Engineering mechanics
""Static"'
lecture 1

Force System

Before dealing with a group or system of forces, it is necessary to examine the properties of a
single force in some detail, A force has been define as an action of one body on another. In dynamics we
will see that a force is defined as an action which tends to cause acceleration of a body. A force is a
vector quantity, because its effect depends on the direction as well as on the magnitude of the action.
Thus, the forces may be combined according to the parallelogram taw of vector addition.

The action of the cable tension on the bracket in Fig.1a is represented in the side view,.Fig.2b, by the
force vector P of magnitude P. The effect of this action on the bracket depends on P, the angle 6, and the
location of the point of application A. changing any one of these three specifications will alter the effect
on the bracket, such as the forces in one of the bolts which secure the bracket to the base, or the internal
the complete specification of the action of a force must include its magnitude, direction, and point

application, and therefore we must treat it as a fixed vector.

Figure 1

External and internal Effects

We can separate the action of a force on a body into two effects, External and internal , for the
bracket of Fig.2 the effects of P external to the bracket are the reactive forces(not shown) exerted on the
bracket by the foundation and bolts because of the action of P. forces external to a body can be either
applied. forces or reactive forces. The effects of P internal to the bracket are the resulting internal forces
and deformations distributed throughout the material of the bracket. The rotation between internal forces
and internal deformations depends on the material properties of the body and is studied in strength of

materials, elasticity, and plasticity.



Principle of transmissibility

When dealing with the mechanics of a rigid body, we ignore deformations in the body and
concern ourselves with only the net external effects of external forces. In such cases, experience shows us
that it is not necessary to restrict the action of an applied force to a given point. For example, the force P
action on the rigid plate in Fig.2 may be applied at A or at B or at any other point on its line of action,
and the net external effects of P on the bracket will not change. The external effect are the force exerted
on the plate by the bearing support at 0 and the force exerted on the plate by the roller support at C.

This conclusion is summarized by the principle of transmissibility, which states that a force may be
applied at any point on its given line of action without altering the resultant effects of the force external to
the rigid body on which it acts. Thus, whenever we are interested in only the resultant external effects of
force, the force may be treated as a sliding vector, and we need specify only the magnitude, direction, and

line of action of the force, and not its point of application.

Figure 2

Force Classification
Forces are classified as either contact or body forces. A contact force Is produced by direct

physical contact; an example is the force exerted on a body a supporting surface. On the other hand, a
body force is generated by virtue of the position of a body within a force field such as A gravitational,
electric, or magnetic field. An example of a body force is your weight.

Forces may be further classified as either concentrated or distributed. Every contact force is
actually applied over a finite area and is therefore really a distributed force However, when the
dimensions of the area are very small compared with the other dimensions of the body, we may consider
the force to be concentrated at a point with negligible loss of accuracy. Force can be distributed over an
area as in the case of mechanical contact, over a volume when a body force such as weight is acting or
over a line, as in the case of the weight of a suspended cable.

The weight of a body is the force of gravitational attraction distributed over its volume and may be taken
as a concentrated force acting through the center of gravity. The position of the center of gravity is
frequently obvious if the body is symmetric.

We can measure a force either by comparison with other known forces, using a mechanical

balance, or by the calibrated movement of an elastic element. All such comparisons or calibrations have



as their basis a primary standard. The standard unit of force in Sl units is the Newton (N) and in the U.S.

customary system is the pound (Ib).

action and Reaction

According to Newton's third law, the action of a force is always accompanied by an equal and
apposite reaction. It is essential to distinguish between the action and the reaction in a pair of forces. To
do so, we first isolate the body in question and then identify the force exerted on that body (not the force
exerted by the body). It is very easy to mistakenly use the wrong force of the pair unless we distinguish

carefully between action and reaction.

Concurrent Forces
Two or more forces are said to be concurrent at a point if their lines of action intersect at that

point. The forces F1 and F2 shown in Fig.3a have a common point of application and are concurrent at
the point A. Thus, they can he added using the parallelogram law in their common plane to obtain their
sum or resultant R, as shown in Fig. 3a. The resultant lies in the same plane as Fl and F2.

Suppose the two concurrent forces lie in the same plane but are applied at two different points as in Fig.
3b. By the principle of transmissibility, we may move them along their lines of action and complete their
vector sum R at the point of concurrent A, as shown in Fig. 3b. We can replace F1 and F2 with the
resultant R without altering the external effects on the body upon which they act.

We can also use the triangle law to obtain R, but we need to move the line of action of one of the forces, as
shown in Fig.3c. If we add the same two forces, as shown in Fig. 3d, we correctly preserve the
magnitude and direction of R, but we lose the correct line of action, because R obtained in this way does
not pass through A. Therefore this two of combination should be avoided.

We can express the sum of the two forces mathematically by the vector equation

R=F1+F2

Figure 3




Vector Components

In addition to combining forces to obtain their resultant, we often need to replace a force by its
vector components in directions which are convenient for a given application. The vector sum of the
components must equal the original vector. Thus, the force R in Fig. 3a may be replaced by, or .resolved
into, two vector components F1 and F2 with the specified directions by completing the parallelogram as
shown to obtain the magnitudes of Fland F2.

The relationship between a force and its vector components along given axes must not be
contused with the relationship between a force and its perpendicular projections onto the same axes.
Fig.3e shows the perpendicular projections Fa and Fb of the given force R onto axes a and b, which are
parallel to the vector components F1 and F2 of Fig.3a. Figure 3e shows that the components of a vector
are not necessarily equal to the projections of the vector onto the same axes. Furthermore, the vector sum
of the projections Fa and Fb is not the vector R, because the parallelogram law of vector addition must be
used to form the sum. The components and projections of R are equal only when the axes a and b are

perpendicular.

A Special Case of Vector Addition

To obtain the resultant when the two forces Fl and F2 are parallel as in Fig. 4, we use a special
case of addition. The two vectors are combined by first adding two equal, opposite, and collinear forces F
and -F of convenient magnitude, which taken together produce no external effect on the body. adding F1
and F to produce R1, and combining with the sum R2 of F2 and F yield the resultant R, which is correct
in magnitude, direction, and line of action. This procedure is also useful for graphically combining two

forces which have a remote and inconvenient point of concurrency because they are almost parallel.

Figure 4




Rectangular Components
The most common two dimensional resolution of a force vector is into rectangular components. It follows

from the parallelogram rule that the vector F of Fig. 5 may be written as

F=Fx +Fy

Where Fx and Fy are vector components of F in the x- and y-direction.

For the force vector of Fig. 5, the x and y scalar components arc both positive and are related to the

magnitude and direction of F by

... EQS.1

Determining the Components of a Force

Dimensions are not always given in horizontal and vertical directions, angles need not be measured
counterclockwise from the x-axis, and the origin of coordinate need not be on the line of action of a force.
Therefore, it is essential that we be able to determine the correct components of a force no matter how the
axes are oriented or how the angles are measured. Figure 6 suggests a few typical examples of vector
resolution in two dimensions.

Memorization of Egs.1l is not a substitute for understanding the parallelogram law and for
correctly projecting a vector onto a reference axis. A neatly drawn sketch always help6 to clarify the
geometry and avoid error.

Rectangular components arc convenient for finding the sum or resultant R of two forces which are
concurrent. Consider two forces Fland F2 which are originally concurrent at a point O. Figure 7 shows
the line of action of F2 shifted from O to the tip of Flaccoding to the triangles rule of Fig. 3 In adding the

force vectors F1 and F2, we may write

R = Fl oI FZ = (lei o Fi\.j) + (szi = ngj}
ar

Bi+BJ=, + F)i+ Iy + Fp)i

From which we conclude that

Rx:Fl +F2x_EFT ...... 2
By=T + T = 57,



F . =Fcos(f— ) sz—Fcosﬁ F =Fsin(zx-§) F =Fcos(f—e)
F, =Fsin(f - a) F =—Fgin f F =—Fcos(m— ) F, =Fsin(f - o)

Figure 6

The term XFx means "the algebraic sum of the x scalar components™. For" the example- shown In Fig. 7,
note that the scalar component F,, would be negative.

Figure 7




Examples

Example 1

Combine the two forces p and T, which act on the fixed structure at B, into a single equivalent force R.

P=800N = B
Graphical solution Y
The parallogram for the vector addition of forces T and P is Q7 q Y
constructed as shown in Fig.a . the approxmate scale used / :
here is 1cm=400n; a scale of 1cm = 100 N would be more Bin i
——

suitable for regular- size paper and would give greater ;
accuracy. Note that the angle a must be determined prior to 4 &
C‘c =

construction of the parallogram. From the given figure

tan @ =

6 8in 60°" et o
3+ 6cosbO° e ey

sy

Measurment of the length R and direction 6 of the resultant force
R yield the approximate results

R=5%N 6= 45

Geometric solution
The triangle for the vector addition of T and P is shown in Fig, b.
the angle a is calculated as above. The law of cosines gives

- — i ; : A 800
B = (6007 + (800 ~ 2(800)(800) cos 40.9° = 274300 By - a
Ro= S24N R : : : Ll 4 R\\ 600 N
frome the law sines, we may determine the angle 6 which orients R. Fo
thuse, T
B0 B B (b)
; _s—_in.-ﬁ _'_—_sm'._-.4ﬁ.9° gin 4 = 0.750 = 48;6 i
Algebric solution
By using the x-y coordinate system on the given figure, Y
we may write :
S RS PaTRs R L) L = T
R = 3F, = 800 600 cos 40.9° = 346 N’ i B
Ry. =3F, = —600 sin 40.9° = '-'_393_ N 'R,=-393N : T

The magintude and direction of the resultant force R as shown
in Fig, c are then (e)

R = VR? + R? = J(346)> + (=898 = 594 N

R
9 = tan"! Ef'r = e % — 486"
fd x . #y > P



Examples 2:

Determine the magnitude of the resultant force and its direction measured clockwise from
the positive x axis.

Units Used:

kN =10°N

Given:

F1=20KkN
F2 =40 kN
F3 =50 kN

D>
1
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P wR R

Solution:

s

f

N F =TF- _ o, L. | g A
— Fp=1F; FRI—FE_ a3 AT ;Jcaslw:'
I"\."IIE +.f_ "."illl'r‘:__I:li“i.-"I
Fpy=38.28kN
yE +..irh k.l,‘I'C_—fr:.__.'

