime}\left(B+B^{\prime}\right)=A+A^{\prime}=1$

1.6

(a) $\mathrm{F}=x^{\prime} y+x y z^{\prime}$
$F^{\prime} \quad=\left(x+y^{\prime}\right)\left(x^{\prime}+y^{\prime}+z\right)=x^{\prime} y^{\prime}+x y^{\prime}+y^{\prime}+x z+y^{\prime} z$
$=y^{\prime}\left(1+x^{\prime}+x+z\right)+x z=y^{\prime}+x z$
(b) $\quad F^{\prime} F^{\prime}=\left(x^{\prime} y+x y z^{\prime}\right)\left(y^{\prime}+x z\right)=0+0+0+0=0$
(c) $F+F^{\prime}=x^{\prime} y+x y z^{\prime}+y^{\prime}+x z\left(y+y^{\prime}\right)$

$$
\begin{aligned}
& =x^{\prime} y+x y\left(z^{\prime}+z\right)+y^{\prime}(1+x z)=x^{\prime} y+x y+y^{\prime} \\
& =y\left(x^{\prime}+x\right)+y^{\prime}=y+y^{\prime}=1
\end{aligned}
$$

1.7
(a)

x	y	z	F
0	0	0	0
0	0	1	
0	1	0	
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	
1	1	1	0

(b) $F=x y^{\prime} z+x^{\prime} y^{\prime} z+x y z$

(c) $F=x y^{\prime} z+x^{\prime} y^{\prime} z+x y z$
$=y^{\prime} z\left(x+x^{\prime}\right)+x z\left(y+y^{\prime}\right)$
$=y^{\prime} z+x z$

1.8

(a)

$$
F=x^{\prime} y^{\prime}+x z
$$

(b)

$$
F=y+x^{\prime} z
$$

(c)

(d)

1.9
(a)

(c)

1.10

(b)

1) $F=A C^{\prime}+C D+B^{\prime} D$
(2) $\mathrm{F}=(\mathrm{A}+\mathrm{D})\left(\mathrm{C}^{\prime}+\mathrm{D}\right)\left(\mathrm{A}+\mathrm{B}^{\prime}+\mathrm{C}\right)$
1.11

(b)

$$
F=C D+A B C+A B D
$$

(d)

(a)
(1) $F=x y+z^{\prime}$
(2) $\quad \begin{aligned} & \mathrm{F}^{\prime}=\mathrm{x}^{\prime} \mathrm{z}+\mathrm{y}^{\prime} \mathrm{z} \\ & \mathrm{F} \\ & \left.\text { (} x+\mathrm{z}^{\prime}\right)\left(\mathrm{y}+\mathrm{z}^{\prime}\right)\end{aligned}$

(a)

(b)

1.12

$$
\begin{aligned}
& F^{\prime}=A C^{\prime}+B^{\prime} C^{\prime}+A B^{\prime} D^{\prime} \\
& F=\left(A^{\prime}+C\right)(B+C)\left(A^{\prime}+B+D\right)
\end{aligned}
$$

1.13
$w\left\{\begin{array}{|c||c|c||c|}\hline \hline 1 & 1 & 1 & 1 \\ \hline \hline 0 & \mathrm{X} & 1 & \mathrm{X} \\ \hline 0 & 0 & \mathrm{X} & 0 \\ \hline \hline \mathrm{I} & & \\ \hline 1 & 1 & \mathrm{X} & \mathrm{I} \\ \hline & \underbrace{}_{z} & \end{array}\right\} x$
(a) $F=x^{\prime} z^{\prime}+w^{\prime} z$
(b) $=\left(x^{\prime}+z\right)\left(w^{\prime}+z^{\prime}\right)$
1.14

$$
\begin{aligned}
S & =x^{\prime} y^{\prime} z+x ' y z ' & +x y^{\prime} z^{\prime}+x y z & \\
& =x^{\prime}\left(y^{\prime} z+y z z^{\prime}\right)+x\left(y^{\prime} z^{\prime}+y z\right) & & \text { See Fig. 1.2 } \\
& =x^{\prime}(y \oplus z)+x(y \oplus z)^{\prime} \longleftarrow & & \text { (Exclusive - NDR) }
\end{aligned}
$$

1.15

x	y	z	F
0	0	0	0
0	0	1	
0	1	0	0
0	1	1	
1	0	0	
1	0	1	
1	1	0	1
1	1	1	1

$$
F=x y+x z+y z
$$

1.16

x y z	A B C
000	001
001	010
010	011
011	100
100	011
101	100
110	101
111	111

By inspection

1.17

1.18

See text, Section 1.6 for derivation.
1.19
(a) $D_{A}=x^{\prime} y+x A ; D_{B}=x^{\prime} B+x A ; z=B$

(b)

$\frac{\text { Present state }}{\mathrm{AB}}$	$\frac{\text { Inputs }}{\mathrm{xy}}$	A $\frac{\text { Next state }}{} \frac{\text { Output }}{z}$	
00	00	00	0
00	01	10	0
00	10	00	0
00	11	00	0
01	00	01	1
01	01	11	1
01	10	00	1
01	11	00	1
10	00	00	0
10	01	10	0
10	10	11	0
10	11	11	0
11	00	01	1
11	01	11	1
11	10	11	1
11	11	11	1

1.20
$J_{\mathrm{A}}=K_{\mathrm{A}}=x$
$J_{\mathrm{B}}=K_{\mathrm{B}}=A^{\prime} x$

1.21

Count up-down binary counter with table E

Present state	Inputs	Next state	Flip-flop inputs	
A B	EX	A B	$\mathrm{J}_{\mathrm{A}} \mathrm{K}_{\mathrm{A}}$	$\mathrm{J}_{\mathrm{B}} \mathrm{K}_{\mathrm{B}}$
00	00	00	0 X	0 X
00	01	00	0 X	0 X
00	10	11	1 X	1 X
00	11	01	0 X	1 X
01	00	01	0 X	X 0
01	01	01	0 X	X 0
01	10	00	0 X	X 1
01	11	10	1 X	X 1
10	00	10	X 0	$0 \times$
10	01	10	X 0	$0 \times$
10	10	01	X 1	1 X
10	11	11	X 0	1 X
11	00	11	X 0	X 0
11	01	11	X 0	X 0
11	10	10	X 0	X 1
11	11	00	X 1	X 1

CHAPTER 2

2.1

TTL JC
(a) Inverters - 2 pins each
(b) 2-input XOR - 3 pins each
$12 / 2=6$ gates 7404
(c) 3-input OR - 4 pins each
$12 / 3=4$ gates 7486
(d) 4-input AND - 5 pins each
$12 / 4=3$ gates
$12 / 5=2$ gates
7421
$12 / 6=2$ gates
74260
(e) 5 -input NOR - 6 pins each
(f) 8 -input NAND - 9 pins

1 gate
7430
(g) JK flip-flop - 6 pins each
$12 / 6=2 \mathrm{FFs}$
74107

2.2

(a) 74155 - Similar to two decoders as in Fig. 2.2.
(b) 74157 - Similar to multiplexers of Fig. 2.5.
(c) 74194 - Similar to register of Fig. 2.9.
(d) 74163 - Similar to counter of Fig. 2.11

2.3

2.4

2.5

Remove the inverter from the E input in Fig. 2.2(a).

2.6

If all inputs equal 0 or if only $D_{0}=1$: the outputs $\mathrm{A}_{2} \mathrm{~A}_{1} \mathrm{~A}_{0}=000$. Needs one more output to recognize the all zeros input condition.

2.8

$\mathrm{S}_{1} \mathrm{~S}_{0}$		$\mathrm{Y}_{\mathrm{A}} \mathrm{Y}_{\mathrm{B}}$	
0	0	$\mathrm{~A}_{0}$	$\mathrm{~B}_{0}$
0	1	$\mathrm{~A}_{1}$	$\mathrm{~B}_{1}$
1	0	$\mathrm{~A}_{2}$	$\mathrm{~B}_{2}$
1	1	$\mathrm{~A}_{3}$	$\mathrm{~B}_{3}$

[^0]2.9

When the parallel load input $=1$, the clock pulses go through the AND gate and the data inputs are loaded into the register when the parallel load input $=0$, the output of the AND gate remains at 0 .

2.10

The buffer gate does not perform logic. It is used for signal amplification of the clock input.

2.11

One stage of Register Fig. 2.7

Load	Clear	D	Operation
0	0	$\mathrm{Q}(\mathrm{t})$	no change
0	1	0	Clear to 0
1	x	I_{0}	load I_{0}

Function table

2.12

Input bits

2.13

Serial transfer: One bit at a time by shifting. Parallel transfer: All bits at the same time. Input serial data by shifting-output data in parallel. Input data with parallel load-output data by shifting.
2.14
$\longrightarrow 1000 \rightarrow 0100 \rightarrow 0010 \rightarrow 0001]$

2.16 (a) 4 ; (b) 9

2.17

2.18

After the count reaches $\mathrm{N}-1$ = 1001, the register loads 0000 from inputs.

2.19

(a) $2 \mathrm{~K} \times 16=2^{11} \times 16$
(b) $64 \mathrm{~K} \times 8=2^{16} \times 16$
(c) $16 \mathrm{M} \times 32=2^{24} \times 32$
(d) $4 \mathrm{G} \times 64=2^{32} \times 64$

Address lines	Data lines
11	16
16	8
24	32
32	64

2.20
(a) $2 \mathrm{~K} \times 2=4 \mathrm{~K}=4096$ bytes
(b) $64 \mathrm{~K} \times 1=64 \mathrm{~K}=2^{16}$ bytes
(c) $2^{24} \times 4=2^{26}$ bytes
(d) $2^{32} \times 8=2^{35}$ bytes
2.21
$\frac{4096 \times 16}{128 \times 8}=\frac{2^{12} \times 2^{4}}{2^{7} \times 2^{3}}=2^{6}=64$ chips

2.22

2.23

12 data inputs +2 enable inputs +8 data outputs +2 for power $=24$ pins.

CHAPTER 3

3.1

$(101110)_{2}=32+8+4+2=46$
$(1110101)_{2}=64+32+16+4+1=117$
$(110110100)_{2}=256+128+32+16+4=436$

3.2

$(12121)_{3}=3^{4}+2 \times 3^{3}+3^{2}+2 \times 3+1=81+54+9+6+1=151$
$(4310)_{5}=4 \times 5^{3}+3 \times 5^{2}+5=500+75+5=580$
$(50)_{7}=5 \times 7=35$
$(198)_{12}=12^{2}+9 \times 12+8=144+108+8=260$

3.3

$$
\begin{array}{ll}
(1231)_{10} & =1024+128+64+15=2^{10}+2^{7}+2^{6}+2^{3}+2^{2}+2+1=(10011001111)_{2} \\
(673)_{10} & =512+128+32+1=2^{9}+2^{7}+2^{5}+1=(1010100001)_{2} \\
(1998)_{10} & =1024+512+256+128+64+8+4+2 \\
& =2^{10}+2^{9}+2^{8}+2^{7}+2^{6}+2^{3}+2^{2}+2^{1}=(11111001110)_{2}
\end{array}
$$

3.4

$(7562)_{10}=(16612)_{8}$
$(1938)_{10}=(792)_{16}$
$(175)_{10}=(10101111)_{2}$

3.5

$(F 3 A 7 C 2)_{16}=(111100111010011111000010)_{2}$

$$
=(74723702)_{8}
$$

3.6

$\left(x^{2}-10 x+31\right)_{r}=[(x-5)(x-8)]_{10}$
$=x^{2}-(5+8)_{10} x+(40)_{10} x$
Therefore: $\quad(10)_{r}=(13)_{10} \quad r=13$
Also (31) $)_{r}=3 \times 13+1=(40)_{10}$
($r=13$)
3.7
$(215)_{10}=128+64+16+7=(11010111)_{2}$
(a) $000011010111 \quad$ Binary
(b) $000 \quad 011 \quad 010 \quad 111$ Binary coded octal
(c) $000011010111 \quad$ Binary coded hexadecimal
(d) $\quad 0010 \quad 0001 \quad 0101 \quad$ Binary coded decimal

3.8

$(295)_{10}=256+32+7=(100100111)_{2}$
(a) $\quad 0000 \quad 0000 \quad 0000 \quad 0001 \quad 0010 \quad 0111$
(b) $\quad 0000 \quad 0000 \quad 0000 \quad 0010 \quad 1001 \quad 0101$
(c) $10110010 \quad 0011100100110101$

3.10

JOHN DOE

3.11

87650123; 99019899; 09990048; 999999.

3.12

876100; 909343; 900000; 000000

3.13

01010001; 01111110; 01111111; 11111110; 11111111
01010010; 01111111; 10000000; 11111111; 00000000

3.14

(a) 5250
(b) $\begin{array}{r}1753 \\ +1360 \\ 0 \longdiv { 3 1 1 3 }\end{array}$
(d) $\begin{array}{r}1200 \\ +9750 \\ 1 \longdiv { 0 9 5 0 }\end{array}$
+8679
$1 \longdiv { 3 9 2 9 }$
(c) $\begin{array}{r}020 \\ +900 \\ 0 \longdiv { 9 2 0 }\end{array}$
$\downarrow=10$'s complement
$-6887 \quad-080$

3.15
 3.1

$\begin{array}{ll}(a) & (b) \\ 11010 & 11010 \\ +10000 & +10011 \\ 1 \longdiv { 0 1 0 1 0 } & 1 \longdiv { 0 1 1 0 1 } \\ (26-16=10) & (26-13=13)\end{array}$
(c)
(d)

(a)	(b)	(c)	(d)
11010	11010	000100	1010100
+10000	+10011	+010000	+0101100
$1 \longdiv { 0 1 0 1 0 }$	$1 \longdiv { 0 1 1 0 1 }$	$0 \longdiv { 0 1 0 1 0 0 }$	$1 \longdiv { 0 0 0 0 0 0 0 }$
$(26-16=10)$	$(26-13=13)$	-101100	$(84-84=0)$

> 3.16 $+42=0101010$ $-42=1010110$ $(+42)$ $\frac{0101010}{(-13)}$ $(+29)$$\frac{1110011}{0011101}$
$+42=0101010 \quad+13=0001101$
$-13=1110011$
(-42) 1010110
$(+13) \underline{0001101}$
$(-29) 1100011$
$3.17 \quad 01 \leftarrow$ last two carries $\rightarrow 10$
$+70 \quad 01000110-70 \quad 10111010$
$\frac{+80}{+150} \frac{01010000}{10010110} \quad-\frac{80}{150} \quad \frac{10110000}{01101010}$
$\begin{array}{cccc}\uparrow & \uparrow & \uparrow & \uparrow \\ \text { greater } & \text { negative } & \text { less than } & \begin{array}{c}\uparrow \\ \text { positive }\end{array}\end{array}$
than - 128
$+127$
3.18
(a)

(-638)	9362	(b)	(-638)
$\frac{(+785}{(+147)}$	$+\underline{0785}$		9362
0147		$\frac{(-185)}{(-823)}$	$+\frac{9815}{9177}$

3.19

Mantissa

Smallest: + 0.1000.... 0
(normalized) 2^{-1}
-11111111
$-255 \quad 2^{-256}$
3.20
$46.5=32+8+4+2+0.5=(101110.1)_{2}$

Sign
$\underline{0101110100000000} \underline{00000110}$
24-bit mantissa
3.21 (a)

Decimal	Gray code
16	11000
17	11001
18	11011
19	11010
20	11110
21	11111
22	11101
23	11100
24	10100
25	10101
26	10111
27	10110
28	10010
29	10011
30	10001
31	10000

(b)

Decimal	Exess-3	Gray
9	0010	1010
10	0110	1010
11	0110	1110
12	0110	1111
13	0110	1101
14	0110	1100
15	0110	0100
16	0110	0101
17	0110	0111
18	0110	0110
19	0110	0010
20	0111	0010

3.228620
(a) \quad BCD $\quad 1000 \quad 0110 \quad 0010 \quad 0000$
(b) XS-3 $\quad 1011 \quad 100101010011$
(c) $2421 \quad 1110 \quad 1100 \quad 0010 \quad 0000$
(d) Binary $10000110101100(8192+256+128+32+8+4)$
3.23

Decimal	$B C D$ with even parity	$B C D$ with odd parity
0	00000	10000
1	10001	00001
2	10010	00010
3	00011	10011
4	10100	00100
5	00101	10101
6	00110	10110
7	10111	00111
8	11000	01000
9	01001	11001

3.24

$3984=0011111111100100$

```
= 1100 0000 0001 1011=6015
```

3.25

A	B
0	0
0	1
1	0
1	1

y	z	$x=y \oplus z$
0	0	0

$0 \quad 1 \quad 1 \leftarrow\left[\begin{array}{l}\mathrm{AB}=00 \text { or } 11 \\ \mathrm{CD}=01 \text { or } 10\end{array}\right.$
$10 \quad 1 \leftarrow\left[\begin{array}{l}\mathrm{AB}=01 \text { or } 10 \\ \mathrm{CD}=00 \text { or } 11\end{array}\right.$

$C D$	$Z=C \oplus D$
00	0
0	1
1	0
1	1

$1 \quad 1 \quad 0$

3.26

Same as in Fig. 3.3 but without the complemented circles in the outputs of the gates.
$P=x \oplus y \oplus z$
Error $=x \oplus y \oplus z \oplus P$

CHAPTER 4

4.1

4.2

4.3

$\mathrm{P}: \mathrm{R} 1 \leftarrow \mathrm{R} 2$
P'Q: R1 $\leftarrow R 3$
4.4

Connect the 4-line common bus to the four inputs of each register.
Provide a "load" control input in each register.
Provide a clock input for each register.
To transfer from register C to register A :
Apply $S_{1} S_{0}=10$ (to select C for the bus.)
Enable the load input of A
Apply a clock pulse.

4.6
(a) 4 selection lines to select one of 16 registers.
(b) 16×1 multiplexers.
(c) 32 multiplexers, one for each bit of the registers.
4.7
(a) Read memory word specified by the address in AR into register R2.
(b) Write content of register R3 into the memory word specified by the address in AR.
(c) Read memory word specified by the address in R5 and transfer content to R5 (destroys previous value)

4.8

4.9

4.10

4.11

4.12

$\frac{\mathrm{M}}{0}$	$\underline{\mathrm{~A}} \mathbf{0 1 1 1 + 0} \underline{\underline{B}}$	$\frac{\text { Sum }}{} \underline{\text { Cu }}$		
0	$1000+11001$	0001	1	$7+6=13$
1	$1100-1000$	0100	1	$8+9=16+1$
1	$0101-1010$	1011	0	$12-8=4$
1	$0000-0001$	1111	0	$5-10=-5$ (in 2's comp.)

4.13 $\mathrm{A}-1=\mathrm{A}+2$'s complement of $1=\mathrm{A}+1111$

4.15

4.16

4.17

4.18
(a) $A=11011001$
$B=10110100{ }^{\oplus}$
$A \leftarrow A \oplus B 01101101$

$$
\begin{aligned}
& A=11011001 \\
& B=11111101 \\
& \frac{11111101}{\text { (OR) }} \quad A \leftarrow A V B
\end{aligned}
$$

4.19

(a) $\quad \mathrm{AR}=11110010$

$$
\begin{array}{ll}
\mathrm{BR}=\frac{11111111(+)}{11110001} & \mathrm{BR}=11111111 \quad \mathrm{CR}=10111001 \quad \mathrm{DR}=1110
\end{array}
$$

1010
(b) $\quad \mathrm{CR}=10111001$

$$
B R=11111111
$$

$\mathrm{DR}=11101010^{(\text {AND })}$
$C R=10101000$
$\frac{+1}{B R=00000000} \quad A R=11110001 D R=11101010$
(c) $\quad \mathrm{AR}=11110001_{(-1)}$
$C R=\underline{10101000}$
$A R=01001001 ; B R=00000000 ; C R=10101000 ; \quad D R=11101010$

4.20

$R=10011100$
Arithmetic shift right: 11001110
Arithmetic shift left: 00111000
overflow because a negative number changed to positive.
4.21

$$
R=11011101
$$

Logical shift left: 10111010
Circular shift right: 01011101
Logical shift right: 00101110
Circular shift left: 01011100
4.22
$S=1$ Shift left
$\mathrm{A}_{0} \mathrm{~A}_{1} \mathrm{~A}_{2} \mathrm{~A}_{3} \mathrm{I}_{\mathrm{L}}$
$\mathrm{H}=\begin{aligned} & 10010 \\ & 0010\end{aligned}$ shift left
4.23
(a) Cannot complement and increment the same register at the same time.
(b) Cannot transfer two different values $\left(R_{2}\right.$ and $\left.R_{3}\right)$ to the same register $\left(R_{1}\right)$ at the same time.
(c) Cannot transfer a new value into a register (PC) and increment the original value by one at the same time.

CHAPTER 5

5.1

$256 \mathrm{~K}=2^{8} \times 2^{10}=2^{18}$
$64=2^{6}$
(a) Address:

18 bits
Register code: 6 bits
Indirect bit: $\frac{1}{25} \quad \begin{aligned} & \text { bit } \\ & 32-25=7\end{aligned}$ bits for opcode.
$\begin{array}{llllll}\text { (b) } & 1 & 7 & 6 & 18 & =32 \text { bits }\end{array}$

I	opcode	Register	Address

(c) Data; 32 bits; address: 18 bits.

5.2

A direct address instruction needs two references to memory: (1) Read instruction; (2) Read operand.

An indirect address instruction needs three references to memory:
(1) Read instruction; (2) Read effective address; (3) Read operand.

5.3

(a) Memory read to bus and load to $I R: I R \leftarrow M[A R]$
(b) TR to bus and load to PC: PC $\leftarrow T R$
(c) AC to bus, write to memory, and load to DR: $D R \leftarrow A C, \quad M[A R] \leftarrow A C$
(d) Add DR (or INPR) to AC: AC $\leftarrow \mathrm{AC}+\mathrm{DR}$

5.4

		(1)	(2)	(3)	(4)
		$\underline{S}_{2} \underline{S}_{1} \underline{S_{0}}$	Load(LD)	Memory	Adder
(a)	$\mathrm{AR} \leftarrow \mathrm{PC}$	010 (PC)	AR	-	-
(b)	$\mathrm{IR} \leftarrow \mathrm{M}[A R]$	111 (M)	IR	Read	-
(c)	$\mathrm{M}[\mathrm{AR}] \leftarrow \mathrm{TR}$	110 (TR)	-	Write	-
(d)	$D R \leftarrow A C$	100 (AC)	DR and	-	Transfer
	$\mathrm{AC} \leftarrow \mathrm{DR}$		AC		DR to AC

5.5

(a) $\quad \mathrm{IR} \leftarrow \mathrm{M}[\mathrm{PC}] \quad \mathrm{PC}$ cannot provide address to memory. Address must be transferred to AR first
$A R \leftarrow P C$
$I R \leftarrow M[A R]$
(b) $\quad \mathrm{AC} \leftarrow \mathrm{AC}+\mathrm{TR} \quad$ Add operation must be done with DR. Transfer TR to DR first.
$\mathrm{DR} \leftarrow \mathrm{TR}$
$A C \leftarrow A C+D R$
(c) $\quad D R \leftarrow D R+A C \quad$ Result of addition is transferred to $A C$ (not DR). To save value of AC its content must be stored temporary in DR (or TR).
$\mathrm{AC} \leftarrow \mathrm{DR}, \mathrm{DR} \leftarrow \mathrm{AC} \quad$ (See answer to Problem 5.4(d))
$A C \leftarrow A C+D R$
$\mathrm{AC} \leftarrow \mathrm{DR}, \mathrm{DR} \leftarrow \mathrm{AC}$
5.6
(a) $\quad \underline{0001} \quad \underline{0000 \quad 0010 \quad 0010}=(1024)_{16}$

ADD (024) ${ }_{16}$
ADD content of M[024] to AC ADD 024
(b) $\quad \frac{1}{\text { I STA }} \frac{011}{00010010 \quad 0100}(124)_{6} \quad$
$=(\mathrm{B} 124)_{16}$
Store AC in M[M[124]]
STA I 124
(c) $\quad \underline{0111} \quad \underline{0000} 00100000 \quad=(7020)_{16}$

Register Increment AC
INC

5.7

CLE Clear E
CME Complement E
5.8

5.9

	E	AC	PC	AR	IR
Initial	1	A937	021	-	-
CLA	1	0000	022	800	7800
CLE	0	A937	022	400	7400
CMA	1	$56 C 8$	022	200	7200
CME	0	A937	022	100	7100
CIR	1	D49B	022	080	7080
CIL	1	$526 F$	022	040	7040
INC	1	A938	022	020	7020
SPA	1	A937	022	010	7010
SNA	1	A937	023	008	7008
SZA	1	A937	022	004	7004
SZE	1	A937	022	002	7002
HLT	1	A937	022	001	7001

5.10

	PC	AR	DR	AC	IR
Initial	021	-	-	A937	-
AND	022	083	B8F2	A832	0083
ADD	022	083	B8F2	6229	1083
LDA	022	083	B8F2	B8F2	2083
STA	022	083	-	A937	3083
BUN	083	083	-	A937	4083
BSA	084	084	-	A937	5083
ISZ	022	083	B8F3	A937	6083

5.11

	PC	AR	DR		IR
Initial	7 FF	-	-	-	0
$\mathrm{~T}_{0}$	7 FF	7 FF	-	-	1
$\mathrm{~T}_{1}$	800	7 FF	-	EA9F	2
$\mathrm{~T}_{2}$	800	A9F	-	EA9F	3
$\mathrm{~T}_{3}$	800	C35	-	EA9F	4
$\mathrm{~T}_{4}$	800	C35	FFFF	EA9F	5
$\mathrm{~T}_{5}$	800	C35	0000	EA9F	6
$\mathrm{~T}_{6}$	801	C 35	0000	EA9F	0

5.12

(a) $9=(1001)$

$I=1$| 11001 ADD |
| :--- |\quad ADD I 32E \quad| $3 A F$ | 932 E |
| :--- | :--- |
| 32 E | 09 AC |
| $9 A C$ | $8 B 9 F$ |

$$
A C=7 E C 3
$$

(b)

$$
\begin{aligned}
& \mathrm{AC}=7 \mathrm{EC} 3 \quad \text { (ADD) } \\
& \mathrm{DR}=\underline{8 B 9 F} \\
& \underline{0 \Delta 62}
\end{aligned}
$$

$\mathrm{E}=1$
(c) $\mathrm{PC}=3 \mathrm{AF}+1=3 \mathrm{BO}$
$\mathrm{IR}=932 \mathrm{E}$
$A R=7 A C$
$\mathrm{E}=1$
$D R=8 B 9 F$
I = 1
$A C=0 A 62$
$S C=0000$
5.13

XOR	$\begin{aligned} & \mathrm{D}_{0} \mathrm{~T}_{4} \\ & \mathrm{D}_{0} \mathrm{~T}_{5} \end{aligned}$	$\begin{aligned} & \mathrm{DR} \leftarrow \mathrm{M}[\mathrm{AR}] \\ & \mathrm{AC} \leftarrow \mathrm{AC} \oplus \mathrm{DR}, \mathrm{SC} \leftarrow 0 \end{aligned}$
ADM	$\begin{aligned} & \mathrm{D}_{1} \mathrm{~T}_{4} \\ & \mathrm{D}_{1} \mathrm{~T}_{5} \\ & \mathrm{D}_{1} \mathrm{~T}_{6} \\ & \hline \end{aligned}$	$D R \leftarrow M[A R]$ $D R \leftarrow A C, A C \leftarrow A C+D R$ $\mathrm{M}[\mathrm{AR}] \leftarrow \mathrm{AC}, \mathrm{AC} \leftarrow \mathrm{DR}, \mathrm{SC} \leftarrow 0$
SUB	$\begin{aligned} & \mathrm{D}_{2} \mathrm{~T}_{4} \\ & \mathrm{D}_{2} \mathrm{~T}_{5} \\ & \mathrm{D}_{2} \mathrm{~T}_{6} \\ & \mathrm{D}_{2} \mathrm{~T}_{7} \\ & \mathrm{D}_{2} \mathrm{~T}_{8} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{DR} \leftarrow \mathrm{M}[\mathrm{AR}] \\ & \mathrm{DR} \leftarrow \mathrm{AC}, \mathrm{AC} \leftarrow \mathrm{DR} \\ & \mathrm{AC} \leftarrow \overline{\mathrm{AC}} \\ & \mathrm{AC} \leftarrow \mathrm{AC}+1 \\ & \mathrm{AC} \leftarrow \mathrm{AC}+\mathrm{DR}, \mathrm{SC} \leftarrow 0 \end{aligned}$
$\underline{\mathrm{XCH}}$	$\begin{aligned} & \mathrm{D}_{3} \mathrm{~T}_{4} \\ & \mathrm{D}_{3} \mathrm{~T}_{5} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{DR} \leftarrow \mathrm{M}[\mathrm{AR}] \\ & \mathrm{M}[\mathrm{AR}] \leftarrow \mathrm{AC}, \mathrm{AC} \leftarrow \mathrm{DR}, \mathrm{SC} \leftarrow 0 \end{aligned}$
SEQ	$\begin{aligned} & \mathrm{D}_{4} \mathrm{~T}_{4} \\ & \mathrm{D}_{4} \mathrm{~T}_{5} \\ & \mathrm{D}_{4} \mathrm{~T}_{6} \end{aligned}$	$\begin{aligned} & \mathrm{DR} \leftarrow \mathrm{M}[\mathrm{AR}] \\ & \mathrm{TR} \leftarrow \mathrm{AC}, \mathrm{AC} \leftarrow \mathrm{AC} \oplus \mathrm{DR} \\ & \text { If }(\mathrm{AC}=0) \text { then }(\mathrm{PC} \leftarrow \mathrm{PC}+1), \mathrm{AC} \leftarrow \mathrm{TR}, \mathrm{SC} \leftarrow 0 \end{aligned}$
BPA	$\mathrm{D}_{5} \mathrm{~T}_{4}$	$\begin{aligned} & \text { If }(A C=0 \wedge A C(15)=0) \\ & \text { then }(P C \leftarrow A R), S C \leftarrow 0 \end{aligned}$

5.14

Converts the ISZ instruction from a memory-reference instruction to a registerreference instruction. The new instruction ICSZ can be executed at time T_{3} instead of time T_{6}, a saving of 3 clock cycles.
5.15 Modify fig. 5.9.