F=0603kN

g = aTau|r |iﬂ.1'| '
Ax |

6= 15deg



Example 3

A resultant force F is necessary to hold the ballon in place. Resolve this force into components
along the tether lines AB and AC, and compute the magnitude of each component.

Given:

F=3501Ib !

6 1 =230 deg
0 2 =40 deg

Solution:

F4R F

in(@])  sin[ 180 deg — (8] + &]]

- - si.ﬂ[.ﬂ;]ll
4B = F|— —
sin 180 deg — (6] + 52]] Fis .
180 = (8 451 .
F4g = 1861b y !
Fac F F
sin( @) sinl 180 deg — (8] + 2]
Siﬂ{ﬂj.:l
Fy =F :
Ac Lm{mﬂ deg — (87 + 82]]
F4qc=2301b



Problems

The post is to be pulled out of the ground using two ropes A and B. Rope A is subjected to force
F1 and is directed at angle 61 from the horizontal. If the resultant force acting on the post is to be

FR, vertically upward, determine the force T in rope B and the corresponding angle 6.

Given:
FR=12001b I
F1=600Ib r /
01 = 60 deg \ I
k\;l.i;a
—
il

The plate is subjected to the forces acting on members A and B as shown. Determine the magnitude of the
resultant of these forces and its direction measured clockwise from the positive x axis. Given:

FA =400 Ib
FB =500 Ib
61 = 30 deg
6 = 60 deg
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The y-eomponent of the force F which a pereson excerls
on the handle of the bog wrench is known to he 320 M.

Determing the z-component and the magnitude of F.
Ara. F, = 1883 N, F = 34TN

Determine the resultant B of the two forces shown by
{a} applying the parallelogram rale for vector addition
and (&} summing scalar compon ents.

BOO N

o

|

|

|
"';’!.

To satislv design limitations it is necessary to deter-
mina the effect of the 2-kN tension in the cable on the
shear, tenzion, and bending of the fixed T-beam. For
thie purpose replace this foree b its equivelent of two
forces st A, F, parallel and F, perpendicalar to the
heam. Determine F, and F,.

Ana F, = 1288 KNF,, = 1532 kN

The two structural members, one of which i= In ten-
gion and the other in compression, sxert the indicated
foreea on joint 0. Determine the magnitude of the re-
sultent B of the two forces and the angle # which R
makes with the positive y-gxis.

Determine the magmitnde F, of the tensile spring
force in order that the resultant of F, and F 15 &
vertical foree, Determineg the magnitude i of this ver-
tical resuliant force.

F=500N

In the design of a contesl mechanism, it iz deter-
mined that rod AB tranemits a 260-N foree P to the
crank BC. Determing the x and ¥ scalar components

ol F. Ans. P, = —240 N
~100 N

For the mechanism of Prob. 2/11, determing the sca-
lar components P, and P, of P which are tangent and
normal, respaectively, to crank 5O,

Determine the resuliant R of the two forces applied
to the bracket. Write B in terms of unit vectors alang

the x- and y-sxes shown.
150 N

11



If the egual tepsions T in the pulley cable are 400 IN, Tt is desired to remove the spike frn-ml the timber by
express in vector notation the foree B exseted on the applying foree along its horigomtal axis. An ohetruc-
pulley by the two tensions. Determine the magnitude tion A4 prevents direct access, so that tw;rfurcas, e
of B, — 800 = okl 16 KN and the other P, are applied by cables aa

Ans, B = B00i = 346/ N, R = 693 N : Pt 4 iude of P necsssary to
emsure a resultant T directed along the spike, Aleo

find T. Ans. P = 218 kN
T = 320kN

1.6kN
While steadily puzhing the machine up an incline, & Ty
perscn exerts 2 120-N force P as shown, Determine At what angle # must the B00-N force be applied in
the components of P which arve parallel and perpen- arder that the resultant R of the two forees has a
dirular o the inclina, magnitude of 2000 N? For this mnd:itdﬂn. determine
the angle f between R and the vertical

1400 N

In the design of the robot Lo neert the small cylin-
drical part into a close-Aiting eirenlar hole, the robot
arm must exert & 90-N foree P on the part parellal
tor the axie of the hole as shown. Determine the com.
ponante of the force which the part exerts an the ro-
hot, along axes (@) parallel and perpendicular to the

arm AR, and (%} parallel and perpendicular to the
arm 5C,

12



Lecture 2

Moment

In addition to the tendency to move a body in the direction of its
application, a force can also tend to rotate a body about an axis. The
axis may be any line which neither intersects nor is parallel to the
tine of action of the force. This rotational tendency is known as the
moment M of the force. Moment is also refereed to as torque.

As a familiar example of the concept of moment, consider. the pipe
wench of Fig. a. One effect of the force applied perpendicular to the
handle of the wench is the tendency to rotate the pipe about its
vertical axis. The magnitude of this tendency depends on both the
magnitude F of the force and the effective length d of the wrench
handle. Common experience shows that a pull which is not
perpendicular to the wrench handle is less effective than the right-

angle pull shown.

Moment about a Point

Figure b shows a two-dimensional body acted on by a force F in its
plane. The magnitude of the moment or tendency of the force to
rotate the body about the axis O-O perpendicular to the plane of the
body is proportional both to the magnitude of the force and to the
moment arm d, which is the perpendicular distance from the axis to
the line of I action of the force. Therefore ,the magnitude of the

moment is defined as

The moment is a vector M perpendicular to the plane of the body.
The sense of M depends on the direction in which F tends to rotate
the body The right-hand rule, Fig.1c, is used to identify this sense.
We represent the moment of F about O-O as a vector pointing in
the direction of the thumb, with the finger curled in the direction of
the relational tendency.

The moment M obeys all the rules of vector combination and may
be considered a sliding vector with a line of action coinciding with
the moment axis. The basic units of moment in SI units are
Newton-meters (N.m), and in the U.S. customary system are
pound-feet (ob-ft).

13

Figure 1



When dealings with forces which all act in a given plane, we customarily speak of the moment about a
point. By this we mean the moment with respect to an axis normal to the plane and passing through the
point. Thus, the moment of force F about point A in Fig.d has the magnitude M =Fd and is
counterclockwise.
Moment directions may be accounted for by using a stated sign convention. such as a plus sign (+) for
counterclockwise moment and a minus sign! (+) for clockwise moments, or vice versa. Sign consistency
within a given problem is essential. For the sign convention of Fig.d, the moment of F about point A (or
about the z-axis passing through point A) is positive. The curved arrow of the figure is a convenient way
to represent moments in two-dimensional analysis.
Varignon's theorem

One of the useful principles of mechanics is Varignon's theorem, which states that the moment of
a force about any point is equal to the sum of the moment of the components of the force about the same
point.
To prove this theorem, consider the force R acting in the plane of the body shown in Fig. 2a. The forces P

and Q represent any two nonrectangular components of R. The moment of R about point O is

Mo=r xR
Because R=P + Q, we may write
r x R=r x (P+Q)
Using the distributive law for cross products, we have
Mo=r x R=rxP+rxQ
which says that the moment of R about O equals the sum of the moments about O of its components P
and Q. This proves the theorem.

Varignon's theorem need not be restricted to the case of two component, but it applies equally
well to three or more. Thus we could have used any number of concurrent components of R in the
foregoing proof

figure 2b illustrates the usefulness of Varignon's theorem. The moment of R about point O is Rd.
However, if d is more difficult to determine than p and g, we can resolve R into the components P and Q,
and compute the moment as

M, =Rd=-pP + qQ
where we take the clockwise moment sense to be positive. Sample Problem 1 shows how Varignon's

theorem can help us to calculate moments.

14



Figure 2

Examples

Example 1

Calculate the magnitude of the moment about the base point O of the 600N force in five different way

Solution
() The moment arm to the 600-N force is

d=4cos40° +2sin40° =4.35m
(1) By M =rd the moment is clockwise and his the magnitude

Mo = 600(4. 35) = 2610 N.m
(1) Replace the force by its rectangular components at A

F1=600 cos 40° =460 N, F2 =600 sin 40°= 386N
(2)By Varignon's theorem, the moment becomes

Mo = 460(4) + 386(2) = 2610N
(1) By the principle of transmissibility, move the 600-N force
along its line of action to point B, which eliminates the moment of
the component F2. The moment arm of F1 becomes

dl=4+2tan 40’ =5.68 m
and the moment is

Mo = 460(5.68) = 2610 N.m
(3) (IV) Moving the force to point C eliminates the moment of the
component F1. The moment am of F2 becomes

d2=2+4co0s40° =6.77 m
and the moment is

Mo = 386(6.77) + 2610 N.m

15
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Example 2

Determine the angle 6 (0 <= 6 <= 90 deg) so that the force F develops a clockwise moment M

about point O.

Given:

F=100N ¢ =60 deg
M20=N.m a =50 mm
0 = 30 deg b =300 mm
Solution:

Initial Guess 6 =30 deg

Given

M=Fcos(8 )(a+bsin(¢p ))— F sin(8 )(b cos(o ))
0 = Find(6 ) 6 = 28.6 deg

Example 3

Determine the magnitude and directional sense of the moment of the forces
(1) about point O.
(2) about point P.

Given:

FB=260Ne=2m

a=4m
b=3m
c=5m
d=2m

Solution:

(1)

f=12
g=>5
0 =30 deg
FA =400 N

Ek' M, = Fysinl8ld+ Fyeos(8lc+ Fg %{a s é)
Ve
My =357kN-m (positive means counterclockovise)

I

b+ Fg
3
Y .f{- +g_ "'u'l .'Ir‘_ T &

EY
A

Mp = 3.15KN-m (positive means counterclockwise)

16
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Problems

The 4-kN foree F i applied at point A, Compute the The throttle-control sector pivots fresly at O, If an
maoment of F ahout peint (3, expressing it both as a internal torsional spring exerts a return moment
sealar and as a vector quantity, Determine the coce- M = 2 N-m on the sector when in the position
dinates of the points on the x- and y-axes sbout which ghown, for design purpeses detormine the neceseary
the mement of F is zero. throttle—cable tension T so that the net moment
Ans. Mg = 268 kN-m GCW, My, = 268k kN-m about ) is zero. Note that when T is zero, the sector
x,3) = =14, 0)and [0, 0.78) m rests against the idle-control adjustment serew at &,
Y Ams. T =40N
L
|
l A2 15
|
=4
F=4kN~ |
|
————————— L— e ————— e L T
o

.

| The rectangular plate is made up of 1-m aguares as
shown. A 75-N force is applisd &t point A in the di-
rection shown. Determine the moment of this fberce
aboutl point B and sbout point £,

Caleulate the moment of the 250-N force on the han-
dle of the monkey wrench about the center of the
balt.