Execute memory-reference instruction
5.16
(a)

(b)

Memory
opcode
$1 / 2$ address
$1 / 2$ address
operand

(c) $\quad T_{0}: \quad \mathrm{IR} \leftarrow \mathrm{M}(\mathrm{PC}), \mathrm{PC} \leftarrow \mathrm{PC}+1$

$$
\begin{array}{ll}
\mathrm{T}_{1}: & \mathrm{AR}(0-7) \leftarrow \mathrm{M}[\mathrm{PC}], \mathrm{PC} \leftarrow \mathrm{PC}+1 \\
\mathrm{~T}_{2}: & \mathrm{AR}(8-15) \leftarrow \mathrm{M}[\mathrm{PC}], \mathrm{PC} \leftarrow \mathrm{PC}+1 \\
\mathrm{~T}_{3}: & \mathrm{DR} \leftarrow \mathrm{M}[\mathrm{AR}]
\end{array}
$$

5.17

1. Read 40-bit double instruction from memory to IR and then increment PC.
2. Decode opcode 1.
3. Execute instruction 1 using address 1.
4. Decode opcode 2.
5. Execute instruction 2 using address 2.
6. Go back to step 1.

5.18

(a) BUN 2300
(b) ION

BUN 01 (Branch indirect with address 0)
5.19

5.20

5.21

From Table 5.6: $\left(Z_{D R}=1\right.$ if $D R=0 ; Z_{A C}=1$, if $\left.A C=0\right)$ $\mathrm{INR}(\mathrm{PC})=\mathrm{R}^{\prime} \mathrm{T}_{1}+\mathrm{RT}_{7}+\mathrm{D}_{6} \mathrm{~T}_{6} \mathrm{Z}_{\mathrm{DR}}+\mathrm{PB}_{9}(\mathrm{FGI})+\mathrm{PB}_{8}(\mathrm{FGO})$
$+r B_{4}+\left(\mathrm{AC}_{15}\right)^{\prime}+\mathrm{rB}_{3}\left(\mathrm{AC}_{15}\right)+\mathrm{rB}_{2} \mathrm{Z}_{\mathrm{AC}}+\mathrm{rB}_{1} \mathrm{E}^{\prime}$
$L D(P C)=D_{4} T_{4}+D_{5} T_{5}$
$C L R(P C)=R T_{1}$
The logic diagram is similar to the one in Fig. 5.16.

5.22

$$
\text { Write }=\mathrm{D}_{3} \mathrm{~T}_{4}+\mathrm{D}_{5} \mathrm{~T}_{4}+\mathrm{D}_{6} \mathrm{~T}_{6}+\mathrm{RT}_{1} \quad(M[A R] \leftarrow \mathrm{xx})
$$

5.23

$$
\begin{array}{rll}
\left(\mathrm{T}_{0}+\mathrm{T}_{1}+\mathrm{T}_{2}\right)^{\prime}(\mathrm{IEN})(\mathrm{FGI}+\mathrm{FGO}) & : & \mathrm{R} \leftarrow 1 \\
\mathrm{RT}_{2} & : & \mathrm{R} \leftarrow 0
\end{array}
$$

5.24

X_{2} places PC onto the bus. From Table 5.6:
$\mathrm{R}^{\prime} \mathrm{T}_{0}: \mathrm{AR} \leftarrow \mathrm{PC}$
$\mathrm{RT}_{0}: \mathrm{TR} \leftarrow \mathrm{PC}$
$\mathrm{D}_{5} \mathrm{~T}_{4}: \mathrm{M}[\mathrm{AR}] \leftarrow \mathrm{PC}$
$\mathrm{X}_{2}=\mathrm{R}^{\prime} \mathrm{T}_{0}+\mathrm{R} \mathrm{T}_{0}+\mathrm{D}_{5} \mathrm{~T}_{4}=\left(\mathrm{R}^{\prime}+\mathrm{R}\right) \mathrm{T}_{0}+\mathrm{D}_{5} \mathrm{~T}_{4}=\mathrm{T}_{0}+\mathrm{D}_{5} \mathrm{~T}_{4}$

5.25

From Table 5.6:
$\operatorname{CLR}(S C)=R T_{2}+D_{7} T_{3}\left(l^{\prime}+I\right)+\left(D_{0}+D_{1}+D_{2}+D_{5}\right) T_{5}+\left(D_{3}+D_{4}\right) T_{4}+D_{6} T_{6}$

CHAPTER 6

6.1

		AC	PC	IR			
010	CLA	0000	$\overline{011}$	7800			
011	ADD 016	C1A5	012	1016			
012	BUN 014	C1A5	014	4014			
013	HLT	8184	014	7001			
014	AND 017	8184	015	0017			
015	BUN 013	8184	013	4013			
016	C1A5						
017	93C6						
	(C1A5) ${ }_{16}$	=	1100	0001	1010	0101	AND
	(93C6) ${ }_{16}$	=	1001	0011	1100	0110	
			1000	0001	1000	0100	$(8184)_{16}$

6.2

100	5103	[BSA 103		Ac	
101	7200	\rightarrow CMA		FFFE A	Answer
102	7001	HLT			
103	0000	5101	\leftarrow Answer		
104	7800	CLA		0000	
105	7020	\downarrow INC		0001	
106	C103	\longleftarrow BUN	031		

6.3		A more efficie will optimize th code as follows	
CLA	SUM=0		
STA SUM			
LDA SUM		LDA	A
ADD A	SUM $=$ SUM $+\mathrm{A}+\mathrm{B}$	ADD	B
ADD B		STA	SUM
STA SUM		LDA C	
LDA C			
	DIF $=$ DIF -C	CMA	
INC		INC	
ADD DIF		ADD	DIF
STA DIF		STA	DIF
LDA SUM		ADD	SUM
ADD DIF	SUM $=$ SUM + DIF		
STA SUM		STA	SUM

6.4

A line of code such as: LDA I is interpreted by the assembler (Fig. 6.2) as a two symbol field with I as the symbolic address. A line of code such as: LDA II is interpreted as a three symbol field. The first I is an address symbol and the second I as the Indirect bit.

Answer: Yes, it can be used for this assembler.

6.5

The assembler will not detect an ORG or END if the line has a label; according to the flow chart of Fig. 6.1. Such a label has no meaning and constitutes an error. To detect the error, modify the flow chart of Fig. 6.1:

6.6
(a) Memory word

1	D E	4445	0100010001000101
2	C Space	4320	0100001100100000
3	-3	$2 D 33$	0010110100110011
4	5 CR	35 OD	0011010100001101

(b) $\quad(35)_{10}=(0000000000100011)_{2}$
$-35 \rightarrow 1111111111011101=(\text { FFDD })_{16}$
6.7
(a)

LOP	105
ADS	10 B
PTR	10 C
NBR	$10 D$
CTR	10 E
SUM	10 F

$$
\begin{aligned}
& (100)_{10}=(0000000001100100)_{2} \\
& (-100)_{10}=(1111111110011100)_{2}=(\mathrm{FF9C})_{16} \\
& (75)_{10}=(0000000001001011)_{2}=(0048)_{16} \\
& (23)_{10}=(0000000000010111)_{2}=(0017)_{17}
\end{aligned}
$$

(b)

Loc	Hex	ORG	100	Loc	Hex		
100	210B	LDA	$\overline{\text { ADS }}$	10B	0150	ADS,	HEX 150
101	310C	STA	PTR	10C	0000	PTR,	HEX 0
102	210D	LDA	NBR	10D	FF9C	NBR,	DEC-100
103	310E	STA	CTR	10E	0000	CTR,	HEX 0
104	7800	CLA		10F	0000	SJH,	HEX 0
105	910C	LOP, ADD	PTR I				ORG 150
106	610C	ISZ	PTR	150	004B		DEC 150
107	610E	ISZ	CTR		:		
108	4105	BUN	LOP				
109	310F	STA	SUM	1B3	0017		DEC 23
10A	7001	HLT					END

6.8

Modify flow chart of Fig. 6.1

example
6.9

6.10
(a) MRI Table

	Memory word	Symbol	HEX
	1	A N	414 D
	2	D Space	4420
AND	[3	value	0000
	4	A D	4144
ADD	D	D space	4420
	6	value	1000

(b) non - MRI Table

CLA \begin{tabular}{lll}

Memory
word
:---

{$\left[\begin{array}{lll}1 & \text { CL } & 434 C \\
2 & \text { A Space } & 4120 \\
3 & \text { value } & 7800\end{array}\right]$}
\end{tabular}

CLE $\left[\begin{array}{lll}4 & \text { C L } & 434 C \\ 5 & \text { E space } & 4520 \\ 6 & \text { value } & 7400\end{array} c\right.$
6.11

LDA B
CMA
INC
ADD A /Form A-B
SPA /skip if AC positive
BUN N10 $\quad /(\mathrm{A}-\mathrm{B})<0$, go to N 10
SZA $\quad /$ skip if $A C=0$
BUN N30 $\quad /(A-B)>0$, go to N30
BUN N20 $\quad /(A-B)=0$, go to N20
6.12
(a) The program counts the number of 1's in the number stored in location WRD.

Since WRD $=(62 C 1)_{16}=(0110001011000001)_{2}$
number of 1 's is 6 ; so CTR will have (0006) ${ }_{16}$
(b)

		ORG	100	
100	7400	CLE		
101	7800	CLA		
102	3110	STA	CTR	/Initialize counter to zero
103	2111	LDA	WRD	
104	7004	SZA		
105	4107	BUN	ROT	
106	410F	BUN	STP	/ Word is zero; stop with CTR $=0$
107	7040	ROT, CIL		/Bring bit to E
108	7002	SZE		
109	410B	BUN	AGN	/bit = 1, go to count it
10A	4107	BUN	ROT	/bit $=0$, repeat
10B	7400	AGN, CLE		
10C	6110	ISZ	CTR	/Increment counter
10D	7004	SZA		/check if remaining bits $=0$
10E	4107	BUN	ROT	/No; rotate again
10F	7001	STP, HLT		/yes; stop
110	0000	CTR, HEX	0	
111	62C1	WRD, HEX	62C1	

6.13
$(100)_{16}=(256)_{10} \quad 500$ to $5 \mathrm{FF} \rightarrow(256)_{10}$ locations
ORG 100
LDA ADS
STA PTR /Initialize pointer
LDA NBR
STA CTR /Initialize counter to -256
CLA
LOP, STA PTRI /store zero
ISZ PTR
ISZ CTR
BUN LOP
HLT
ADS, HEX 500
PTR, HEX 0
NBR, DEC -256
CTR, HEX 0
END

6.14

LDA	A	/Load multiplier
SZA		/ls it zero?
BUN	NZR	
HLT		IA=0, product = 0 in AC
NZR, CMA		
INC		
STA	CTR	/Store -A in counter
CLA		/Start with AC = 0
LOP, ADD	B	/Add multiplicand
ISZ	CTR	
BUN	LOP	/Repeat Loop A times
HLT		
A, DEC	-	/multiplier
B, DEC	-	/multiplicand
CTR, HEX	O	/counter
END		

6.15

The first time the program is executed, location CTR will go to 0 . If the program, is executed again starting from location (100) ${ }_{16}$, location CTR will be incremented and will not reach 0 until it is incremented $2^{16}=65,536$ times, at which time it will reach 0 again.