TN

1m A B

# foree F of magnitude 60 N is applied to the pear.
Determine the moment of F about point 0.
Ans. M = 5.64 Nem CW

In arder to raise the fiagpole OO 2 light frame OAR
is attached to the pole and & tension of 3.2 kN is
developed in the hoisting cable by the power winch
. Caleulate the moment Mg of thiz tension ahout

the hingepoint O 4,0 ar — 6,17 kN-m COW

17



Elements of the lower arm are ghown in the figure,
The mass of the forearm is 2.5 kg with mass eenter
at (7, Determine the combined moment aboul the el-
how pivot O of the weights of the forearm and the
8.6:-kg homopenenus aphere. What must the hiceps
tension foree T be 20 that the overall moment about
{0 ig zero?

Ans My = 1425 N-mCW, T = 285 N

Compute the mement of the 1.6-N force about the
pivot © of the wall-switch toggle.

F=16N

A force of 200 N is applied to the end of the wraneh
to tighten & fAange belt which holds the wheel to the
axle. Determine the moment M produced by this
foree ahout the center (¢ of the wheel for the position
of the wreneh shown, .. af — 783 N-m CW

2 N

The 20-M force P iz applied perpendicular to the por-
tion BC of the hent bar, Determine the moment of P

about point B and ahout paint A,

The small erane is mounted elong the side ol & pickup
bed and facilitates the handbng of heavy loadse When
the boom elevation angle 15 & = 40°, the foree m the
hydraulic cylinder B is 4.5 kN, and this foree ap-
plied at point ' iz in the direction from B to € (the
cyhinder is in compression). Determine the moment
of this £.5-kI foree about the boom pivat point O,

Design eriteria reguire that the robot exert the 80-N

foree on the part as shown while mserting a crlin-

drical part into the cireular hole. Determine the mo-

ment ahout painte 4, & and O of the foree which the
part exeris on the robot,

Ans. M, = 688 N-m, Mz ~ 338 N m

Mo = 1350 N rm (all CCY)

18



Lecture 3

Couples
The moment produced by two equal, opposite, and noncollinear forces is e
called a couple. couples have certain unique properties and have important .;ﬂ{ :
applications in mechanics. ! 5 /
Consider the action of two equal and opposite forces F and -F a e y I
distance d apart, as shown in Ifig.1a . These two forces cannot be combined \ |
into a single force because their sum in every direction is zero. Their only
effect is to produce a tendency of rotation. The combined moment of the
two forces about an axis normal to their plane and passing through any
point such as O in their plane is the couple M. This couple has a magnitude
M= F(a+b)-Fa
Or M= Fd

Its direction is counterclockwise when viewed from above for the case

Illustrate. Note especially that the magnitude of the couple is dependent of

the distance a which locates the forces with respect to the moment center O.

It follows that the moment of a couple has the same value for all moment | 1\31-_‘{

centers.
Vector Algebra Method

We may also express the moment of a couple by using vector algebra. With

the cross product Eg. the combined moment about point 0 of the couple of

Fig. 1bis ()
M =raxF + 1o X (-F) = (fa~re) XF

where ra and rg are position vector which run from point O to arbitrary ff"_,;;_ -‘\h ,f"#_

points A and B on the tines of action of F and -F, respectively. Because ra - | h‘-l I

's =r, we can express M as '“-.x\ ;I ::u'

M=rxF T o

."I-Il _-l.'\ '..-"_ o
i B ."
{ '|I !
Here again, the moment expression contains no reference to the moment | # | \V\ '.
\ | G
center 0 and, therefore, is the same for all moment centers. Thus, we may i
l'. ."I I\'.
W k-

b

represent M by a free vector, as shown in Fig. 1c, where the direction of M — i
- - - Counterrlockrias Clockwise
is normal to the plane of the couple and sense of M is established by the couple touple

right-hand rule.

i
Figure 1
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Because the couple vector M is always perpendicular to the plane of the forces which constitute
the couple, in two dimensional analysis we can represent the sense of couple vector as clockwise or
counterclockwise by one of the convention shown in fig.1d. later, when we deal with couple vectors in
three-dimensional problems, we will make full use of vector notation to represent them, and the

mathematics will automatically account for their sense.

Equivalent Couples

Changing the values of F and d does not change a given couple as long as the product Fd remains the
same. Likewise, a couple is not affected if the forces act in a different but parallel plane. Figure 2 shows
four different configurations of the same couple M. In each of the four cases, the couples are equivalent

and are described by the same free vector which represents the identical tendencies to rotate the bodies.

Figure 2

Force-Couple Systems

The effect of a force acting on a body is the tendency to push or pull the body in the direction of
the force, and to rotate the body about any fixed axis which does not intersect the line of the force. We
can represent this dual effect more easily by replacing the given force by an equal parallel force and a
couple to compensate for the change in the moment of the force.

The replacement of a force by a force and a couple is illustrated in Fig. 3, where the given force F
acting at point A is replaced by an equal force F at some point B and the counterclockwise couple M =
Fd. The transfer is seen in the middle figure, where the equal and opposite forces F and -F are added at
point B without introducing any net external effects on the body. We now see that the original force at A
and the equal and opposite one at B constitute the couple M = Fd, which is counterclockwise for the
sample chosen, as shown in the right-hand part of the figure. Thus, we have replaced the original force at
A by the same force acting at a different point B and a couple, without altering the external effects of the
original force on the body. The combination of the force and couple in the right-hand part of Fig.3 is
referred to as a force-couple system.

By reversing this process, we can combine a given couple and a force which lies in the plane of
the couple (normal to the couple vector) to produce a single, equivalent force. Replacement of a force by
an equivalent force-couple system, and the reverse procedure, have many applications in mechanics and

should be mastered.
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Figure 3

Examples

Example 1
The rigid structural member is subjected to a couple consisting of the two

100-N forces. Replace this couple by an equivalent couple consisting of
the two forces P and —P, each of which has a magnitude of 400 N.

Determine the proper angle 6.

Solution
The original couple is counterclockwise when the plane of the forces is

viewed from above, and its magnitude is
[M=Fd]

M =100(0.1) =10 N.m

The forces P and —P produce a counterclockwise couple
M = 400(0.040)cos0

Equating the two expression gives

10 = 400(0.040) cos6

0 = cos (10/16) = 51.3°

Example 2
Replace the horizontal 400-n force acting on the lever by an equivalent
system consisting of a force at O and a couple.
Solution
We apply two equal and opposite 400-N forces at o and identify
counterclockwise couple
[M=Fd]

M = 400(0.200sin60° ) = 69.3 N.m

Thus, the original force is equivalent to the 400-n forces at 0 and the 69.3

N.m couple as shown in third of the three equivalent figures
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PROBLEMS

Compute the combined moment of the two 180-N
forces ahout (@) point O and (3) peint 4.

Ang. (o) Mo = 108 N+m CCW

b) M, = 108 N-m OCW

i
+ :"i 180 M
240 mmim |
.1 — 4
Hﬂlmm :
e o
180 N |

Replace the 4-kN foree acting at polnt A by a forpe-
couple system at (a) point O and (3) paint 8.

4 kN

\J,'
|
1
&. A
ey
:D.Bru
_E__IE:E'“'E ______ *

The indieated foree-couple system is applied to a
amall shaft at the center of the rectangular plate. Re-
place this system by a single foree and specify the
enordinate of the point on the y-axis through which
the line of uetion of this resultant foree passes.

Ang, ¥y = —Tomm

200 mm

The top view of a revolving entrance door s shown,
Two persons simultanemely approach the door and
exert forces of equal magnitudes as showm. If the re-
sulting moment about the door pivor axis at ¢ iz 25
N +m, determine the force magnitode F.
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In the design of the lifting hook the action of the ap-
plied foree F ot the critieal section of the hook iz &
direct pull at B and a couple. If the magnitude of the
couple is 4000 N «om, determine the magnitude of F,

Ang, F o= 40 kN

The gystem consisting of the bar 04, two identical
pulleys, and a section of thin tape i subjected to the
town 180-M tensile foroes shoewm in the fipure. Dater-
mine the equivalsnt force—couple system at paint O,

A lug wrench ia vaed to tighten a square-head halt.
If 250-M forces are applied {0 the wrench as shown,
determine the mamitude F of the equal forees ex-
ertad on the four contact points on the 25-mm belt
head 50 that their external effect on the balt is sguiv-
alent to that of the twae 250-M forees. Assume that
the forges are perpendicular to the flats of the bolt

hieaad.

Ans. F = 3800 N

View C Detail
ielearances exaggerated]

The inspection door shown is constructed of sheet
atee] which is 3 mm thiele Determine the force—cou-
ple system located al the hinge center € which is
equivalent to the weight of the door. State any

asENmMptIons,
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- m—————— -

A ADD-N foree i8 applied to the weldsed slender bar at

an angle # = 207, Determine the equivalent fores— Caleulate the moment of the 1200-N force sbout pin
touple system acting on the weld at (o) point A and A of the bracket. Degm by replacing the 1200-N foree
(t) point 0. For what value of # would the resulte of by a force—couple system at point O

parts (w) and (&) be identical?
Ang. (o) F = AN, M, = 1818 N-:m W
B F = 40N Mg = 214 N-m COW
& = { or 180°

A foree T of magnitude 50 I is exerted on the auto-
mohile parking-brake lever at the peition x = 250
mum, Replace the force by an equivalent force—couple
gyslom at the pivet point O, Ans B = 50N

Replaes the couple and fores shown by o sngle force
F applied at a point 0. Loeate D by determining the
distance .