We need to initialize CTR and P as follows:
LDA NBR
STA CTR
CLA
STA P
\downarrow
Program
\downarrow
NBR, DEC-8
CTR, HEX 0
P, HEX 0

6.16

Multiplicand is initially in location XL. Will be shifted left into XH (which has zero initially). The partial product will contain two locations PL and PH (initially zero). Multiplier is in location Y. CTR $=-16$

LOP,	CLE LDA CIR	Y	Same as beginning of program in Table 6.14
	STA	Y	
	SZE		
	BUN	ONE	
	BUN	ZRO	
ONE,	LDA	XL	Double-precision add P X + P Same as program In Table 6.15
	ADD	PL	
	STA	PL	
	CLA		
	CIL		
	ADD	XH	
	ADD	PH	
	STA	PH	
	CLE		
ZRO,	LDA	XL	Double-precision left-shiftXH + XL
	CIL		
	STA	XL	
	LDA	XH	
	CIL		
	STA	XH	
	ISZ	CTR	Repeat 16 times.
	BUN	LOP	
	HLT		

6.17

If multiplier is negative, take the 2's complement of multiplier and multiplicand and then proceed as in Table 6.14 (with CTR $=-7$).
Flow-Chart:

6.18

6.19

$z=x \oplus y=x y^{\prime}+x^{\prime} y=\left[\left(x y^{\prime}\right)^{\prime} \cdot\left(x^{\prime} y\right)^{\prime}\right]^{\prime}$

LDA	Y			
CMA			AND	TMP
AND	X		CMA	
CMA			STA	Z
STA		TMP		HLT
LDA	X	X,		
CMA		Y,	--	
AND	Y	Z,	---	
CMA		TMP,	---	

6.20

LDA X
CLE
CIL Izero to low order bit; sign bit in E
SZE
BUN ONE
SPA
BUN OVF
BUN EXT
ONE, SNA
BUN OVF
EXT, HLT

6.24

LDA	ADS	
STA	PTR	
LDA	NBR	
STA	CTR	
BSA	IN2 \quad /subroutine Table 6.20	
STA	PTR I	
ISZ	PTR	
ISZ	CTR	

BUN LOP HTA

ADS, HEX 400
PTR, HEX 0
NBR, DEC -512
CTR, HEX
0

6.25

LDA	WRD	
AND	MS1	
STA	CH1	
LDA	WRD	
AND	MS2	
CLE		ssubroutine to BSA
	SR8	shift right times eight times

STA CH2
HLT
WRD, HEX ---
CH1, HEX ---
CH2, HEX ---
MS1, HEX 00FF
MS2, HEX FF00

6.27						
Location		Hex code				
	200	3213	SRV,	STA	SAC	
	201	7080		CIR		
	202	3214		STA	SE	
	203	F200		SKI		
	204	4209		BUN	NXT	
	205	F800		INP		
	206	F400		OUT		
	207	B215		STA	PT1	1
				ISZ	PT1	
	208	6215	NXT,	SKO		
	209	F100				
	20A	420E		BUN	EXT	
	20B	A216		LDA	PT2	1
	20C	F400		OUT		
	20D	6216		ISZ	PT2	
	20E	2214	EXT,	LDA	SE	
	20F	7040		CIL		
	210	2213		LDA	SAC	
	211	F080		ION		
	212	C000		BUN	ZR0	1
	213	0000	SAC,	---		
	214	0000	SE,	---		
	215	0000	PT1,	---		
	216	0000	PT2,	---		
SRV,	, STA	SAC		NXT,	LDA	MOD
	CIR				SZA	
	STA	SE				
	LDA	MOD /check MOD			BUN	EXT
	CMA		service		SKO	
	SZA		out put		BUN	EXT
	BUN	NXT /MOD $=$ all 1's	device		LDA	PT2 I
					OUT	
	BUN	NXT service			ISZ	PT2
	INP	input				
	OUT	device	EXT, c	continu	as in	Table 6.23
	STA	PT1 I				
	ISZ	PT1				
	BUN	EXT /MOD $=0$				

CHAPTER 7

7.1

A microprocessor is a small size CPU (computer on a chip). Microprogram is a program for a sequence of microoperations. The control unit of a microprocessor can be hardwired or microprogrammed, depending on the specific design. A microprogrammed computer does not have to be a microprocessor.

7.2

Hardwired control, by definition, does not contain a control memory.

7.3

Micro operation - an elementary digital computer operation.
Micro instruction - an instruction stored in control memory.
Micro program - a sequence of microinstructions.
Micro code - same as microprogram.

7.4

frequency of each clock $=\frac{1}{100 \times 10^{-9}}=\frac{1000}{100} \times 10^{6}=10 \mathrm{MHz}$.
If the data register is removed, we can use a single phase clock with a frequency of $\frac{1}{90 \times 10^{-9}}=11.1 \mathrm{MHz}$.
7.5

Control memory $=2^{10} \times 32$

(a) | 6 | 10 | 16 |
| :---: | :--- | :--- |
| Select | Address | Micro operations |

(b) 4 bits
(c) 2 bits

7.6

Control memory $=2^{12} \times 24$
(a) 12 bits
(b) 12 bits
(c) 12 multiplexers, each of size 4-to-1 line.

7.7

(a) $0001000=8$
(b) $0101100=44$
(c) $0111100=60$

7.8

opcode $=6$ bits control memory address = 11 bits

7.9

The ROM can be programmed to provide any desired address for a given inputs from the instruction.

7.10

Either multiplexers, three-state gates, or gate logic (equivalent to a mux) are needed to transfer information from many sources to a common destination.

7.11

7.12
$\begin{array}{llll}\text { (a) } \quad \mathrm{READ} & \mathrm{DR} \leftarrow \mathrm{M}[\mathrm{AR}] & \mathrm{F} 2=100 & 001100101 \\ & \mathrm{DRTAC} & \mathrm{AC} \leftarrow \mathrm{DR} & \mathrm{F}=101 \\ \text { (b) } & & & \\ & \mathrm{ACTDR} & \mathrm{DR} \leftarrow \mathrm{AC} & \mathrm{F} 2=101 \\ & \text { DRTAC } & \mathrm{AC} \leftarrow \mathrm{DR} & \mathrm{F} 1=100100101 \\ & & \end{array}$
$\begin{array}{llll}\text { (a) } \quad \mathrm{READ} & \mathrm{DR} \leftarrow \mathrm{M}[\mathrm{AR}] & \mathrm{F} 2=100 & 001100101 \\ & \mathrm{DRTAC} & \mathrm{AC} \leftarrow \mathrm{DR} & \mathrm{F} 2=101 \\ \text { (b) } & & & \\ & \text { ACTDR } & \mathrm{DR} \leftarrow \mathrm{AC} & \mathrm{F} 2=101 \\ & \text { DRTAC } & \mathrm{AC} \leftarrow \mathrm{DR} & \mathrm{F} 1=100 \\ & & \end{array}$
$\begin{array}{llll}\text { (a) } \quad \mathrm{READ} & \mathrm{DR} \leftarrow \mathrm{M}[\mathrm{AR}] & \mathrm{F} 2=100 & 001100101 \\ & \mathrm{DRTAC} & \mathrm{AC} \leftarrow \mathrm{DR} & \mathrm{F} 2=101 \\ \text { (b) } & & & \\ & \text { ACTDR } & \mathrm{DR} \leftarrow \mathrm{AC} & \mathrm{F} 2=101 \\ & \text { DRTAC } & \mathrm{AC} \leftarrow \mathrm{DR} & \mathrm{F} 1=100 \\ & & \end{array}$
Binary
$\left.\begin{array}{llll}\text { (c) } & \text { ARTPC } & \mathrm{PC} \leftarrow \mathrm{AR} & \mathrm{F} 3=110 \\ \text { DRTAC } & \mathrm{AC} \leftarrow \mathrm{DR} & \mathrm{F} 1=100 \\ & \text { Impossible. } \\ \text { WRITE } & \mathrm{M}[\mathrm{AR}] \leftarrow \mathrm{DR} & \mathrm{F} 1=111\end{array}\right]$

7.13

If $\mathrm{I}=0$, the operand is read in the first microinstruction and added to AC in the second.
If $I=1$, the effective address is read into DR and control goes to INDR2. The subroutine must read the operand into DR.
$\begin{array}{llllc}\text { INDR 2: } & \text { DRTAR } & \mathrm{U} & \text { JMP } & \text { NEXT }\end{array}$

7.14

(a) Branch if S = 0 and $\mathrm{Z}=0$ (positive and non-zero AC) - See last instruction in problem 7-16.
(b) $40 \quad 0 \quad 000 \quad 000 \quad 000 \quad 10001000000$
41 : $000 \quad 000 \quad 000 \quad 11001000000$
42 : $000 \quad 000 \quad 000 \quad 01011000011$

43 : $000 \quad 000 \quad 110 \quad 00001000000$
7.15
(a) 60 : CLRAC, COM U JMP INDR CTS
61 : WRITE, READ I CALL FETCH
62 : ADD, SUB S RET 63(NEXT)

63 : DRTAC, INCDR Z MAP 60
(b)

60 : Cannot increment and complement AC at the same time. With a JMP to INDRCT, control does not return to 61.
61 : Cannot read and write at the same time. The CALL behaves as a JMP since there is no return from FETCH.
62 : Cannot add and subtract at the same time. The RET will be executed independent of S.
63 : The MAP is executed irrespective of Z or 60.
7.16

AND	ORG 16			
	NOP	1	CALL	INDRCT
	READ	U	JMP	NEXT
ANDOP :	AND	U	JMP	FETCH
SUB	ORG 20			
	NOP	1	CALL	INDRCT
	READ	U	JMP	NEXT
	SUB	U	JMP	FETCH
	ORG 24			
ADM :	NOP	I	CALL	INDRCT

	READ	U	JMP	NEXT
	DRTAC, ACTDR	U	JMP	NEXT
	ADD	U	JMP	EXCHANGE +2
				(Table 7.2)
BICL :	ORG 28			
	NOP	1	CALL	INDRCT
	READ	U	JMP	NEXT
	DRTAC, ACTDR	U	JMP	NEXT
	COM	U	JMP	ANDOP

	ORG 32			
BZ :	NOP	Z	JMP	ZERO
	NOP	U	JMP	FETCH
ZERO :	NOP	I	CALL	INDRCT
	ARTPC	U	JMP	FETCH

	ORG 36			
SEQ :	NOP	I	CALL	INDRCT
	READ	U	JMP	NEXT
	DRTAC, ACTDR	U	JMP	NEXT
	XOR (or SUB)	U	JMP	BEQ1
	ORG 69			
BEQ 1:	DRTAC, ACTDR	Z	JMP	EQUAL
	NOP	U	JMP	FETCH
EQUAL:	INC PC	U	JPM	FETCH

	ORG 40			
BPNZ :	NOP	S	JMP	FETCH
	NOP	Z	JMP	FETCH
	NOP	I	CALL	INDRCT
	ARTPC	U	JMP	FETCH

7.17

ISZ :	NOP	I	CALL	INDRCT
	READ	U	JMP	NEXT
	INCDR	U	JMP	NEXT
	DRTAC, ACTDR	U	JMP	NEXT (orp
	DRTAC, ACTDR	Z	JMP	ZERO
	WRITE	U	JMP	FETCH
ZERO :	WRITE, INCPC	U	JMP	FETCH
7.18				
BSA :	NOP	I	CALL	INDRCT
	PCTDR, ARTPC	U	JMP	NEXT
	WRITE, INCPC	U	JMP	FETCH

7.19

From Table 7.1 :
$\mathrm{F} 3=101$ (5) $\mathrm{PC} \leftarrow \mathrm{PC}+1$
$F 3=110(6) \quad P C \leftarrow A R$

7.20

A field of 5 bits can specify $2^{5}-1=31$ microoperations
A field of $\frac{4}{9}$ bits can specify $2^{4}-1=\frac{15}{46}$ microoperations
7.21

See Fig. 8.2 (b) for control word example.
(a) 16 registers need 4 bits; ALU need 5 bits, and the shifter need 3 bits, to encode all operations.

4	4	4	5	3
SRC 1	SRC 2	DEST	ALU	SHIFT

(c)

R5	R6	R4	ADD	SHIFT
0101	0110	0100	00100	000

7.22

I_{2}	I_{1}	I_{0}	T	S_{1}	S_{0}	L	
0	0	0	0	0	1	0	AD1
0	0	0	1	0	0	0	INC(0)
0	0	1	0	0	1	0	AD(1)
0	0	1	1	0	1	0	AD(1)
0	1	0	0	0	0	0	INC(0)
0	1	0	1	0	1	0	AD(1)
0	1	1	0	1	0	0	RET(a)
0	1	1	1	1	0	0	RET(a)
1	0	0	0	0	0	0	INC(0)
1	0	0	1	0	0	0	INC(0)
1	0	1	0	0	1	0	AD(1)
1	0	1	1	0	1	0	$A D(1)$
1	1	0	0	0	0	0	INC(0)
1	1	0	1	0	1	1	CALL(1)
1	1	1	0	1	1	0	MAP(3)
1	1	1	1	1	1	0	MAP(3)

$S_{0}=I_{1} I_{0}$

$S_{0}=I_{2} I_{0}+I_{1}^{\prime} I_{0}+I_{1} I_{0}^{\prime} T+I_{2}^{\prime} I_{1}^{\prime} T^{\prime}$ $L=I_{2} I_{1} I_{0}^{\prime} T$
7.23
(a) See Fig. 4-8 (chapter 4)
(b)

7.24
P is used to determine the polarity of the selected status bit.

When $P=0, T=G$ because $G \oplus O=G$
When $P=1, T=G^{\prime}$, because $G \oplus I=G^{\prime}$
Where G is the value of the selected bit in $M U \times 2$.

CHAPTER 8

8.1
(a) 32 multiplexers, each of size 16×1.
(b) 4 inputs each, to select one of 16 registers.
(c) 4-to-16 - line decoder
(d) $32+32+1=65$ data input lines
$32+1=33$ data output lines.

(e) | 4 |
| :---: | 4

	4	6	$=$
SELA	SELB	SELD	OPR

8.2

$30+80+10=120 \mathrm{n} \mathrm{sec}$.
(The decoder signals propagate at the same as the muxs.)