&0 Nm

The wrench is suhjected to the 200-N foree and the
fores P as shown. If the eguivalent of the two forcea
ie & foree B at O and & couple expressad as the vector
M = 20k N-m, determine the vector expressions for

P and R. Ane. P = 40§ N
R = —160 N
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The figure reprogenta two integral gears subjected to
the tooth-comtact forces shown, Replace the two
farces by an equivalent single force R at the rotation
axiz ( end a eorrecponding couple M. Bpecify the
mapnitudes of B and M. If the gears were to start
from rest under the action of the tooth Inads shown,
in what direction would rotation take plage?

The eombinad drive wheels of & front-wheal-drive au-
tomobila are aeted on by & TOO0-N normal reection
force and a friction fores F, hoth of which are exerted
by the road surface. If it 38 known that the resnl-
tant of these two forees makes a 15° angle with the
vortical, determine the egmvalent force—couple sys-
tom at the car mass eenter (F. Treat this as a two-
dimensional problem. Ans B = T2EON

Mgz = 7940 N-m CW

25

The weld at ) can support a maximum of 2600 N of
feree along each of the n- and ¢f-divections and & max-
imum of 1400 1+t of moment. Determine the allow-
able range for the direction 8 of the 2700-N foree
applied at 4. The angle 0 is restricted to 0 = § = 80°.

BTN



Lecture 4

Resultant
The properties of force, moment, and couple were developed in the previous four lecture. Now we

are ready to describe the resultant action of a group or system of forces. Most problems in mechanics deal
with a system of forces, and it is usually necessary to reduced the system to its simplest form to describe
its action. The .resultant of a system of forces is the simplest force combination which can replace the
original forces without altering the external effect on the rigid body to which the forces are applied.
Equilibrium of a body is the condition in which the resultant of all forces acting on the body is zero. This
condition is studied in statics. When the resultant of all forces on a body is not zero, the acceleration of
the body is obtained by equating the force resultant to the product of the mass and acceleration of the
body. This condition is studied in dynamics. Thus, the determination of resultants is basic to both statics
and dynamics

The most common type of force system occurs when the forces all act in a single plane, say, the
x-y plane, as illustrated by the system of three forces F1, F2, and F3 in Fig. 1. We obtain the magnitude
and direction of the resultant force R by forming the force polygon shown in part b of the figure, where

the forces are added head to-tail in any sequence. Thus, for any system of coplanar forces we may write

R=F; +Fs +Fqg+ - =7FH |

K. = 5K, 'R -5FE, R = (SR E
R ZE,
e R

o =¥, E

-

Graphically, the correct line of action of R may be obtained bv preserving the correct lines of action of
the forces and adding them by the parallelogram law. We see this in part a of the figure for the case of
three forces where the sum R1 of F2 and F3 is added to F1 to obtain R. The principle of transmissibility

has been used in this process.

Figure 1

Algebraic. Method

We can use algebra to obtain the resultant force and its line of action

1. Choose a convenient reference point and move all forces to that point. This process is depicted for a
three-force system in Figs.2a and b, where M1, M2, and M3 are the couples resulting from the transfer of

forces F1, F2, and F3 from their respective original lines of action to lines of action through point O.
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2. Add all forces at O to form the resultant force R, and add all couples to form the resultant couple Mo.
We now have the single force-couple system, as shown in Fig. 2c.

3. In Fig. 2d, find the line of action of R by requiring R to have a moment of Mo about point O. Note that
the force systems of Figs.2a and ,2d. are equivalent, and that X(Fd) in Fig. 2a is equal to Rd in Fig. 2d

Figure 2

principle of Moments

This process is summarized in equation form by

The first two of Egs.2 reduce a given system of forces to a force- couple system at an arbitrarily chosen
but convenient point O. The last equation specifies the distance d from point O to the line of action of R,
and states that the moment of the resultant force about any point O equals the sum of the moments of the
original forces of the system about the same point. This extends Varignon's theorem to the case of
nonconcurrent force system; we call this extension the principle of moments . for a concurrent system of
forces where the lines of action of all forces pass through a common point O, the moment sum Mo about
that point is zero. Thus, the line of action of the resultant R = XF, determined by the first of Egs. 2, passes
though point O. For a parallel force system, select a coordinate axis in the direction of the forces. If the

resultant force R for a given force system is zero, the resultant of the system need not be zero because the
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resultant may be a couple. The three forces in Fig. 3, for instance, have a zero resultant force but have a

resultant clockwise couple M=F3d

Figure 3

Examples y
Examplel PN ¢

Determine the resultant of the four forces and one couple which act on the

plate shown.

Solution
Point 0 is selected as a convenient reference point for the force-couple 40Ni_‘,,-,_'_._'
Imy '

system that is to represent the given system

gl 4 R, =40 + 8D ens 90% -~ 60 tos 45° = 58 N
IR = ZF,] R, = 60 + B0 gin 30° < B0 cos 45° = 1324 N ‘
R = /B2 - R R = J(GB9¥ + (19247 ~ 1488 N Ans.

R, 3 '
[ﬂ ="tan ! :J fo—tan7! g 5927 Ars, @

i, gas |My| =
My = EiFdil My = 140 — 80(5) + B0 coe 45741 — Bl sin 45°0T) 237 Nm

= —23T NW-m

The force-couple system consisting of R and Mo is shown in Fig.a
We now determine the final line of action of R such that R alone )

represents the original system

(R = |Mall 14584 = 237 4 = 1600m Anz.

Hence, the resultant R may be applied at point on the line which makes a 937
)

63.2° angle with the x-axis and is tangent at point A to a circle of 1.6m

radius with center 0, as shown in part b of the figure. We apply the equation
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Rd=Mo in an absolute-value sense (ignoring any sign of Mo) and let the physics of the situation, as
depicted in Fig.a, dictate the final placement of R. had Mo been counterclockwise, the correct line of
action of R would have been the tangent at point B.

The resultant R may also be located by determining its intercept distance b to point C on the x-

axis, Fig.c. with Ry and Ry acting through point C, only Ry exerts a moment about 0 so that

: ; 237
b= M- — = 1.70%
¥ HK | aned b T35 4 1.782 'm

Alternatively, the y-intercept could have been obtained by noting that the moment about 0 would be due
to Ry only.

Example 2
An exhaust system for pickup truck is shown in the Figure. The weights Wy, W ang W; Of the headpipe,

muffler, and tajlpipe are 10, 100. and 50 N, respectively, and act at the indicated points. If the exhaust
pipe hanger at point A is adjusted so that its tension Fa is 50 N, determine the required forces in the

hangers at points B, C, and D so that the force couple system at point O is zero. Why is a zero force
couple system at O desirable?

—0.65—< 0.65 —=1=0.5 == 0.4=

Dimensions in meters

Spsiera & Pock o
2. == 9 o = -
W TR = — e BheBo vl e Bo =0
s 2 o
IO SR = » o SO
T e, - o
= %e = %
A = - ¥ - == e e
P\,h Z_ M o S V2 - 12 — E5 ¢ 1‘_&{‘_}’_'—, = -] OGS 5y = O
W
0 = -NoatBye 2+ @To
E“..'_-c_-_ b 2 N o 2o
. - o (2_ —
\ - g -Zq ,.I—-'r Hs A /
— A i Yo S (,C'j} — oo ('f f}
(£ My = —12Lo5
. = ¥ -
| = ' o e i
=a (2 5 Q.{ oS 5o (29
N oy 2 —l%\-;. = !
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Example 3

The flanged steel cantilever beam with riveted bracket is subjected to the couple and two forces shown,
and their effect on the design of the attachment at A must be determined. Replace the two forces and
couple by an equivalent couple M and resultant force R at A

Solution

- : I"
PR T ek

29 epsTo + W2 (F) = -6RL KN
\ 7 3 -0 KA/
r?ﬂ r_fL-.,I,Jj- B e N e WL f‘TJ -:ﬂ‘j_i_,_
L, L4
: 0 3 -"—‘{f—1{l|3~1g:|

Bty = -2 o5 (o15) 25 B U5 +05)+12LE)

The force —couple system is
--:' = = F % -' - ) - —
Rz [ (16 S 61-057) Ko/

o e T 4 A CCw)
1
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| R, —
B |

Problems

Determing the resultant R of tha threa tension forees

acting on the aye boll. Find the magnitude of B and Determine and locate the "ﬂ“it;'ﬂ b“ of the two
the angle f, which B makes with the positive x-axis, farees and one couple aeting on *HESm.

Ans. B = 1743 kN, 4. = 26.1°

20 ki

[~

[etermine the sguivalent foree—couple svstem at the
center O for each of the thres casss of forces being
applied along the edges of a sguare plate of side &,

(o) (&) feh

Determine the - and y-axis intercepts of the bne of
action of the resultant of the three loads applied to

vk gerat, Ang. 7 = 1.63Tm, y = —0.997 m

31
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If the resultant of the two forces and couple M passes
through peint 0, determine M,

Ans. M = 148.0 N-m CCW

Ag part of & deaign test, the camshaft—drive aprochet
i5 freed and then the two forces shown are applied to
a length of balt wrapped around the sprocket. Find
the resatant of this system of twe forces and deter-
mine where ite line of action interascts hoth the x-
and y-Axes.

Ty =500 N




While sliding a desk toward the docrway, three atu-
demis exert Lhe foreas shown in the overhead view.
Determine the equivalent force—couple 5_1.r.5hslm ot
pnint A, Then determine the equation of the line of
artion of the resultant force,

Heplace the three forces which act on the bent bar
by a force—couple system at the support point A
Then determine the x-intercept of the line of action

of the stand-alone resultant fores R Ans. R — 180i — 60] N, M, = ~165k N-m
Arg, R = 161 — 12,03 kN 1 11
e S e
M, - 218 EN-m CW i
x=1R14m

The asymmetric roof fruas Iz of the type nzed when
a near normel angle of incidence of sunlight anta the

Two Intecral pullevs arve subjected to the belt ten- o st mirhiis AR g dseiraBlaon anlatoen

some s, MIGHETEY NS R GELHAR pEEB@ purposes, The five vertical loads reprasent the effiecl
through the center 1, determine T and t.h{_: s gTL- of Lhe weights of the truss and supported roofing ma-
tude of B and the esunterclockwise angle d it makes berinls. The 400-N load represents the effect of wind
with the x-axis, pressure. Determine the equivalent foree—couple sys-
tem at A, Also, eompute the -intercept of the line of
action of the syetem tesullant treated &5 a single
foree R.