8.3

		SELA SELB SELD OPR				Control word
(a)	$\mathrm{R} 1 \leftarrow \mathrm{R} 2+\mathrm{R} 3$	R2	R3	R1	ADD	01001100100010
(b)	$\mathrm{R} 4 \leftarrow \overline{\mathrm{R} 4}$	R4	-	R4	COMA	100 xxx 10001110
(c)	$\mathrm{R} 5 \leftarrow \mathrm{R} 5-1$	R5	-	R5	DECA	101 xxx 10100110
(d)	$\mathrm{R} 6 \leftarrow \mathrm{SH} 1 \mathrm{R} 1$	R1	-	R6	SHLA	001 xxx 11011000
(e)	R7 \leftarrow Input	Input	-	R7	TSFA	000 xxx 11100000

8.4

Control word
(a) 00101001100101
(b) 00000000000000
(c) 01001001001100
(d) 00000100000010
(e) 11110001110000

SELA	SELB	SELD	OPR	
R1	R2	R3	SUB	
Input	Input	None	TSFA	R1-R2
R2	R2	R2	XOR	Output \leftarrow Input
Input	R1	None	ADD	R2 \leftarrow R2 \oplus R2
R7	R4	R3	SHRA	R3 \leftarrow Input + R1

8.5

(a) Stack full with 64 items.
(b) stack empty

8.6

PUSH : $\quad \mathrm{M}[\mathrm{SP}] \leftarrow \mathrm{DR}$
SP $\leftarrow \mathrm{SP}-1$
POP : $\quad \mathrm{SP} \leftarrow \mathrm{SP}+1$
$D R \leftarrow M[S P]$
8.7
(a) $\mathrm{AB} * \mathrm{CD} * \mathrm{EF} *++$
(b) $\mathrm{AB} * \mathrm{ABD} * \mathrm{CE} *+*+$
(c) $\mathrm{FG}+\mathrm{E} * \mathrm{CD} *+\mathrm{B} * \mathrm{~A}+$
(d) $\mathrm{ABCDE}+*+* \mathrm{FGH}+* /$
8.8
(a) $\frac{\mathrm{A}}{\mathrm{B}-(\mathrm{D}+\mathrm{E}) * \mathrm{C}}$
(b) $A+B-\frac{C}{D * E}$
(c) $\frac{\mathrm{A}}{\mathrm{B} * \mathrm{C}}-\mathrm{D}+\frac{\mathrm{E}}{\mathrm{F}}$
(d) $\quad(((\mathrm{F}+\mathrm{G}) * \mathrm{E}+\mathrm{D}) * \mathrm{C}+\mathrm{B}) * \mathrm{~A}$

8.9

$(3+4)[10(2+6)+8]=616$
RPN: $34+26+10$ * $8+$ *

				6		10		8		
	4		2	2	8	8	80	80	88	
3	3	7	7	7	7	7	7	7	7	616
3	4	+	2	6	+	10	$*$	8	+	$*$

8.10

WRITE (if not full) :
$\mathrm{M}[\mathrm{WC}] \leftarrow \mathrm{DR}$
$W C \leftarrow W C+1$
ASC $\leftarrow \mathrm{ASC}+1$
READ : (if not empty)
$D R \leftarrow M[R C]$
$\mathrm{RC} \leftarrow \mathrm{RC}+1$
ASC \leftarrow ASC -1

8.11

| 8 | 12 | 12 |
| :---: | :--- | :--- |$=$| 32bit |
| :---: |
| op code | Address 1 \quad Address 2 \quad| Two address instructions |
| :---: |

$2^{8}=256$ combinations.
$256-250=6$ combinations can be used for one address

op code	Address
6×2^{12}	

Maximum number of one address instruction:

$$
=6 \times 2^{12}=24,576
$$

8.12

(d) $\mathrm{RPN}: \times \mathrm{AB}-\mathrm{C}+\mathrm{DE}$ ж F - ж GHK ж + /=

8.13

$256 \mathrm{~K}=2^{8} \times 2^{10}=2^{18}$

op code	Mode	Register	Address
5	3	6	18

Address $=18$ bits
Mode $=3$ "
Register $=\frac{6 "}{27}$ bits
op code \qquad

8.14

Z = Effective address
(a) Direct:
$Z=Y$
(b) Indirect: $\quad \mathrm{Z}=\mathrm{M}[\mathrm{Y}]$
(c) Relative: $\quad \mathrm{Z}=\mathrm{Y}+\mathrm{W}+2$
(d) Indexed: $\quad Z=Y+X$

8.15

(a) Relative address $=500-751=-251$
(b) $251=000011111011 ;-251=111100000101$
(c) $\mathrm{PC}=751=001011101111 ; \quad 500=000111110100$
$P C=751=001011101111$
$R A=-\underline{251=+111100000101}$
$E A=500=000111110100$

8.16

Assuming one word per instruction or operand.
Computational type Branch type
Fetch instruction
Fetch instruction
Fetch effective address
Fetch effective address and transfer to PC
Fetch operand
3 memory references
2 memory references.

8.17

The address part of the indexed mode instruction must be set to zero.

8.18

Effective address
(a) Direct: 400
(b) Immediate: 301
(c) Relative: $302+400=702$
(d) Reg. Indirect: 200
(e) Indexed: $200+400=600$

8.19

$1=\mathrm{C} 0=\mathrm{C} \quad 1=\mathrm{C} 0=$ Reset initial carry
6E C3 56 7A
$\frac{13}{82} \quad \frac{55}{18} \quad \frac{6 \mathrm{~B}}{\mathrm{C} 2} \quad \frac{8 \mathrm{~F}}{09} \quad$ Add with carry

8.20

10011100

$\frac{10101010}{10001000}$ AND | 10011100 |
| :--- |
| $\frac{10101010}{1111110}$ | OR | 10011100 |
| :--- |
| 00101010 | XOR

8.21

(a) AND with: 0000000011111111
(b) OR with: 0000000011111111
(c) XOR with: 0000111111110000

8.22

Initial: $01111011 \quad \mathrm{C}=1$
SHR: 00111101
SHL: 11110110
SHRA: 00111101
SHLA: 11110110 (over flow)
ROR: 10111101
ROL: 11110110
RORC: 10111101
ROLC: 11110111

8.23

$+83=01010011-83=10101101$
$+68=01000100-68=10111100$
(a) $-83 \quad 10101101$

$$
\frac{+68}{-15} \frac{+01000100}{11110001}
$$

(in 2's complement)
(b) 10 carries
$-68 \quad 10111100$
$\frac{-83}{-151} \frac{+10101101}{01101001}$
-128 (over flow)
(c) $-68=10111100$
$-34=11011110$
$\oplus=1$
(d) $-83=10101101$
$-166 \neq 01011010$
Over flow

8.24

$\mathrm{Z}=\mathrm{F}_{0}{ }_{0} \mathrm{~F}_{1} \mathrm{~F}^{\prime}{ }_{2} \mathrm{~F}_{3}{ }^{\prime} \mathrm{F}_{4}^{\prime} \mathrm{F}_{5}^{\prime} \mathrm{F}_{6}^{\prime} \mathrm{F}_{7}^{\prime}=\left(\mathrm{F}_{0}+\mathrm{F}_{1}+\mathrm{F}_{2}+\mathrm{F}_{3}+\mathrm{F}_{4}+\mathrm{F}_{5}+\mathrm{F}_{6}+\mathrm{F}_{7}\right)^{\prime}$

8.25

11

(a) 7201110010

C6 $\quad 11000110$
13800111000
$C=1 \quad S=0 \quad Z=0 \quad V=0$
(b)

01
7201110010
$\frac{1 E}{90} \quad \frac{00011110}{10010000}$
$\mathrm{C}=0 \quad \mathrm{~S}=1 \quad \mathrm{Z}=0 \quad \mathrm{~V}=1$
(c) $9 \mathrm{~A}=10011010 \quad 0{ }^{01100110} \mathrm{~L}^{\text {2's comp. }}$
$\frac{72}{\text { D8 }} \quad \frac{01110010}{11011000}$
$C=0 \quad S=1 \quad Z=0 \quad V=1$
(Borrow = 1)
(d) $72=01110010$
$\underline{8 D} \quad 10001100$
0000000000
$C=0 \quad S=0 \quad Z=1 \quad V=0$
(e) $C=0 \quad S=0 \quad Z=1 \quad V=0$

8.26

$C=1$ if $A<B$, therefore $C=0$ if $A \geq B$
$Z=1$ if $A=B$, therefore $Z=1$ if $A \neq B$
For $A>B$ we must have $A \geq B$ provided $A \neq B$
Or $C=0$ and $Z=0\left(C^{\prime} Z^{\prime}\right)=1$
For $\mathrm{A} \leq \mathrm{B}$ we must have $\mathrm{A}<\mathrm{B}$ or $\mathrm{A}=\mathrm{B}$

$$
\text { Or } C=1 \text { or } Z=1(C+Z)=1
$$

8.27

$A \geq B$ implies that $A-B \geq 0$ (positive or zero)
Sign $S=0$ if no over flow (positive)
or $S=1$ if over flow (sign reversal)
Boolean expression: $\mathrm{S}^{\prime} \mathrm{V}^{\prime}+\mathrm{SV}=1$ or $(\mathrm{S} \oplus \mathrm{V})=0$
$A<B$ is the complement of $A \geq B(A-B$ negative $)$
then $S=1$ if $V=0$
or $S=0$ if $V=1$
$(S \oplus V)=1$
A > B Implies $A \geq B$ but not $A=B$
$(S \oplus V)=0$ and $Z=0$
$\mathrm{A} \leq \mathrm{B}$ Implies $\mathrm{A}<\mathrm{B}$ or $\mathrm{A}=\mathrm{B}$
$S \oplus V=1$ or $Z=1$
8.28

8.29
$A=01000001$
Unsigned Signed
$B=10000100$
$65+65$
$A+B=11000101$
$\frac{132}{197} \quad-124$
(c) $C=0 \quad Z=0 \quad S=1 \quad V=0$
(d) BNC BNZ BM BNV

8.30

(a) $A=01000001=+65$
$B=10000100=132$
$A-B=10111101=-67$ (2's comp. of 01000011)
(b) C (borrow) $=1 ; \mathrm{Z}=0$
$65<132$ A $<B$
(c) BL, BLE, BNE
8.31
(a)

$$
\begin{array}{r}
A=01000001=+65 \\
B=10000100=-124 \\
A-B=10111101+189
\end{array}+\underbrace{01011101}_{9 \text { bits }}
$$

(b) $S=1$ (sign reveral) $+189>127$
$Z=0$
$\mathrm{V}=1$ (over flow) $\quad 65>-124$
A $>\mathrm{B}$
(c) BGT, BGE, BNE

8.32

Initial
After CALL

$$
\overline{1120}
$$

SP
Top of Stack
5320

$\frac{P C}{1120}$	$\frac{\text { SP }}{3560}$	Top of Stack
6720	3559	5320
1122	3560	5320

8.33

Branch instruction - Branch without being able to return.
Subroutine call - Branch to subroutine and then return to calling program.
Program interrupt - Hardware initiated branch with possibility to return.

8.34

See Sec. 8-7 under "Types of Interrupts".

8.35

(a) $\mathrm{SP} \leftarrow \mathrm{SP}-1$
$\mathrm{M}[\mathrm{SP}] \leftarrow \mathrm{PSW}$
$\mathrm{SP} \leftarrow \mathrm{SP}-1$
$\mathrm{M}[\mathrm{SP}] \leftarrow \mathrm{PC}$
(a) $\mathrm{PC} \leftarrow \mathrm{M}[\mathrm{SP}]$
$\mathrm{SP} \leftarrow \mathrm{SP}+1$
PSW $\leftarrow M[S P]$
$\mathrm{TR} \leftarrow \mathrm{IAD}$ (TR is a temporary register)
PSW $\leftarrow \mathrm{M}[\mathrm{TR}]$
$\mathrm{TR} \leftarrow \mathrm{TR}+1$
$\mathrm{PC} \leftarrow \mathrm{M}[T R]$
Go to fetch phase.

8-37

Window Size $=\quad L+2 C+G$
Computer 1: $10+12+10=32$
Computer 2: $8+16+8=32$
Computer 3: $16+32+16=64$
Register file $=(L+C) W+G$

Computer 1: $(10+6) 8+10=16 \times 8+10=138$
Computer 2: $(8+8) 4+8=16 \times 4+8=72$
Computer 3: $(16+16) 16+16=32 \times 16+16=528$

8-38
(a) SUB R22, \# 1, R22
(b) XOR R22, \# -1, R22
(c) SUB R0, R22, R22
(d) ADD R0, R0, R22
(e) SRA R22, \# 2, R22
(f) OR R1, R1, R1 or ADD R1, R0, R1 or SLL R1, \# 0, R1

8-39

(a) JMP Z, \# 3200, (RO)
(b) JMPR Z, - 200

R22 \leftarrow R22-1 (Subtract 1)
$\mathrm{R} 22 \leftarrow \mathrm{R} 22 \oplus$ all 1's $\left(x \oplus 1=x^{\prime}\right)$
$\mathrm{R} 22 \leftarrow 0-\mathrm{R} 22$
$\mathrm{R} 22 \leftarrow 0+0$
Arithmetic shift right twice
$\mathrm{R} 1 \leftarrow \mathrm{R} 1 \mathrm{~V}$ R1
$\mathrm{R} 1 \leftarrow \mathrm{R} 1+0$
shift left 0 times
$\mathrm{PC} \leftarrow 0+3200$
$\mathrm{PC} \leftarrow 3400+(-200)$

CHAPTER 9

9.1

9-2

Segment	1	2	3	4	5	6	7	8	9	10	11	12	13
1	$\mathrm{~T}_{1}$	$\mathrm{~T}_{2}$	$\mathrm{~T}_{3}$	$\mathrm{~T}_{4}$	$\mathrm{~T}_{5}$	$\mathrm{~T}_{6}$	$\mathrm{~T}_{7}$	$\mathrm{~T}_{8}$					
2		$\mathrm{~T}_{1}$	$\mathrm{~T}_{2}$	$\mathrm{~T}_{3}$	$\mathrm{~T}_{4}$	$\mathrm{~T}_{5}$	$\mathrm{~T}_{6}$	$\mathrm{~T}_{7}$	$\mathrm{~T}_{8}$				
3			$\mathrm{~T}_{1}$	$\mathrm{~T}_{2}$	$\mathrm{~T}_{3}$	$\mathrm{~T}_{4}$	$\mathrm{~T}_{5}$	$\mathrm{~T}_{6}$	$\mathrm{~T}_{7}$	$\mathrm{~T}_{8}$			
4				$\mathrm{~T}_{1}$	$\mathrm{~T}_{2}$	$\mathrm{~T}_{3}$	$\mathrm{~T}_{4}$	$\mathrm{~T}_{5}$	$\mathrm{~T}_{6}$	$\mathrm{~T}_{7}$	$\mathrm{~T}_{8}$		
5					$\mathrm{~T}_{1}$	$\mathrm{~T}_{2}$	$\mathrm{~T}_{3}$	$\mathrm{~T}_{4}$	$\mathrm{~T}_{5}$	$\mathrm{~T}_{6}$	$\mathrm{~T}_{7}$	$\mathrm{~T}_{8}$	
6						$\mathrm{~T}_{1}$	$\mathrm{~T}_{2}$	$\mathrm{~T}_{3}$	$\mathrm{~T}_{4}$	$\mathrm{~T}_{5}$	$\mathrm{~T}_{6}$	$\mathrm{~T}_{7}$	$\mathrm{~T}_{8}$

$(\mathrm{k}+\mathrm{n}-1) \mathrm{t}_{\mathrm{p}}=6+8-1=13$ cycles \mathbf{l}

> 9.3
> $k=6$ segments
> $n=200$ tasks $(k+n-1)=6+200-1=205$ cycles
9.4
$\mathrm{t}_{\mathrm{n}}=50 \mathrm{~ns}$
$\mathrm{k}=6$
$\mathrm{t}_{\mathrm{p}}=10 \mathrm{~ns}$
$\mathrm{n}=100$

$$
\begin{aligned}
& \mathrm{S}=\frac{\mathrm{nt}_{\mathrm{n}}}{(\mathrm{k}+\mathrm{n}-1) \mathrm{t}_{\mathrm{p}}}=\frac{100 \times 50}{(6-99) \times 10}=4.76 \\
& \mathrm{~S}_{\max }=\frac{\mathrm{t}_{\mathrm{n}}}{\mathrm{t}_{\mathrm{p}}}=\frac{50}{10}=5
\end{aligned}
$$

9.5
(a) $\mathrm{t}_{\mathrm{p}}=45+5=50 \mathrm{~ns} \quad \mathrm{k}=3$
(b) $\mathrm{t}_{\mathrm{n}}=40+45+15=100 \mathrm{~ns}$
(c)

$$
\begin{array}{cc}
S=\frac{\mathrm{nt}_{\mathrm{n}}}{(\mathrm{k}+\mathrm{n}-1) \mathrm{t}_{\mathrm{p}}}=\frac{10 \times 100}{(3+9) 50}=1.67 & \text { for } \mathrm{n}=10 \\
=\frac{100 \times 100}{(3+99) 50}=1.96 & \text { for } \mathrm{n}=100
\end{array}
$$

(d)

$$
\mathrm{S}_{\max }=\frac{\mathrm{t}_{\mathrm{n}}}{\mathrm{t}_{\mathrm{p}}}=\frac{100}{50}=2
$$

9.6
(a) See discussion in Sec. 10-3 on array multipliers. There are $8 \times 8=64$ AND gates in each segment and an 8-bit binary adder (in each segment).
(b) There are 7 segments in the pipeline
(c) Average time $=\frac{\mathrm{k}+\mathrm{n}-1}{\mathrm{n}} \mathrm{t}_{\mathrm{p}}=\frac{(\mathrm{n}+6) 30}{\mathrm{n}}$

For $n=10 \quad t_{A V} 48 n s$
For $\mathrm{n}=100 \quad \mathrm{t}_{\mathrm{AV}}=31.8 \mathrm{~ns}$
For $n \rightarrow \infty \quad t_{A V}=30 n s$
To increase the speed of multiplication, a carry-save (wallace tree) adder is used to reduce the propagation time of the carries.
9.7
(a) Clock cycle $=95+5=100 \mathrm{~ns}$ (time for segment 3)

For $n=100, k=4, t_{p}=100 n s$.
Time to add 100 numbers $=(k+n-1) t_{p}=(4+99) 100$

$$
=10,300 \mathrm{~ns}=10.3 \mu \mathrm{~s}
$$

(b) Divide segment 3 into two segments of $50+5=55$ and $45+5=50 \mathrm{~ns}$. This makes $\mathrm{tp}=55 \mathrm{~ns} ; \mathrm{k}=5$ $(k+n-1) t p=(5+99) 55=5,720 n s=5.72 \mu \mathrm{~s}$
9.8 Connect output of adder to input $\mathrm{B} \times 2^{\mathrm{b}}$ in a feedback path and use input $A \times 2^{\text {a }}$ for the data X_{1} through X_{100}. Then use a scheme similar to the one described in conjunction with the adder pipeline in Fig. 9-12.
9.9 One possibility is to use the six operations listed in the beginning of Sec.9-4.
9.10 See Sec. 9-4: (1) prefetch target instruction; (b) use a branch target buffer; (c) use a 100p buffer; (d) use branch prediction. (Delayed branch is a software procedure.)
9.11

1. Load $R 1 \leftarrow M$ [312]

1	2	3	$4^{\text {th }}$ step
FI	DA	FO	EX
FI	FI	DA	FO
		FI	DA
			FI

Segment EX: transfer memory word to R1.
Segment FO: Read M[313].
Segment DA: Decode (increment) instruction.
Segment FI: Fetch (the store) instruction from memory.
9.12

Load: R1 \leftarrow Memory
Increment: R1 \leftarrow R1 + 1
R1 is loaded in E
 It's too early to increment it in A

9.13

Insert a No-op instruction between the two instructions in the example of Problem 9-12 (above).

9.14

101 Add R2 to R3
102 Branch to 104
103 Increment R1
104 Store R1
9.15 Use example of Problem 9-14.

101 Branch to 105
102 Add R2 to R3
103 No-operation
104 Increment R1
105 Store R1

, Store

9.19

$\frac{250 \times 10^{9}}{100 \times 10^{6}}=2,500 \mathrm{sec}=41.67$ minutes
9.20

Divide the 400 operations into each of the four
Processors, Processing time is: $\frac{400}{4} \times 40=4,000 \mathrm{nsec}$.
Using a single pipeline, processing time is 400 to 4000 nsec.

CHAPTER 10

10.1

$2^{6}-1=63$, overflow if sum greater than |63|
(a) $(+45)+(+31)=76$
(1) (3)
(7) \leftarrow path
AVF $=1$
(b) $(-31)+(-45)=-76$
(2) (6)
(7)
(9) (10)
$A V F=1$
(c) $(+45)-(+31)=14$
(2) (6)
(9) (11)
AVF $=0$
(d) $(+45)-(+45)=0$
(2) (5)
(7)
$A V F=0$
(e) $(-31)-(+45)=-76$
10.3
$\begin{array}{rlr}\text { (a) } \begin{array}{lll}+35 & 0100011 \\ +40 & 0101000 \\ +75 & 1001011\end{array} \\ & =0 \quad E=1 \leftarrow \quad \text { carries }\end{array}$

$F \oplus E=1$; overflow
$F \oplus E=1$; overflow
10.4

Case	(a) operation in sign-magnitude	(b) operation in sign-2's complement	(c) required result in sign-2's complement
1.	$(+X)+(+Y)$	$(0+X)+(0+Y)$	$0+(X+Y)$
2.	$(+X)+(-Y)$	$(0+X)+2^{K}+\left(2^{K}-Y\right)$	$0+(X-Y)$ if $X \geq Y$
3.	$(-X)+(+Y)$	$2^{K}+\left(2^{K}-X\right)+(0+Y)$	$2^{K}+2^{K}-(Y-X)$ if $X<Y$
$0+(Y-X)$ if $Y \geq X$			
		$(-X)+(-Y)$	$\left(2^{K}+2^{K}-X\right)+\left(2^{K}+2^{K}-Y\right)$
4.	$2^{K}+2^{K}-(X-Y)$ if $Y<X$		
$2^{K}+2^{K}-(X+Y)$			

It is necessary to show that the operations in column (b) produce the results listed in column (c).
Case 1. column (b) = column (c)
Case 2. If $X \geq Y$ than $(X-Y) \geq 0$ and consists of k bits. operation in column (b) given: $2^{2 \mathrm{k}}+(\mathrm{X}-\mathrm{Y})$. Discard carry $2^{2 k}=2^{n}$ to get $0+(X-Y)$ as in column (c) If $X<Y$ then $(Y-X)>0$.
Operation gives $2^{\mathrm{k}}+2^{\mathrm{k}}-(\mathrm{Y}-\mathrm{X})$ as in column (c).
Case 3.
is the same as case 2 with X and Y reversed
Case 4.

10.5

Boolean functions for circuit: $V=T_{s}{ }_{s} B_{s} A_{s}+T_{s} b_{s} A^{\prime}{ }_{s}$

Transfer Avgend sign into Ts.
Then add: $A C \leftarrow A C+B R$ As will have sign of sum.

Truth Table for combin, circuit

TS	$\mathrm{B}_{\text {S }}$	$\mathrm{A}_{\text {S }}$	V	
0	0	0	0	
0	0	1	1	
0	1	0	0	change of sign
0	1	1	0	quantities
1	0	0	0	subtracted
1	0	1	0	
1	1	0	1	change of sign
1	1	1	0	

10.6 (a)
-9 10110 Add end around carry F as needed in signed - 1's $\frac{-6}{15} \quad \frac{11001}{01111}$ complement addition:

$\mathrm{F}=1 \mathrm{E}=0$	\leftarrowCarries $\mathrm{E} \oplus \mathrm{F}=1$
	but there should be no overflow since result is -15

(b) The procedure $\mathrm{V} \leftarrow \mathrm{E} \oplus \mathrm{F}$ is valid for 1's complement numbers provided we check the result $0_{\mathrm{A}_{\mathrm{s}}} \underbrace{1111 \ldots 11}_{\mathrm{A}}$ when $\mathrm{V}=1$.

10.7

Add algorithm flowchart is shown above (Prob. 10-6b)

10.8

Maximum value of numbers is $r^{n}-1$. It is necessary to show that maximum product is less than or equal to $r^{2 n}-1$. Maximum product is:

$$
\left(r^{n}-1\right)\left(r^{n}-1\right)=r^{2 n}-2 r^{n}+1 \leq r^{2 n}-1
$$

which gives: $2 \leq 2 r^{n}$ or $1 \leq r^{n}$
This is always true since $r \geq 2$ and $n \geq 1$

10.9

Multiplicand	$1111=(31)_{10}$		$31 \times 21=651$	
	E	$\mathrm{A} \quad \mathrm{Q}$	SC	
$Q_{n}=1, \text { add } B--$	0	0000010101	101	$Q=(21)_{10}$
		11111		
	0	$\overline{11111}$		
shr EAQ---		0111111010	100	
$\mathrm{Q}_{\mathrm{n}}=0$, shr EAQ--		0011111101	011	
$Q_{n}=1$, add B - -		11111		
	1	00110		
shr EAQ----	0	1001101110	010	
$\mathrm{Q}_{\mathrm{n}}=0$, shr EAQ--		0100110111	001	
$\mathrm{Q}_{\mathrm{n}}=1$, add B --		11111		
	1	01000		
shr EAQ--- -		1010001011	000	
		$(651)_{10}$		

10.10 (a)

$$
\begin{array}{ll}
\frac{10100011}{1011}=1110+\frac{1001}{1011} & \frac{163}{11}=14+\frac{9}{11} \\
B=1011 & \bar{B}+1=0101
\end{array} \quad \text { DVF }=0
$$

	E	A	Q	SC
Dividend in AQ	0	1010	0011	100
shl EAQ	1	0100	0110	
add $\bar{B}+1$, suppress carry		$\underline{0101}$		
$\mathrm{E}=1$, set Q_{n} to 1	1	1001	0111	011
shl EAQ	1	0010	1110	
add $\bar{B}+1$, suppress carry		0101		
$\mathrm{E}=1$, set Q_{n} to 1	1	0111	1111	010
shl EAQ -	0	1111	1110	
add $\bar{B}+1$, carry to $\mathrm{E}-\mathrm{-}$		0101		
$\mathrm{E}=1$, set Q_{n} to 1	1	0100	1111	001
shl EAQ	0	1001	1110	
add $\bar{B}+1$, carry to $\mathrm{E}-\mathrm{-}$		$\underline{0101}$		
$E=0$, leave $Q_{n}=0$	0	1110	1110	
add B -		1011		
restore remainder - -	1	1001	1110	000

10.10 (b)

$$
\frac{1111}{0011}=0101 \quad B=0011 \quad \bar{B}+1=1101
$$

	E	A	Q	SC
Dividend in Q, A = 0		0000	1111	100
shl EAQ-----	0	0001	1110	
add $\overline{\mathrm{B}}+1$		1101		
$E=0$, leave $Q_{n}=0$	0	1110	1110	
add B		0011		
restore partial remainder--	1	0001		011
shl EAQ	0	0011	1100	
add $\overline{\mathrm{B}}+1-\mathrm{-}$--		1101		
$\mathrm{E}=1$, set Q_{n} to 1	1	0000	1101	010
shl EAQ	0	0001	1010	
add $\overline{\mathrm{B}}+1$		1101		
$E=0$, leave $Q_{n}=0$	0	1110	1010	
add B-----		$\underline{0011}$		
restore partial remainder -- -	1	0001		001
shl EAQ-------	0	0011	0100	
add $\overline{\mathrm{B}}+1$	1101			
$\mathrm{E}=1$, set Q_{n} to 1-----	1	0000	0101	000

10.11
$A+\bar{B}+1 \quad$ performs: $\quad A+2^{n}-B=2^{n}+A-B$ adding $\mathrm{B}: \quad\left(2^{\mathrm{k}}+\mathrm{A}-\mathrm{B}\right)+\mathrm{B}=2^{\mathrm{n}}+\mathrm{A}$ remove end-carry 2^{n} to obtain A.