OO N

The gear and attached V-belt pulley are turning
counterclockwise and are subjected to the tooth load
of 1600 N and the 800-N and 450-N tensions in the
V-belt. Represent the action of these three forces by
a resultant force R at O and a couple of magnitude
M. Is the unit slowing down or speeding up?




A commercial airliner with four jet engines, each
producing 30 kN of forward thrust, is in a steady,
level cruise when engine number 3 suddenly fails.
Determine and locate the resultant of the three re-
maining engine thrust vectors. Treat this as a twa-
dimensional problem.

Replace the three forces acting on the bent pipe by a
single equivalent force R. Specify the distance x from
point O to the point on the x-axis through which the
line of action of R passes.

Ans. R = —200i + 80j N, x = 1.625 m (off pipe)

200N

|
250 mm
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The pedal-chainwheel unit of a bicycle is shown in
the figure. The left foot of the rider exerts the 160-N
force, while the use of toe clips allows the right foot
to exert the nearly upward 80-N force. Determine the
equivalent force-couple system at point O. Also, de-
termine the equation of the line of action of the sys-
tem resultant treated as a single force R. Treat the
problem as two-dimensional,




Lecture 5

Equilibrium

Static deals primarily with the description of the force conditions necessary and sufficient to
maintain the equilibrium of engineering structures.
When body is equilibrium, the resultant of all forces acting on it is zero. Thus, the resultant force

R and the resultant couple m are both zero, and we have the equilibrium equations

These requirements are both necessary and sufficient conditions for equilibrium.

All physical bodies are three-dimensional, but we can treat many of them as two-dimensional
when the forces to which they are subjected act in a single plane or can be projected onto a single plane.
When this simplification is not possible, the problem must be treated as three

System Isolation And The Fee- body Diagram

Before we apply EQs.3/1, we must define unambiguously the particular body or mechanical
system to be analyzed and represent clearly and completely all forces actins oz the body. Omission of a
force which acts on the body in question, or inclusion of a force which does not act on the body, will give
erroneous results. A mechanical system is defined as a body or group of bodies which can be
conceptually isolated from all other bodies. A system may be a single body or a combination of connected
bodies. The bodies may be rigid or non rigid. The system may also be an identifiable fluid mass, either
liquid or gas, or a combination of fluids and solids. In statics we study primarily forces which act on rigid
bodies at rest, although we also study forces actins on fluids in equilibrium. Once we decide which body
or combination of bodies to analyze, we then treat this body or combination as a single body isolated
from all surrounding bodies. This isolation is accomplished by means of the free body diagram, which is
a diagrammatic representation of the isolated system treated as a single body. The diagram shows all
forces applied to the system by mechanical contact with other bodies, which are imagined to be removed
If appreciable body forces are present. Such as gravitational or magnetic attraction, then these forces
must also be shown on the free-body diagram of the isolated system.

Only after such a diagram has been carefully drawn should the equilibrium equations be written.

Because of its critical importance, we emphasize here that

t.hﬁ Faa -hody: d.l,a.g‘l:am is the most trnportant Eurtg’l'e -F:h"p
i 1he solution of pmh]ﬂnl_l-l in mB{ hu.tuts ; :

C—

Before attempting to &aw a free-body dlagram we must recall the basic characteristics of force. These
chrematistics were described in Art. 2/2, with primary attention focused on the vector properties of force.
Forces can be applied either by direct physical contact or by remote action. Forces car be either internal
or external to the system under consideration. Application of force is accompanied by reactive force, and

both applied and reactive forces may be either concentrated or distributed. The principle of
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transmissibility permits the treatment of force as a sliding vector as far as its external effects on a rigid
body are concerned.
We will now use these force characteristics to develop conceptual models of isolated mechanical systems.

These models enable us to write the appropriate equations of equilibrium, which can then be analyzed.

Modeling the Action of Forces
Figure 1 shows the common types of force application on mechanical systems for analysis in two

dimensions. Each example shows the force exerted on the body to be isolated, by the body to be removed.
Newton's third law, which notes the existence of an equal and opposite reaction to every action, must be
carefully observed. The force exerted on the body in question by a contacting or supporting member is
always in the sense to oppose the movement of the isolated body which would occur if the contacting or

supporting body were removed.

E\.—IU‘UH‘[NL“ THE ACTION OF FORCES IN T\’-"U-n]_f-rENSION.'—'lL_ ._BNALYS 2
Type of Contact and Fores Origin Action on Body to Be Isolated

1. Flexible cable, belt,
chaim, or rope e Force exerted by

- = n flexihle cable i3

i c"g-:;jﬁ-fl;ib]f 5 3 ] wlwars a tension awaag
b [ = ) | from the hody in the

Weight of eable b = 2 £ direction of the cable,

not negligible

2. Bmooth surfaces
Coantact force is
eompreseive and is
normal to the surface,

Rough surfaces are
capahle of supportiog
n tangential compo-
nent F (irictionsl
force) as well as a
normal eomponent

M of the resultant
eontact foree R

3. Roagh surfaces

4. Boller support x (|
— Roller, rocker, or ball
e i support tranamite a
compressive force
normal to the
supporting surface.

5, Freely sliding guide e
move along smooth

only

- 1 : v
= RS e : e i guides; can support
5 — G e DL L forea pormal to guide

n

D

&, Pin connection Pin Pin A Freely hinged pin
Free not free connection is capable
to turn.  to turn of supporting a force

in any direction in tig
P plene normal to the
e axiz; waually shown
x

M as two components &)
and K, A pin not fred
to burn may also
support a couple A4

A built-in or fixed
suppart is capahla of
supporting an mxi
force F, a transverse
farce ¥V (shear force),
and a couple M
Ipending moment) to
prevent rotation.

The resultant of
pravitational
attraction on all
wlementa of a body of
maes e is the weight
W= rrigr and acts
tosward the center of
the earth through the
center mass (7.

9. Spring action i B e Spring foree is tensile
Neutral s ST e if spring is stretched
and eompressive it

Harderning F [Tl prossed. For a
4 2 Linearly elastic spring
A [ . = the stiffness & is the

fores required bo
deform the epring a

Softening
it unit distanes,

Figurel
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Typical examples of actual supports that are referenced to Fig.1 are shown in the following sequence of

photo

The cable exerts a force on the bracket This utility building is pin supported at
in the direction of the cable. the top of the column. (8)

The floor beams of this building are
welded together and thus form fixed
connections, (10)

In Fig. 1, Example 1 depicts the action of a flexible cable, belt, rope, or chain on the body to
which it is attached. Because of its flexibility, a rope or cable is unable to offer any resistance to bending,
shear, or compression and therefore exerts only a tension force in a direction tangent to the cable at its
point of attachment. The force exerted by the cable on the body to which it is attached is always away
from the body. When the tension T is large compared with the weight of the cable, we may assume that
the cable forms a straight line. When the cable weight is not negligible compared with its tension, the sag
of the cable becomes, important, and the tension in the cable changes direction and magnitude along its
length.

When the smooth surfaces of two bodies are in contact. as in Example2 The force exerted by one on the
other is normal to the tangent
to the surfaces and is compressive, Although no actual surfaces are perfectly smooth, we can assume this

to be so for practical purposes in many instances.
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When mating surfaces of contacting bodies are rough, as in Example3 , the force of contact is not
necessarily normal to the tangent to the surfaces, but may be resolved into a tangential or frictional
component F and a normal component N.

Example 4 illustrates a number of forms of mechanical support which effectively eliminate tangential
friction forces. In these cases the net reaction is normal to the supporting surface Example 5 shows the

action of a smooth guide on the body it supports. There cannot be any resistance parallel to the guide

Example 6 illustrates the action of a pin connection. Such a connection can support force in any
direction normal to the axis of the pin We usually represent this action in terms of two rectangular
components. The correct sense of these components in a specific problem depends on how the member is
loaded. when not otherwise initially known, the sense is arbitrarily assigned and the equilibrium equation
are then written. If the solution of these equations yields a positive algebraic sign for the force
component, the assigned sense is correct. A negative sign indicates the sense is opposite to that initially
assigned.

If the joint is free to turn about the pin, the connection can support only the force R. If the joint is
not free to turn, the connection can also support a resisting couple M. The sense of M is arbitrarily shown
here, but the true sense depends on how the member is loaded.

Example 7 shows the resultants of the rather complex distribution of force over the cross section
of a slender bar or beam at a built-in or fixed support. The sense of the reactions F and V and the bending
couple M in a given problem depends of course, o how the member is loaded.

One of the most common forces is that due to gravitational attraction, Example 8. This force
affects all elements of mass in a body and is, therefore. distributed throughout it. The resultant of the
gravitational forces on all elements is the weight W = mg of the body, which passes through the center of
mass G and is directed toward the center of the earth for earthbound structures The location of G is
frequently obvious from the geometry of the body, particularly where there is symmetry. When the
location is not readily apparent, it must be determined by experiment or calculations.

Similar remarks apply to the remote action of magnetic and electric forces. These forces of remote
action have the same overall effect on a rigid body as forces of equal magnitude and direction applied by
direct.

Example 9 illustrates the action of a linear elastic spring and of a nonlinear spring with either
hardening or softening characteristics. The force exerted by a linear spring, in tension or compression, is
given by F = kx, where K is the stiffness of the spring and x is its deformation measured from the neutral
or unreformed position.

The representations in Fig. 1 are not free-body diagrams, but are merely elements used to
construct free body diagrams. Study these nine conditions and identify them in the problem work so that

you can draw the correct free-body diagrams.

37



Construction of Free-Body Diagrams

The full procedure for drawings a free-body diagram which isolates a body or system consists of the
following steps

Step 1. Decide which system to isolate The system chosen should usually involve one or more of the
desired unknown quantities.