10-12
To correspond with correct result. In general:

$$
\frac{\mathrm{A}}{\mathrm{~B}}=\mathrm{Q}+\frac{\mathrm{R}}{\mathrm{~B}}
$$

where A is dividend, Q the quotient and R the remainder.
Four possible signs for A and B :

$$
\begin{array}{ll}
\frac{+52}{+5}=+10+\frac{+2}{+5}=+10.4 & \frac{-52}{+5}=-10+\frac{-2}{+5}=-10.4 \\
\frac{+52}{-5}=-10+\frac{+2}{-5}=-10.4 & \frac{-52}{-5}=+10+\frac{-2}{-5}=+10.4
\end{array}
$$

The sign of the remainder (2) must be same as sign of dividend (52).
10.13

Add one more stage to Fig. 10-10 with 4 AND gates and a 4-bit adder.
10.14 (a)
$(+15) \times(+13)=+195=(0011000011)_{2}$
$\mathrm{BR}=01111(+15) ; \overline{\mathrm{BR}}+1=10001(-15) ; \mathrm{QR}=01101(+13)$
$Q_{n} Q_{n+1} \quad \frac{A C}{00000} \frac{Q R}{01101} \frac{Q_{n+1}}{0} \quad \frac{S C}{101}$
10 Subtract BR $\frac{10001}{10001}$
ashr —— 1100010110100
01 Add BR
001111
ashr —— 00011110110011
10 Subtract BR 10001 10100
ashr —— 11010011011010
11 ashr —— 11101001101001
01 Add BR $\quad \frac{01111}{01100}$
ashr $\frac{0011000011}{+195} 0000$
(b)

10.15

10.16

The algorithm for square-root is similar to division with the radicand being equivalent to the dividend and a "test value" being equivalent to the division. Let A be the radicand, Q the square-root, and R the remainder such that $Q^{2}+R=A$ or:
$\sqrt{\mathrm{A}=\mathrm{Q}}$ and a remainder

General coments:

1. For k bits in $A(k$ even), Q will have $k / 2$ bits:

$$
\mathrm{Q}=9_{1} 9_{2} 9_{3} \ldots 9_{\mathrm{k} / 2}
$$

2. The first test value is 01

The second test value is $09_{1} 01$
The third test value is $009_{1} 9_{2} 01$
The fourth test value is $0009_{1} 9_{2} 9_{3} 01$ etc.
3. Mark the bits of A in groups of two starting from left.
4. The procedure is similar to the division restoring method as shown in the following example:

91	92	93	$\begin{aligned} & 9_{4} \\ & 1=Q=13 \end{aligned}$	
1	1	0		
$\sqrt{10}$	10	10	$01=\mathrm{A}=169$	
01			subtract first test value 01	
01			Answer positive; let $9_{1}=1$	
01	10		bring down next pair	
01	01		subtract second test value 09101	
00	01		answer positive; let $9_{2}=1$	
00	01	10	bring down next pair	
01	11	01		subtract third test value $009_{1} 9_{2} 01$
negative answer negative; let $9_{3}=0$				
00	01	10		restore partial remainder
00	01	10	01	bring down next pair
00	01	10	01	subtract fourth test value $000919_{2} 9_{3} 01$
	inde	000		answer positive (zero); let $9_{4}=1$

10.17(a) $e=$ exponent $e+64=$ biased exponent

e	$\mathrm{e}+64$	biased exponent
-64	$-64+64=0$	0000000
-63	$-63+64=1$	0000001
-62	$-62+64=2$	0000010
-1	$-1+64=63$	0111111
0	$0+64=64$	1000000
+1	$1+64=65$	1000001
+62	$62+64=126$	111110
+63	$63+64=127$	1111111

(b) The biased exponent follows the same algorithm as a magnitude comparator See Sec. 9-2.
(c) $\quad\left(e_{1}+64\right)+\left(e_{2}+64\right)=\left(e_{1}+e_{2}+64\right)+64$ subtract 64 to obtain biased exponent sum
(d) $\left(e_{1}+64\right)-\left(e_{2}-64\right)=e_{1}+e_{2}$ add 64 to obtain biased exponent difference.

10.18

(a) $\quad A C=A_{s} A_{1} A_{2} A_{3} \ldots . . A_{n}$ $B S=B_{s} B_{1} B_{2} B_{3} \ldots . B_{n}$

If signs are unlike - the one with a 0 (plus) is larger.
If signs are alike - both numbers are either positive or negative

10.18 (b)

		A_{s}	A_{1}	$\mathrm{~A}_{2}$.	. $\mathrm{~A}_{n}$	
+2	0	0	0	0	0	1	0
+1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1
-2	1	1	1	1	1	1	0
-3	1	1	1	1	1	0	1

10.19

$A_{s} \overbrace{A_{1} A_{2} A_{3} \ldots . A_{n}}^{A}$

$\mathrm{B}_{\mathrm{s}} \underbrace{\mathrm{B}_{1} \mathrm{~B}_{2} \mathrm{~B}_{3} \ldots \mathrm{~B}_{\mathrm{n}}}_{\mathrm{B}}$
(a)

$\mathrm{A}<\mathrm{B} \quad \mathrm{A}=\mathrm{B} \quad \mathrm{A}>\mathrm{B} \quad \mathrm{A}-\mathrm{B} \quad \mathrm{A}=\mathrm{B} \quad \mathrm{A}<\mathrm{B}$
(b)

10.21 Let "e" be a flip-flop that holds end-carry after exponent addition.

10.22 When 2 numbers of n bits each are multiplied, the product is no more than $2 n$ bits long-see Prob. 9-7.
10.23

$$
\begin{aligned}
\frac{\text { dividend }}{\text { divisor }} \quad \mathrm{A}=0.1 \mathrm{xxxx} \\
\mathrm{~B}=0.1 \mathrm{xxxx}
\end{aligned} \text { where } \mathrm{x}=0,1
$$

(a) If $A<B$ then after shift we have $A=1$. $x x x x$ and $1^{\text {st }}$ quotient bit is $A 1$.
(b) If $A \geq B$, dividend alignment results in $A=0.01 \mathrm{xxxx}$ then after the left shift $\mathrm{A} \geq \mathrm{B}$ and first quotient bit $=1$.
10.24

$$
\frac{\text { dividend }}{\text { divisor }}=\frac{\overbrace{\mathrm{n}-1 \mathrm{bits}}^{.1 \mathrm{xxxx}} * 2^{\mathrm{e}_{1}}}{.1 \mathrm{yyyy} * 2^{\mathrm{e}_{2}}}=.1 \mathrm{zzzz} * 2^{\mathrm{e}_{1} \mathrm{e}_{2}}+\frac{\overbrace{\text { remainder }}^{.00000 \mathrm{rrrrr}} * 2^{\mathrm{e}_{1}}}{.1 \mathrm{yyyy} * 2^{\mathrm{e}}}
$$

Remainder bits rrrr have a binary-point $(n-1)$ bits to the left.

Fig.10-10 after

10.25
(a) When the exponents are added or incremented.
(b) When the exponents are subtracted or decremented.
(c) Check end-carry after addition and carry after increment or decrement.
10.26

Assume integer mantissa of $n-1=5$ bits (excluding sign)
(a) Product:

A
Q xxxxx. * 2^{z} xxxxx xxxxx. 2
binary-point for integer Product in AC: xxxxx. * 2^{z+5}
(b) Single precision normalized dividend: xxxxx . * $2^{\text {z }}$
Dividend in AQ:
A
Q xxxxx
00000. * 2^{z-5}
10.27 Neglect Be and $A e$ from Fig. 10-14. Apply carry directly to E .

10.28

673
$-\underline{356}$
317
10's comp. of $356=\frac{673}{\sqrt{317}}+$

10.29

Output carry

10-30

	inputs	outputs
	$\mathrm{B}_{8} \mathrm{~B}_{4} \mathrm{~B}_{2} \mathrm{~B}_{1}$	$\mathrm{X}_{8} \mathrm{X}_{4} \mathrm{X}_{2} \mathrm{X}_{1}$
0	0000	10001
1	$0 \quad 001$	1000
2	0010	$\begin{array}{llll}0 & 1 & 1\end{array}$
3	$0 \begin{array}{llll}0 & 0 & 1\end{array}$	0110
4	0100	0101
5	01001	0100
6	01110	00011
7	$\begin{array}{lllll}0 & 1 & 1\end{array}$	00010
8	1000	00001
9	1001	0000

9
8
7
6
5
4
3
2
1
0
$d-\left(B_{8} B_{4} B_{2} B_{1}\right)=\sum(10,11,12,13,14,15)$
are don't-care conditions

$\mathrm{X}_{8}=\mathrm{B}_{8} \mathrm{~B}^{\prime}{ }_{4} \mathrm{~B}^{\prime}{ }_{2}$
$\mathrm{X}_{4}=\mathrm{B}_{4} \mathrm{~B}^{\prime}{ }_{2}+\mathrm{B}^{\prime}{ }_{4} \mathrm{~B}_{2}$
$X_{2}=B_{2}$
$X_{1}=B_{1}{ }_{1}$
10.31

Dec	Z uncorrected	corrected
0	0110	0011
1	0111	0100
2	1000	0101
3	1001	0110
4	1010	0111
5	1011	1000
6	1100	1001
7	1101	1010
8	1110	1011
9	1111	1100

No output carry
$Y=Z-3=Z+13-16$

dec	Z uncorrected	Y corrected
10	10000	10011
11	10001	10100
12	10010	10101
13	10011	10110
14	10100	10111
15	10101	11000
16	10110	11001
17	10111	11010
18	11000	11011
19	11001	11100
	\uparrow	\uparrow
Uncorrected carry = output carry$Y=Z+3$		

10.32 The excess-3 code is self-complementing code. Therefore, to get 9's complement we need to complement each bit.

$\mathrm{M}=0$ for $\mathrm{X}=\mathrm{B}$	
$\mathrm{M}=1$ for $\mathrm{X}=9$'s comp. of B	
M Bi	$x_{\mathrm{i}}=\mathrm{B}_{\mathrm{i}} \oplus \mathrm{M}$
00	
01	$1\}^{x_{i}}=$
10	$1\}$
11	$\left.{ }_{0}\right\}^{x_{i}=}=\mathrm{B}_{\mathrm{i}}$

10.33

Algorithm is similar to flow chart of Fig. 10.2

10.34

(a) $\mathrm{B}=470$

(b)

999		
+ 199		
8991	- first partial product	$\mathrm{Ae}=8$
+89910		
98901	- second partial product	$\mathrm{Ae}=9$
+99900		
198801	- final product	$\mathrm{Ae}=1$

10.35

$$
\begin{array}{ll}
\frac{1680}{32}=52+\frac{16}{32} & B=032, \\
& \bar{B}+1=968 \text { (10's comp.) }
\end{array}
$$

10.36

(a) At the termination of multiplication we shift right the content of A to get zero in Ae .
(b) At the termination of division, B is added to the negative difference. The negative difference is in 10's complement so $\mathrm{Ae}=9$. Adding $\mathrm{Be}=0$ to $\mathrm{Ae}=9$ produces a carry and makes $\mathrm{Ae}=0$.
10.37

Change the symbols as defined in Table 10.1 and use same algorithms as in sec. 10.4 but with multiplication and division of mantissas as in sec. 10.5.

CHAPTER 11

11.1

$$
\mathrm{CS}=\mathrm{A}_{2} \mathrm{~A}_{3} \mathrm{~A}_{4}^{\prime} \mathrm{A}_{5}^{\prime} \mathrm{A}_{6}^{\prime} \mathrm{A}_{7}^{\prime}
$$

$$
\mathrm{RS} 1=\mathrm{A}_{1}
$$

$$
\mathrm{RSO}=\mathrm{A}_{0}
$$

11.2

Interface	Port A	Port B	Control Reg	Status Reg
$\neq 1$	10000000	10000001	10000010	10000011
2	01000000	01000001	01000010	01000011
3	00100000	00100001	00100010	00100011
4	00010000	00010001	00010010	00010011
5	00001000	00001001	00001010	00001011
6	00000100	00000101	00000110	00000111

11.3

Character printer; Line printer; Laser Printer; Digital plotter; Graphic display; Voice output; Digital to analog converter; Instrument indicator.

11.5

See text discussion in See, 11.2.

11.6

(a) Status command - Checks status of flag bit.
(b) Control command - Moves magnetic head in disk.
(c) Status command - checks if device power is on.
(d) Control command - Moves paper position.
(e) Data input command - Reads value of a register.
11.7
(a)

(b)

(c)

11.8

$20 \mathrm{MHz}=20 \times 10^{6} \mathrm{~Hz} \quad \mathrm{~T}=\frac{10^{-6}}{20}=50 \mathrm{n} \mathrm{sec}$.

11.9

Registers refer to Fig. 11.8. Output flag is a bit in status register.

11.10

1. Output flag to indicate when transmitter register is empty.
2. Input flag to indicate when receiver register is full.
3. Enable interrupt if any flag is set.
4. Parity error; (5) Framing error; (6) Overrun error.

11.11

10 bits : start bit + 7 ASCII + parity + stop bit.
From Table 11.1 ASCII W = 1010111 with even parity $=11010111$
with start and stop bits $=1110101110$
11.12
(a) $\frac{1200}{8}=150$ characters per second (cps)
(b) $\frac{1200}{11}=109 \mathrm{cps}$
(c) $\frac{1200}{10}=120 \mathrm{cps}$

11.13

(a) $\frac{\mathrm{k} \text { bytes }}{(\mathrm{m}-\mathrm{n}) \text { bytes } / \mathrm{sec}}=\frac{\mathrm{k}}{\mathrm{m}-\mathrm{n}} \mathrm{sec}$.
(b) $\frac{\mathrm{k}}{\mathrm{n}-\mathrm{m}} \mathrm{sec}$.
(c) No need for FIFO
11.14

Initial
After delete $=1$

$$
\text { After delete }=0
$$

$$
\begin{array}{ll}
F=0011 & \text { Output } \leftarrow R 4 \\
F=0010 & \\
F=0001 & R 4 \leftarrow R 3 \\
F=1001 & R 1 \leftarrow \text { Input } \\
F=0101 & R 2 \leftarrow R 1 \\
F=0011 & R 3 \leftarrow R 2
\end{array}
$$

(Insert goes to 0)
11.15

		Input ready		output ready
(a)	Empty buffer	1	$\underline{F}_{1}-F_{4}$	
(b)	Full buffer	0	0	0
(c)	Two items	1	1	1111
(1	1	0011	

11.16

Flag $=0$, if data register full (After CPU writes data)
Flag = 1 if data register empty (After the transfer to device) when flag goes to 0 , enable "Data ready" and place data on I/O bus. When "acknowledge" is enabled, set the flag to 1 and disable "ready" handshake line.
11.17 CPU Program flow chart:

11.18

See text section 11.4.