Step 2. Next isolate the chosen system by drawing a diagram which represent its complete external
boundary. This boundary defines the isolation of the system from all other attracting or contacting bodies,
which are considered removed This step is often the most crucial of all. Make certain that you have
completely isolated the system before proceeding with the next step.

Step 3. Identify{y all forces which act oz the isolated system as applied by the removed contacting and
attracting bodies, and represent them in their proper positions on the diagram of the isolated system Make
a systematic traverse of the entire boundary to identify all contact forces. Include body forces such as
weights, where appreciable. Represent . all known forces by vector arrow, each with its! Proper
magnitude, direction, and sense indicated. Each unknown force should be represented by a vector arrow
with the unknown magnitude or direction indicated by symbol. if the sense of the vector is also unknown,
you must arbitrarily assign a sense. The subsequent calculations with the equilibrium equations will yield
a positive quantity if the incorrect sense was assumed and a negative quantity if the incorrect sense was
assumed. it is necessary to be consistent with the assigned characteristics of unknown forces throughout
all of the calculations. If you are consistent, the solution of the equilibrium equations will reveal the
correct senses.

Step 4. Show the choice of coordinate axes directly on the diagram Pertinent dimensions may also be
represented for convenience. Note, however., that the free-body diagram serves the purpose of focusing
attention on the action of the external forces, and therefore the diagram should not be cluttered with
excessive extraneous information. Clearly distinguish force arrows from arrows representing quantities
other than forces. for this purpose a colored pencil may be used.

Completion of the foregoing four steps will produce a correct free-body diagram to use in applying the
governing equations, both in statics and in dynamics. Be careful not to omit from the free-body diagram
certain forces which may not appear at first glance to be needed in the calculations. It is only through
complete isolation and a systematic representation of all eternal forces that a reliable accounting of the
effects of all applied and reactive forces can be made. very often a force which at first glance may not
appear to influence a desired result does indeed have an influence. Thus. the only safe procedure is to
include on the free-body diagram all forces whose magnitudes are not obviously negligible. The free-
body method is extremely important in mechanics because it ensures an accurate definition of a
mechanical system and focuses

attention on the exact meaning and application of the force laws of statics and dynamics. Review the
foregoing four steps for constructing a free-body diagram while studying the sample free-body diagrams

shown in Fig. 2.
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Examples of Free-Body Diagrams

Figure 2 gives four examples of mechanisms and structures together with their correct free-body
diagrams. Dimensions and magnitudes are omitted for clarity. In each case we treat the entire system as a
single body, so that the internal forces are not shown The characteristics of the various types of contact

forces illustrated in Fig 1 are used in the four examples as they apply

SAMPLE FREE-BODY DIAGRAMS
Mechanical System Free-Body Diagram of Isolated Body

1. Plane truss
Weight of truss P

assumed negligible y
compared with P 7 ' |
|
=

=l
1z

2. Cantilever beam

3. Beam

Smooth surface
contact at A.
Mass m

4. Rigid system of interconnected bodies
analyzed as a single unit

P o5 Weight of mechanism
<O neglected

Figure 2

39



Examples
Example 1

Determine the magnitudes of the forces C and T, which, along with the other Forces shown, act on the

bridge-truss joint.

Solution
The given sketch constitutes the free-body diagram of the isolated
section of the joint in question and shows the five forces which ere

in equilibrium

Solution 1 (scalar algebra): for the x-y axes as shown we have

Solution | {scafﬂr algebra). Fur the x-y axes as shown we have

ZF, = 0] : 8+Tcos4ﬂ°¢Csan2l}°-16-D
; 07667 + 0342C =8 | @),
SF, = 0] R e
06437 — 0.940C =3 - . (B

Simﬁltanecius sohltion, of Egs. (@) and (b) produces

T =909kN | €= 3.03kN " Ans:

Solution IV (geumetrrc] The polygon representmg the zero vector sum of the
five forces is shown. Equations (a) and (b) are seen immediately to give the pro-
jections of the vectors onto the x- and y-direc.ions. Similar ly, projections onto .
the x'- and y'-directions give the alternative equations in Solution IL. -

A graphical soution is easily obtained, The known vectors are laid off head-
to-tail to some convenient scale, and the divections of T and C are then drawn
to close the polygon. The resulting intersection at point P completes the solution, -
thus enabling us to measure the magnltudes of T and C directly from the drawing
to whatever degree of aceuracy we incorporate in the construction,

8 EN

13 kN
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Example 2

Calculate the tension t in the cable which supports the 500-kg mass
with the pulley arrangement shown. Each pulley is free to rotate about
its bearing, and the weights of all parts are small compared with the
load. Find the magnitude of the totl force on the bearing of pulley C.

So!ufmn The free -body diagram of each pulley is drawn inits: relatwe p051t10n

to the others. We hegm with pulley A, which includes the only known force. With

the unspemﬁed pulley radius designated by 7, the ethhrmm of moments about
its center O and the equilibrium of forces in the vertlcal rhrectmn requlre ;

| BMp = 0] : P ST Tz
BE, 01 Tk Ty~ 500(9.81) <0 2’1‘1—500 981) Tl—T2—245GN

From the example of pulley A we may write. the equlhhrlum of farces on pulley
B hy mSpectmn as ;

e TQ/z - 1996 N

Far pulley Cthe angle 6 = 30° in no way aﬂ‘ects the moment of T about the /

center of the pulley, so that moment equﬂlbrlum reqques ;

T'= Ty or:: T-—1226N : i

.Ethbrlum of the pu]_ley in the x and - dlrectmns rEqmres

BRI sty 0 R 0N

.D:F": 0 T, 199 sin30° - 19260 F, = 613N _
[F = m} = \JM= URENG i A
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Example 3

Determine the magnitude T of the tension in supporting cable and the magnitude of the force on pin at A
for the jip crane shown. The beam AB is a standarad 0.5-m I-beam with a mass of 95 kg per meter of

length.

A!gebmrc solution. The system is symmetrical about the vertical +-y plane
throtigh the center of the beam, so the problem may be analyzed as the equilib-
rium of a coplanar foree system. The free-body diagram of the beam is shown in
the ﬂgure with the pin reaction at A represented in terms of its two rectangular
components. The weight of the beam is 95(107%)(5)9.81 = 4.66 kN and acts
through its center. Note that there are three unknowns A, A, and 7 which may
be found from the three equations of equilibrium. We begin with a moment

equation about A, which eliminates two of the three unknowns from the equa-
tion. In applying the moment equation about A4, it is smlpler to consider the
moments of the x- and y-components of T than it 15 50 compute. the perpendicular '

distance from T to A, Hence, with the cuunterc]uckmse sense as positive we write

[EMy = 0] . (T cos 25°)D 25 + (T sin 25"}(5 = 012)
= 1006 = 15 o L 466{25 =:012).=0

from which el ..-'T—lgﬁlkN _ A Ans,
Equating the sums Jf forces in the x- and y- dn:ectmns to zero gwes. |

BF = 'A,u1961eoszs°—o A-?t—lTTTkN-
BR20 A+ 1961 25 — 466~ 1020 A, = 637KN

A= JAZ+ A% A= JTITR+ 6378 —1888KN 0 Ams

Graphical selution. The principle that three forces in '_equilibri.um' must be
concurrent is utilized for 4 graphical solution by combining the two known ver-

tical forces of 4,66 and 10 kN into a single 14,66-kN_fdrce, located as shown.on

the modified free-body diagram of the beam in the lower figure. The position of
this resultant load may easily be determined graphlcally or. algebraically, The

intersection of the 14.66-kN force with the line of action of the unknown tension

T defines the point of concurrency O through which the pin reaction A must

pass. The unknown magnitudes of T and A may now be found by adding the
forces head-to-tail to form the closed equilibrium polygon of forces, thus satis-

fying their zero vector sum. After the knowm vertical load is laid off to a conve-
nient scale, as shown in the lower part of the figure, a line representing the given
direction of the tension T is drawn’ through the tip of the 14.66-kN vector. Like-
wise a line representing the direction of the pin reaction A, determined from the

coneurrency established with the free-body diagram, is drawn through the tail

of the 14.66-kN vector. The intersection of the lines répresentmg vectors T and
A establishes the magnitudes 7’ and A necessary to make the vector surm of the
forces equal to zero. These magnitudes are scaled from the diagram. The %~ and
y-components of A may be constructed on the torce polygon if deared
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Example 4

The link shown in Fig. a is pin-connected at A and rests against a smooth support at B. Compute the
horizontal and vertical components of reaction at pin A.

Solution

Equations of Equilibrium. Summing moments about A, we obtain
z direct solution for Ng,

S3M,=0; —90N.m — 60 N(1 m) + Nz(0.75 m) =0

Np=200N
Using this result,
=2F,. = 0; A,—200smn30°N =0

A, =100 N Ans.
~T3F, =0; A, — 200 cos 30° N =60 N =0

A, =233 N Ans.
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Problems

Three cables are joined at the junction ring C. De-
termine the tensions in cables AC and BC caused by
the weight of the 30-kg cylinder.

The 450-kg uniform I-baam supports the lead shown.
Dietermine the reactions at the supporte,

The 20-kg homogeneous smooth sphere rests on the
two inclines as shown, Determine the contact forees at

FEAR0-E, Ans. N, = 101L6N, N = 1962 N

The 100-kg wheel rests on a rough surface and bears
agajnutth&mﬂerﬂwhanth&mupleﬂlsnpp]iﬂilf
M = 60 N-m and the wheel does not slip, compute
the reaction on the roller A. Angs, Fy = 251N

Find the angle of tilt 8 with the horizontal so that
the contact foree at 8§ will be one-half that at A fom
the amooth orlinder. Ans. § = 18.4%

The uniform beam hag a mass of 50 kg per meter of
lenpth. Compute the reactions at the support 0, The
foree loads shown lie in & vertical plane.

1.4 kN
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To accommodate the rise and fall of the tide, a walk-
way from a pier to a float is supported by two rollers
a3 shown. If the mass center of the 300-kg wallowsay
is at 7, caleulate the tension T in the horizontal cable
which is attached to the cleat and find the foree un-
der the roller at A.

Ang. T = 850N, A = 14T2 N

1f the screw B of the wood clamp is tightened so that
the two blocks are under a compression of 500 N,
determine the force in screw A. (Note: The foree sup-
ported by each screw may be taken in the direction

o Shes scrwe:) Ans. A = 1250 N

The spring of modulus k = 3.6 kN/m is stretched
10 mm when the disk center O is in the leftmost po-
sition ¥ = 0. Determine the tension T required to
position the disk center at x = 150 mm. At that po-
sition, what foree N is exerted on the horizontal slot-
ted guide? The mass of the disk iz 3 kg.

Ans. T = 828N, N = 203 N up

i A block placed under the head of the claw hammer
as shown greatly facilitates the extraction of the nail,
If & 200-M pull on the handle is required to pull the
nail, ealeulats the tenaion T in the nail and the mag-
nitude A of the force exerted by the hammer head on
the block. The contacting surfaces at A are suffi-
ciently rough to prevent slipping.
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The uniform 15-m pole has a mass of 150 kg and is In a procedure to evaluate the strength of the triceps
supported by its smooth ends against the vertical muscle, a person pushes down on a load cell with the

walls and by the tengion T in the vertical cable. Com- palm of his hand as indicated in the figure. If the
pute the reactions at A and B load-cell rending is 160 N, determine the vertical ten-
: gile force F' generated by the triceps muscle. The

mass of the lower arm is 1.5 kg with mass center at

(7. State any assumplions. Ans. F = 1832 N

§ The indicated location of the center of mass of the
1600-kg pickup truck is for the unladen condition. If
a load whose center of mass is + = 400 mm behind
the rear axle is added to the truck, determine the
masg m; of the load for which the normal forees un-

der the front and rear wheels are equal With his weight W equally distributed on both feet,

Ans. my, = 244 kg a min begins to slowly rize from a squatting position
as indicated in the figure. Determine the tensile force
F in the patellar tendon and the magnitude of the
foree reaction at point 3, which is the contaet area
between the tibia and the femur. Note that the line
of action of the patellar tendon foree is along its mid-
line. Neglect the weight of the lower leg,

— Quadriceps muscla

The eoncrete hopper and its load have s combir 7T : s
mass of 4 metric tona (1 metric ton equals 1000 ] S 4 Al
with mass center at & and is being elevated at o g

stant welocity along its wertical guide by the ca ;

tensiom T, The design calls for two sets of guide 1 | Patella

ers at A, one on each side of the hopper, and two s )ﬁ 4

at B, Dotermine the force supported by each of | " PHI:EEEM
Le

twao pins at 4 and by each of the teo pins at B.

Determine the external reactions at A and F for the
roof truss loaded as shown. The vertical loada rep-
resent the effect of the supported roofing materials,
while the 400-N force representa a wind load.

00 M
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Lecture 6
Friction

Tangential forces generated between contacting surfaces are called friction forces and occur to some
degree in the interaction between all real surfaces. whenever a tendency exists for one contacting surface
to slide along another surface, the friction forces developed are always in a direction to oppose this
tendency In some types of machines and processes we want to minimize the retarding effect of friction
forces. Examples are bearings of all types, power screws, gears, the flow of fluids in pipes, and the
propulsion of aircraft and missiles through the atmosphere. In other situations we wish to maximize the
effects of friction, as in brakes, clutches, belt drives, and wedges. Wheeled vehicles depend on friction for
both starting and stopping, and ordinary walking depends on friction between the shoe and the ground.
Friction forces are present throughout nature and exist in all machine so matter how accurately
constructed or carefully lubricated. A machine or process in which friction is small enough to be
neglected is said to be ideal. When friction must be taken into account, the machine or process is termed
real. In all real cases where there is sliding motion between parts, the friction forces result in a loss of

energy which is dissipated in the form of heat. Wear is another effect of friction.

Friction Phenomena

Types of Friction

(a) Dry Friction. Dry friction occurs when the unlubricated surfaces of two solids are in contact under a
condition of sliding or a tendency to slide. A friction force tangent to the surfaces of contact occurs both
during the interval leading up to impending slippage and while slippage takes place. The direction of this
friction force always opposes the motion or impending motion. This type of friction is also called
Coulomb friction. The principles of dry or Coulomb friction were developed largely from the experiments
of Coulomb in 1781 and from the work of Morin from 1831 to 1834. Although we do not yet have a
comprehensive theory of dry friction, in Art. 6/3 we describe an analytical model sufficient to handle the
vast majority of problems involving dry friction.

(b) Fluid Friction. Fluid friction occurs when adjacent layers fluid (liquid or gas) are moving at different
velocities. This motion causes frictional forces between fluid elements, and these forces depend on the
relative velocity between layers. When there is no relative velocity, there is no fluid friction. Fluid
friction depends not only on the velocity gradients within the fluid but also on the viscosity of the fluid,
which is a measure of its resistance to shearing action between fluid layers. Fluid friction is treated in the
study of fluid mechanics and will not be discussed further in this book.

(c) Internal Friction. Internal friction occurs in all solid materials which are subjected to cyclical
loading. For highly elastic materials the recovery from deformation occurs with very little loss of energy
due to internal friction. For materials which have low limits of elasticity and which undergo appreciable

plastic deformation during loading, a considerable amount of internal friction may accompany this
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deformation. The mechanism of internal friction is associated with the action of shear deformation, which

is discussed in references on materials science.

Dry Friction

Mechanism of Dry Friction
Consider a solid block of mass m resting on a horizontal surface, as shown in Fig. 1a.We assume that the
contacting surfaces have some roughness. The experiment involves the application of a horizontal force P
which continuously increases from zero to a value sufficient to move the block and give it an appreciable
velocity. The free-body diagram of the block for any value of P is shown in Fig.1b, where the tangential
friction force exerted by the plane on the block is labeled "F'. This friction force acting on the body will
always be in a direction to oppose motion or the tendency toward motion of the body. There is also a
normal force N which in this case equals mg, and the total force R exerted by the supporting surface on
the block is the resultant of N and F.

A magnified view of the irregularities of the mating surfaces, Fig.1c, helps us to visualize the
mechanical action of friction. Support is necessarily intermittent and exists at the mating humps, The

direction of each of the reactions on the block, R1, R2, R3, etc. depends not only

Impending
mation

Kinetic
oy friction friction
0 rrekion | (motion )

=t H
_‘l'._ Lig i

Figure 1
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on the geometric profile of the irregularities but also on the extent of local deformation at each contact
point. The total normal force N is the sum of the n-components of the R's, and the total frictional force F
is the sum of the t-components of the R's. when the surfaces are in relative motion, the contacts are more
nearly along the tops of the humps, and the t-components of the R's are smaller than when the surfaces
are at rest relative to one another. This observation helps to explain the well known fact that the force P
necessary to maintain motion is generally less than that required to start the block when the irregularities
are more nearly in mesh.

If we perform the experiment and record the friction force F as a function of P, we obtain the relation
shown in Fig. 1d. when P is zero, equilibrium requires that there. be no friction force. As p is increased
the friction force must be equal and opposite to p as long as the block does not slip. During this period the
block is in equilibrium, and all forces acting on the block must satisfy the equilibrium equations. Finally,
we reach a value of P which causes the block to slip and to move in the direction of the applied force. At
this same time the friction force decreases slightly and abruptly. It then remains essentially constant for a

time but then decreases still more as the velocity increases.

Static Friction

The region in Fig. 1d up to the point of slippage or impending motion is called the range of static
friction, and in this range the value of the friction force is determined by the equations of equilibrium.
This friction force may have any value from zero up to and including the maximum value. For a given
pair of mating surfaces the experiment shows that this maximum value of static friction Fpax is

proportional the normal force N. Thus. we may write

['Fm“ 3 ‘i‘ENJ . €qu. 1

where s is the proportionality constant, called the coefficient of static friction. Be aware that Eq. 1
describes only the limiting or maximum value Of the static friction force and not any lesser value. Thus,
the equation applies only to cases where motion is impending with the friction force at its peak value. For

a condition of static equilibrium when motion is not impending, the static friction force is

F < uN
Kinetic Friction

After slippage occurs, a condition of kinetic friction accompanies the ensuing motion. Kinetic
friction force is usually somewhat less than the maximum static friction force. The kinetic friction force

F, is also proportional to the normal force. Thus.
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where py is the coefficient of kinetic friction. It follows that p is generally less than ps. As the velocity of
the block increases, the kinetic friction decreases somewhat, and at high velocities, this decrease may be
significant. Coefficients of friction depend greatly on the exact condition of the surfaces, as well as on the
relative velocity, and are subject to considerable uncertainty.

Because of the variability of the conditions governing the action friction, in engineering practice it
is frequently difficult to distinguish between a static and a kinetic coefficient, especially in the region of
transition between impending motion and motion. Well-greased screw threads under mild loads, for
example, often exhibit comparable frictional resistance whether they are on the verge of turning or
whether they are in motion.

In the engineering literature we frequently find expressions for maximum static friction and for
kinetic friction written simply as ,F=uN. It is understood from the problem at hand whether maximum
static friction or kinetic friction is described. Although we will frequently distinguish between the static
and kinetic coefficients, in other cases no distinction will be made, and the friction coefficient will be
written simply as p,. In those cases you must decide which of the friction conditions, maximum static
friction for impending motion or kinetic friction, is involved. We emphasize again that many problems
involve a static friction force which is less than the maximum value at impending motion, and therefore
under these conditions the friction relation Eg. 1 cannot be used.

Figure 1c shows that rough surfaces are more likely to have larger angles between the reactions
and the n-direction than do smoother surfaces. Thus, for a pair of mating surfaces, a friction coefficient
reflects the roughness, which is a geometric property of the surfaces. With this geometric model of
friction, we describe mating surfaces as ""smooth™ when the friction forces they can support are negligibly
small. It is meaningless to speak of a coefficient of friction for a single surface.