11.19

If an interrupt is recognized in the middle of an instruction execution, it is necessary to save all the information from control registers in addition to processor registers. The state of the CPU to be saved is more complex.
11.20
(1) Initially, device 2 sends an interrupt request:
(2) Before CPU responds with acknowledge, device 1
sends interrupt request:
$\mathrm{PI}=0 ; \mathrm{PO}=0 ; \mathrm{RF}=1$
$\mathrm{PI}=0 ; \mathrm{PO}=0 ; \mathrm{RF}=1$
(3) After CPU sends an acknowledge, device 1 has priority:

Device 1	Device 2		
$\mathrm{PI}=0 ; \mathrm{PO}=0 ; \mathrm{RF}=0$	$\mathrm{PI}=0 ; \mathrm{PO}=0 ; \mathrm{RF}=1$		
$\mathrm{PI}=0 ; \mathrm{PO}=0 ; \mathrm{RF}=1$			
$\mathrm{PI}=1 ; \mathrm{PO}=0 ; \mathrm{RF}=1 \mathrm{PI}=0 ;$	$\mathrm{PI}=0 ; \mathrm{PO}=0 ; \mathrm{RF}=1$		
VAD enable = 1		\quad	$\mathrm{PO}=0 ; \mathrm{RF}=1$
:---			
VAD enable $=0$			

11.22

Table 11.2

I_{0}	I_{1}	I_{2}	I_{3}	x	y	I st
1	x	x	x	0	0	1
0	1	x	x		0	1
0	0	1	x		1	0
0	0	0	1		1	1
0	0	0	0		x	x

> Map simplification

11.23

Same as Fig. 11.14. Needs 8 AND gates and an 8×3 decoder.
11.24 (a)

I_{0}	I_{1}	I_{2}	I_{3}	I_{4}	I_{5}	I_{6}	I_{7}	x	y	z		Ist
1	x	x	x	x	x	x	x	0	0	0		1
0	1	x	x	x	x	x	x	0	0	1	1	
0	0	1	x	x	x	x	x	0	1	0		1
0	0	0	1	x	x	x	x	0	1	1		1
0	0	0	0	1	x	x	x	1	0	0		1
0	0	0	0	0	1	x	x	1	0	1	1	
0	0	0	0	0	0	1	x	1	1	0	1	
0	0	0	0	0	0	0	1	1	1	1	1	
0	0	0	0	0	0	0	0	x	x	x		0

(b)

Binary
10100000
10100100
10101000
10101100
10110000
10110100
10111000
10111100
hexadecimal
A0
A4
A8
AC
B0
B4
B8
BC

11.25

$76=(01001100)_{2}$
Replace the six O's by 010011 xy

11.26

Set the mask bit belonging to the interrupt source so it can interrupt again.
At the beginning of the service routine, check the value of the return address in the stack. If it is an address within the source service program, then the same source has interrupted again while being serviced.

11.21

The service routine checks the flags in sequence to determine which one is set, the first flag that is checked has the highest priority level. The priority level of the other sources corresponds to the order in which the flags are checked.

11.27

When the CPU communicates with the DMA controller, the read and write lines are used as inputs from the CPU to the DMA controller.
When the DMA controller communicates with memory the read and write lines are used as outputs from the DMA to memory.

11.28

(a) CPU initiates DMA by Transferring:

256 to the word count register.
1230 to the DMA address register.
Bits to the control register to specify a write operation.
(b)

1. I/O device sends a "DMA request".
2. DMA sends BR (bus request) to CPU.
3. CPU responds with a BG (bus grant).
4. Contents of DMA address register are placed in address bus.
5. DMA sends "DMA acknowledge" to I/O device and enables the write control line to memory.
6. Data word is placed on data bus by I/O device.
7. Increment DMA address register by 1 and Decrement DMA word count register by 1.
8. Repeat steps 4-7 for each data word Transferred.

11.29

CPU refers to memory on the average once (or more) every $1 \mu \mathrm{sec} .\left(1 / 10^{6}\right)$.
Characters arrive one every $1 / 2400=416.6 \mu \mathrm{sec}$. Two characters of 8 bits each are packed into a 16 -bit word every $2 \times 416.6=833.3 \mu \mathrm{sec}$. The CPU is slowed down by no more than $(1 / 833.3) \times 100=0.12 \%$.

11.30

The CPU can wait to fetch instructions and data from memory without any damage occurring except loss of time. DMA usually transfers data from a device that cannot be stopped since information continues to flow so loss of data may occur.
11.31

CPU operations
I/O channel operations

11.32

There are 26 letters and 10 numerals. $26 \times 26+26 \times 10=936$ possible addresses.

11.33

The processor transmits the address of the terminal followed by ENQ (enquiry) code 0000 0101. The terminal responds with either ACK (acknowledge) or NAK (negative acknowledge) or the terminal does not respond during a timeout period. If the processor receives an ACK, it sends a block of text.
11.34

11.35

32 bits between two flags; 48 bits including the flags.
11.36

Information to be sent (1023):
0111111111
After zero insertion, information transmitted:

Information received after O's deletion:

01111111111

CHAPTER 12

12.1

(a) $\frac{2048}{128}=16$ chips
(b) $2048=2^{11} \quad 11$ lines to address 2078 bytes. $128=2^{7} \quad 7$ lines to address each chip

4 lines to decoder for selecting 16 chips
(c) 4×16 decoder

12.2

(a) 8 chips are needed with address lines connected in parallel.
(b) $16 \times 8=128$ chips. Use 14 address lines $\left(16 k=2^{14}\right)$

10 lines specify the chip address
4 lines are decoded into 16 chip-select inputs.

12.3

10 pins for inputs, 4 for chip-select, 8 for outputs, 2 for power. Total of 24 pins.
12.4

4096/128 = 32 RAM chips; 4096/512 $=8$ ROM chips.
$4096=2^{12}-$ There 12 common address lines +1 line to select between RAM and ROM.

Component	Address	16151413	1211109	8765	4321
RAM	0000-OFFF	0000	$\stackrel{\text { decoder }}{5 \times 32}$	$\times \times \times$	$\times \times \times \times$
ROM	4000-1FFF	$\begin{array}{llll}0 & 0 & 0 & 1\end{array}$	$\underset{\substack{3 \times 8 \\ \text { decoder }}}{ } \times$	$\times \times \times \times$	$\times \times \times \times$

12.5

RAM $\quad 2048 / 256=8$ chips; $\quad 2048=2^{11} ; \quad 256=2^{8}$
ROM $\quad 4096 / 1024=4$ chips; $\quad 4096=2^{12} ; \quad 1024=2^{10}$
Interface $\quad 4 \times 4=16$ registers; $16=2^{4}$

Interface $8000-800 \mathrm{~F} \quad 1 \quad 0 \quad 0000 \quad \times \times \times x$

12.6

The processor selects the external register with an address 8000 hexadecimal. Each bank of 32 K bytes are selected by addresses $0000-7$ FFF. The processor loads an 8bits number into the register with a single 1 and 7 (O's). Each output of the register selects one of the 8 bank of 32 K bytes through a chip-select input.
A memory bank can be changed by changing the number in the register.

12.7

Average time $=T_{s}+$ time for half revolution + time to read a sector.
$\mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{s}}+\frac{1}{2 \mathrm{R}}+\frac{\mathrm{N}_{\mathrm{s}}}{\mathrm{N}_{\mathrm{t}}} \times \frac{1}{\mathrm{R}}$

12.8

An eight-track tape reads 8 bits (one character) at the same time.
Transfer rate $=1600 \times 120=192,000$ characters $/ \mathrm{s}$

12.9

From Sec. 12.4: $\quad \mathrm{M}_{\mathrm{i}}=\prod_{g=1}^{n}\left[\left(\mathrm{~A}_{\mathrm{j}} \oplus \mathrm{F}_{\mathrm{ig}}\right)^{\prime}+\mathrm{K}_{\mathrm{g}}{ }_{\mathrm{g}}\right]$
$\mathrm{M}_{\mathrm{i}}^{\prime}=\sum_{g=1}^{n}\left(\mathrm{~A}_{\mathrm{j}} \oplus \mathrm{F}_{\mathrm{ig}}\right) \mathrm{K}_{\mathrm{j}}$

12.10

A Match occurs if $\mathrm{T}_{\mathrm{i}}=1$
Match $=M_{i} T_{i}$

12.11
$M_{i}=\left(\prod_{g=1}^{n} A_{j} F_{i g}+A_{g}^{\prime} F_{i g}^{\prime}+K_{g}^{\prime}\right) \cdot\left(K_{1}+K_{2}+K_{3}+\cdots+K_{n}\right)$ At least one key bit k_{i} must be equal to $1>$
12.12 (c)

12.13

A d-bit counter drives a d-to-m line decoder where $2^{d}=m(m=N o$. of words in memory). For each count, the M_{i} bit is checked and if 1 , the corresponding read signal for word i is activated.
12.14

Let $X_{j}=A_{j} F_{i j}+A_{i}^{\prime} F^{\prime} \quad$ (argument bit = memory word bit)
Output indicator $\mathrm{G}_{\mathrm{i}}=1$ if:
$A_{1} F_{i 1}=1 \quad$ and $K_{1}=1$
or, if $X_{1} A_{2} F_{i 2}=1 \quad$ and $K_{2}=1$ etc.
(First bit in $A=1$ while $\mathrm{F}_{\mathrm{i} 1}=0$)
(First pair of bits are equal and second bit in $A=1$ while $F_{i 2}=0$)
$G_{i}=\left(A_{i} F_{i 1}^{\prime}+K_{1}^{\prime}\right)\left(X_{1} A_{2} F_{i 2}^{\prime}+K_{2}^{\prime}\right)\left(X_{1} X_{2} A_{3} F_{i 3}^{\prime}+K_{3}\right) \ldots\left(X_{1} X_{2} \ldots X_{n-1} A_{n} F_{i n}^{\prime}+K^{\prime}\right)$

12.15
$128 \mathrm{~K}=2^{17}$; For a set size of 2, the index: address has 10 bits to accomodate 2048/2 = 1024 words of cache.
(a)

7 bits	10 bits
TAG	INDEX

$$
\leftarrow \underset{8 \text { bits }}{\leftarrow} \quad \underset{\text { Block }}{\text { Words }} \leftarrow \leftarrow
$$

(b)

Size of cache memory is $1024 \times 2(7+32)$

$$
=1024 \times 78
$$

12.16
(a) $0.9 \times \underbrace{100}_{\text {cache access }}+0.1 \times \underbrace{11000}_{\begin{array}{c}\text { cache }+ \text { memory } \\ \text { access }\end{array}}=90+110=200 \mathrm{n} \mathrm{sec}$.
(b) $0.2 \times \underbrace{1000}+0.8 \times \underbrace{200}=200+160=360 \mathrm{n} \mathrm{sec}$.
write access read access
from (a)
(c) Hit ratio $=0.8 \times 0.9=0.72$
12.17

Sequence: ABCDBEDACECE

LRU	I
Count value =	3210
Initial words	ABCD
B is a hit	$A C D B$
E is a miss	CD BE
D is a hit	CBED
A is a miss	BED A
C is a miss	EDAC
E is a hit	D A CE
C is a hit	DAEC
E is a hit	DACE

12.18
$64 \mathrm{~K} \times 16$: 16 bit address; 16-bit data.
(a)

6	8	2	16 bits address
TAG	BLOCK	WRD	

(b)

(c) $\quad 2^{8}=256$ blocks of 4 words each
12.19
(a) Address space $=24$ bits $\quad 2^{24}=16 \mathrm{M}$ words
(b) Memory space $=16$ bits $\quad 2^{16}=64 \mathrm{~K}$ words
(c) $\frac{16 \mathrm{M}}{2 \mathrm{~K}}=8 \mathrm{~K}$ pages $\frac{64 \mathrm{~K}}{2 \mathrm{~K}}=32$ blocks

12.20

The pages that are not in main memory are:

Page	Address	address that will cause fault
2	2K	2048-3071
3	3K	3072-4095
5	5K	5120-6143
7	7K	7168-8191

12.21

420126140102357

Page reference	(a) First-in		(b) LRU	
	Pages in main memory		Contents of FIFO	Pages in memory
Initial	0124	4201	0124	Most recently nen
2	0124	4201	0124	4012
6	0126	2016	0126	0126
1	0126	2016	0126	0261
4	0146	0164	1246	2614
0	0146	0164	0146	6140
1	0146	0164	0146	6401
0	0146	0164	0146	6410
2	1246	1642	0124	4102
3	2346	6423	0123	1023
5	2345	4235	0235	0235
7	2357	2357	2357	2357

12.22

600 AF and F00AF
12.23

Logical address:				
7 bits		5 bits	12 bits	$=24$ bits
Segment				

Physical address:

12 bits	12 bits
Block	Word

12.24

Segment $36=(0100100)_{2}$ (7-bit binary)
Page $15 \quad=(01111)_{2} \quad$ (5-bit binary)
Word $2000 \quad=(011111010000)_{2} \quad$ (12-bit binary)
Logical address $=010010001111011111010000$
(24-bit binary)

CHAPTER 13

13.1

Tightly coupled multiprocessors require that all processed in the system have access to a common global memory. In loosely coupled multiprocessors, the memory is distributed and a mechanism is required to provide message-passing between the processors. Tightly coupled systems are easier to program since no special steps are required to make shared data available to two or more processors. A loosely coupled system required that sharing of data be implemented by the messages.

13.2

The address assigned to common memory is never assigned to any of the local memories. The common memory is recognized by its distinct address.

13.3

$P \times M$ switches
13.4
$\log _{2} \mathrm{n}$ stages with $\frac{\mathrm{n}}{2}$ switches in each stage.
13.5

Inputs $0,2,4$, and 6 will be disconnected from outputs 2 and 3 .

13.6

Distribution switch:

Input connected to A

Input connected to B
(b)

(c)

13.8

Paths from 7 to 9 :

$$
\begin{aligned}
& 7-15-13-9 \\
& 7-15-11-9 \\
& 7-3-11-9 \\
& 7-3-1-9 \\
& 7-5-13-9 \\
& 7-5-1-9
\end{aligned}
$$

13.9

13.10

Encoder input
Encoder output
Decoder input
Decoder output

(l_{1} has highest priority)
$\begin{array}{lllll}0 & 1 & 0 & 0 & \text { Arbiter } 2\left(\mathrm{~J}_{1}\right) \text { is acknowledged }\end{array}$
13.11

As explained in the text, connect output PO from arbiter 4 into input PI of arbiter 1. Once the line is disabled, the arbiter that releases the bus has the lowest priority.

13.12

Memory access needed to send data from one processor to another must be synchronized with test-and-set instructions. Most of the time would be taken up by unsuccessful test by the receiver. One way to speed the transfer would be to send an interrupt request to the receiving processor.
13.13
(a) Mutual exclusion implies that each processor claims exclusive control of the resources allocated to it.
(b) Critical section is a program sequence that must be completely executed without interruptions by other processors.
(c) Hardware lock is a hardware signal to ensure that a memory read is followed by a memory write without interruption from another processor.
(d) Semaphore is a variable that indicates the number of processes attempting to use the critical section.
(e) Test and set instruction causes a read-modify write memory operation so that the memory location cannot be accessed and modified by another processor.

11.14

Cache coherency is defined as the situation in which all cache copies of shared variables in a multiprocessor system have the same value at all times. A snoopy cache controller is a monitoring action that detects a write operation into any cache. The cache coherence problem can be resolved by either updating or invalidating all other cache values of the written information.

[^0]: Function table