Factors Affecting Friction

Further experiment shows that the friction force is essentially independent of the apparent or

projected area of contact. The true contact area is much smaller than the projected value, since only the
peaks of the contacting surface irregularities support the load. Even relatively small normal loads result in
high stresses at these contact points. As the normal force increases, the true contact area also increases as
the material undergoes yielding, crushing, or tearing at the points of contact.
A comprehensive theory of dry friction must go beyond the mechanical explanation presented here. For
example, there is evidence that molecular attraction may be an important cause of friction under
conditions where the mating surfaces are in very close contact. Other factors which influence dry friction
are the generation of high local temperatures and adhesion at contact points, relative hardness of mating
surfaces, and the presence of thin surface films of oxide, oil, dirt, or other substances,
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Types of Friction Problems

We can now recognize tine following three types of problems encountered in applications

involving dry friction. The first step in solving a friction problem is to identify its type.

(1) In the first type of problem, the condition of impending motion is known to exist. Here a body which
is in equilibrium is on. the verge of slipping. and the friction force equals the limiting static friction Fyax=
us N. the equations of equilibrium will, of course, also hold.

(2) In the second, type of problem, neither the condition of impending motion nor the condition of motion
is known to exist. To determine the actual friction conditions, we first assume static equilibrium and then
solve for the friction force F necessary for equilibrium. Three outcomes are possible:

(@) F < (Fmax= s N): Here the friction force necessary for equilibrium can be supported, and therefore the
body is in static equilibrium as assumed. We emphasize that the actual friction force F is less than the
limiting value Frnax given by Eq. 1 and that F is determined solely by the equations of equilibrium.

(b) F = (Fmax= us N): Since the friction force F is at its maximum value Fnax motion impends, as discussed
in problem type (1). The assumption of static equilibrium is valid.

(c) F > (Fmax= ps N): Clearly this condition is impossible, because the surfaces cannot support more force
than the maximum pgN. The assumption of equilibrium is therefore invalid, and motion occurs. The
friction force F is equal to usN from Eq. 2.

(3) In the third type of problem, relative motion is known to exist between the contacting surfaces, and
thus the kinetic coefficient of friction clearly applies. For this problem type, Eq.2 always gives the

kinetic friction force directly.

The foregoing discussion applies to all dry contacting surfaces and to a limited extent, to moving surfaces

which are partially lubricated.
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Examples

Example 1
Determine the maximum angle 6 which the adjustable incline may have with the horizontal before the

block of mass m begins to slip. The coefficient of static friction between the block and the inclined
surface is ps.

Solution

The free-body diagram of the block shows its weight

W = myg, the normal force N, and the friction force F exerted by the

incline on the block. The friction force acts in the direction to O -— '

3'.. Wamg

oppose the slipping which would occur if no friction were present.

Equilibrium in the x- and y-directions requires

[EF, = 0] mgsing — F =10 F = mg sin 6

[ZE, = 0] -mgecos B+ N=0 N=mgcos#

Dividing the first equation by the second gives F/N = tan 6. Since the maximum
angle accurs when F = F__ - = p N, for impending motion we have

PR Y | O ) SR el T ety 1 Ans.

Example 2
Determine the range of values which the mass m, may have so that the 100-kg block shown in the figure

will neither start moving up the plane nor slip down the plane. The coefficient of static friction for the
contact surfaces is 0.30.

100 PE
Solution. The maximum value of my will be given by the requirement for mo-
tion impending up the plane. The friction force an the block therefore acts down g My
the plane, as shown in the free-body diagram of the block for Case [ in the Hgure.
With the weight mg = 100(9.81) = 881 N, the equations of equilibrium give y
" gRL N -
IF. = 0] N -88lea20 =0 N=B822N y o
(Fipe = itgN1 F... = 04800922) = 271N AT = mag
[ZF, = 0] figl9.81) — 277 — 981 &in 20° = 0 ;g = 624 kg Ans, e /i Fena
20" S
The minimum value of my is determined when motion i impending down the N
plane, The [riction foree on the block will act up the plane to oppose the tendency Case 1
to move, s shown in the free-body diagram for Case II. Equilibriom in the x- ¥
direction regquires "_931 N x
[ZF; = 0] my(9,81) + 277 ~ 981 sin 20° = 0 my = 6,01 kg Ang. & Id__4,-.ll;,..4l"-|,'-.= it
Thus, mg may have any value from 6.01 to 62.4 kg, and the block will remain at ""f_ _::'_-;,.’-‘(
rest. EI;JJ
In both eases equilibrium requires that the resultant of F,., and N be con- il
current with the 8981-N weight and the tension 7. Case II
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Example 3

The three flat blocks are positioned on the 30° incline as shown, and a force P parallel to the incline is
applied to the middle block. The upper block is prevented from moving by a wire which attaches it to the
fixed support. The coefficient of static friction for each of the three pairs of mating surface. is shown.

Determine the maximum value which P may have before any slipping takes place.

Solution. The free-body diagram of each block is drawn. The friction forces are
assigned in the directions to oppose the relative motion which would oceur if no
friction were present. There are two possible conditions for impending motion.
Either the &0-kg block slips and the 40-kg block remains in place, or the 50- and
40-kg blocks move together with slipping occurring between the 40-kg block and
the incline.

The normal forces, which are in the y-direction, may be determined without
reference to the friction forees, which are all in the x-direction. Thus,

[EF, = 0] (30kg) N; - 30(9.81) cos 30° = 0 N; =286 N
(50-kg) N; — 50(9.81) cos 30° — 255 = 0 Np = 680N . WT;N
[ — 40(9.81) cos 80F — B80°'=0 Ny = W0I9N - W 80"\
(40-kg) Ny (9.81) 3 / %]
We will assume arbitrarily that only the 50-kg block slips, so that the 40-kg ;\f/\
block remains in place. Thus, for impending slippage at both aurfaq.ﬂs of the 50-kg i N
block, we have
= Nl F, = 030255 = 165N F; = 0.40(680) = 272 N %
50(9.81) N
The assumed equilibrium of forces at impending motion for the 50-kg block Ny
gives F, 5
(SF, = 0] P - 765 - 272 + 509.8))sin30° = 0 P = 1031N ,/( A“"
' P T p
We now check on the validity of our initial assumption. For the 40-kg block 2 g
with Fy = 272 N the friction force Fy would he given by i
[XF, = 0] 272 + 40981 sin 3¢° ~ F3 =0 Fy = msm m e

But the maximum possible value of Fy is F3 = u,Ny = 0.45(1019) = 459 N.
Thus, 468 N eannat be supported and our initial assumption was wrong. We
conclude, therefore, that slipping oceurs first between the 40-kg block and the
incline. With the corrected value Fy = 459 N, equilibrium of the 40-kg block for
its impending motion reguires

ZF, = 0] « Fp+
Equilibrium of the 50-kg block gives, finally,

40981} sin30° — 458 = 0 F, = 33N,

[ZF; = 0] P + b0(9.81) sin 30° — 263 — 765 = 0

P=938N Ans.
Thus, with P = 93.8 N, motion impends for the 50-kg and 40-Kg blocks as a
unit. -
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Problems

The 4N force P is applied to the 100-kg crate, which
15 stationary before the foree 15 applied. Determine the
magnitude and direction of the friction foree F exerted
by the horizontal surface on the crate.

Ang. F = 400 N {o the left

100 kg

a

} The TO0-N force is applied to the 100-kg hlock, which

is stationary before the force is applied. Determine the
magnitude and direction of the friction force I exerted

_ by the horizontal surface on the block,

F=TION

The coeffictents of static and kinetic friction betwesn
the 100-kg block and the inclined plane are 0.30 and
0,20, respectively, Determine (2) the frietion foree F
acting on the block when P is applied with a magni-
tude of 200 N to the block at rest, (b) the force P
required to imitiate maotion up the incline from rest,
and (c) the friction force F' acting on the bloek if P =

BON .

The 1.2-kg wooden block is uaed for level support of
the #-kg can of paint. Determine the magnitude and
direction of (a) the friction force exerted by the roof
surface on the wooden block and (b)) the total fores
exerted by the roof surface on the wooden block.
Ans. (@) F = 316N, (b) P = 100.1 N up

. The 30-kg homogeneous cylinder of 400-mm diameter

rests against the vertical and inclined surfaces as
ghown, If the coefficient of static friction between the
eylinder and the surfaces is 0.30, caleulate the applied
clockwise couple M which would cause the eylinder to
slip,

i The 200-kg crate with mass center at & is supported
on the horizontal surfaces by a skid at A and a roller
at B, If a foree P of 400 N is required to initiate mo-
tion of the crate, determine the coeflicient of static
friction at A.
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2 The uniform 7-m pole haz a mass of 100 kg and is
supported as shown. Calculate the force P required
to mowve the pole if the coefficient of static friction for
each mnM-%aMu is 0.40.

i The uniform pole of length ! and mass m is placed
apainst the supporting surfaces shown. If the coeffi-
cient af static friction is u, = 0.25 at both A and B,
determine the maximum angle # at which the pole
can be placed before it begins to slip.

Ans. & = 599"

The force P 1a applied to (o) the 30-kg block and (b)
the 50-kg block, For each case, determine the mag-
nitude of P required to initiate motion,

The two hlocks are placed on the incline with the
cable taut. (2] Determine the force P required to in-
itiate motion of the 15-kg block if P is applied down
the incline. (b) If P is applied up the incline and
slowly increased [rom zero, determine the value of P
which will cause motion and describe that motion.

| The strut AR of negligible mass iz hinged to the hor-

izontal surface at A and to the uniform 25-kg wheel
at B. Determine the minimum couple M applied to
the wheal which will cause it to alip if the coefTicient
of static friction between the wheel and the surface
ig (.40

The system of two blocks, cable, and fixed pulla:.rl:in’
initially st rest. Determine the horizontal force P
necessary Lo cause motion when (o) P is applied to
the 5-kg block and (5) F is spplied to the 10-kg block.
Determine the corresponding tension T in the cable

foreachease. 4 = o p— 137aN. 7= 1128 N
B} P = 137T3N, T = 245N

Determine the range of mass m for which the 100-kg
block ir in equilibrium. All wheels and pulleys have
negligible Friction.

10

i Determine the magnitude P of the horizontal foree
required to initiste motion of the block of mass mg
for the cases (g) P is applied to the cght and (&) P is
applied to the left. Complete a general solution in
each case, and then evaluate vour expression for the
values # = 3, m = my = 3 kg, m; = 0.60, and
= 0.50.
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