Distribution of the Function of Random Variable (M.G.F. Technique) & Order Statistics
The Moment Generating Function Technique

Definition 2. Let X_1, X_2, \ldots, X_n denote n mutually stochastically independent random variables, each of which has the same but possibly unknown p.d.f. $f(x)$; that is, the probability density functions of X_1, X_2, \ldots, X_n are, respectively, $f_1(x_1) = f(x_1), f_2(x_2) = f(x_2), \ldots, f_n(x_n) = f(x_n)$, so that the joint p.d.f. is $f(x_1)f(x_2)\cdots f(x_n)$. The random variables X_1, X_2, \ldots, X_n are then said to constitute a random sample from a distribution that has p.d.f. $f(x)$.

Definition 1. A function of one or more random variables that does not depend upon any unknown parameter is called a statistic.

In accordance with this definition, the random variable $Y = \sum_{i=1}^{n} X_i$ discussed above is a statistic. But the random variable $Y = (X_1 - \mu)/\sigma$ is not a statistic unless μ and σ are known numbers. It should be noted that, although a statistic does not depend upon any unknown parameter, the distribution of that statistic may very well depend upon unknown parameters.

We should recall that a moment-generating function, when it exists, is unique and that it uniquely determines the distribution of a probability.

Let $\varphi(x_1, x_2, \ldots, x_n)$ denote the joint p.d.f. of the n random variables X_1, X_2, \ldots, X_n. These random variables may or may not be the items of a random sample from some distribution that has a given p.d.f. $f(x)$. Let $Y_1 = u_1(X_1, X_2, \ldots, X_n)$. We seek $g(y_1)$, the p.d.f. of the random variable Y_1. Consider the moment-generating function of Y_1. If it exists, it is given by
\[M(t) = E(e^{tY_1}) = \int_{-\infty}^{\infty} e^{tY_1} g(y_1) \, dy_1 \]

in the continuous case. It would seem that we need to know \(g(y_1) \) before we can compute \(M(t) \). That this is not the case is a fundamental fact. To see this consider

\[\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \exp \left[tu_1(x_1, \ldots, x_n) \right] \varphi(x_1, \ldots, x_n) \, dx_1 \cdots dx_n, \]

which we assume to exist for \(-h < t < h\). We shall introduce \(n \) new variables of integration. They are \(y_1 = u_1(x_1, x_2, \ldots, x_n), \ldots, y_n = u_n(x_1, x_2, \ldots, x_n) \). Momentarily, we assume that these functions define a one-to-one transformation. Let \(x_i = w_i(y_1, y_2, \ldots, y_n), i = 1, 2, \ldots, n \), denote the inverse functions and let \(J \) denote the Jacobian. Under this transformation, display (1) becomes

\[\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} e^{tu_1} |J| \varphi(w_1, \ldots, w_n) \, dw_1 \cdots dw_n \, dy_1. \]

In accordance with Section 4.5,

\[|J| \varphi[w_1(y_1, y_2, \ldots, y_n), \ldots, w_n(y_1, y_2, \ldots, y_n)] \]

is the joint p.d.f. of \(Y_1, Y_2, \ldots, Y_n \). The marginal p.d.f. \(g(y_1) \) of \(Y_1 \) is obtained by integrating this joint p.d.f. on \(y_2, \ldots, y_n \). Since the factor \(e^{ty_1} \) does not involve the variables \(y_2, \ldots, y_n \), display (2) may be written as

\[\int_{-\infty}^{\infty} e^{ty_1} g(y_1) \, dy_1. \]

The reader will observe that we have assumed the transformation to be one-to-one. We did this for simplicity of presentation. If the transformation is not one-to-one, let

\[x_j = w_{j_1}(y_1, \ldots, y_n), \quad j = 1, 2, \ldots, n, \quad i = 1, 2, \ldots, k, \]
denote the k groups of n inverse functions each. Let $J_i, i = 1, 2, \ldots, k,$
dequate the k Jacobians. Then

It should be noted that the expectation, subject to its existence, of any function of Y_1 can be computed in like manner. That is, if $w(y_1)$ is a function of y_1, then

$$E[w(Y_1)] = \int_{-\infty}^{\infty} w(y_1)g(y_1) \, dy_1$$

$$= \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} w[u_1(x_1, \ldots, x_n)]\varphi(x_1, \ldots, x_n) \, dx_1 \cdots dx_n.$$

Example 1. Let the stochastically independent random variables X_1 and X_2 have the same p.d.f.

$$f(x) = \frac{x}{6}, \quad x = 1, 2, 3,$$

$$= 0 \text{ elsewhere;}$$

that is, the p.d.f. of X_1 is $f(x_1)$ and that of X_2 is $f(x_2)$; and so the joint p.d.f. of X_1 and X_2 is

$$f(x_1)f(x_2) = \frac{x_1x_2}{36}, \quad x_1 = 1, 2, 3, x_2 = 1, 2, 3,$$

$$= 0 \text{ elsewhere.}$$

A probability, such as $\Pr (X_1 = 2, X_2 = 3)$, can be seen immediately to be $(2)(3)/36 = \frac{1}{6}$. However, consider a probability such as $\Pr (X_1 + X_2 = 3)$. The computation can be made by first observing that the event $X_1 + X_2 = 3$ is the union, exclusive of the events with probability zero, of the two mutually exclusive events $(X_1 = 1, X_2 = 2)$ and $(X_1 = 2, X_2 = 1).$ Thus

$$\Pr (X_1 + X_2 = 3) = \Pr (X_1 = 1, X_2 = 2) + \Pr (X_1 = 2, X_2 = 1)$$

$$= \frac{(1)(2)}{36} + \frac{(2)(1)}{36} = \frac{4}{36}.$$
More generally, let y represent any of the numbers $2, 3, 4, 5, 6$. The probability of each of the events $X_1 + X_2 = y$, $y = 2, 3, 4, 5, 6$, can be computed as in the case $y = 3$. Let $g(y) = \Pr(X_1 + X_2 = y)$. Then the table

<table>
<thead>
<tr>
<th>y</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>$g(y)$</td>
<td>$\frac{1}{36}$</td>
<td>$\frac{4}{36}$</td>
<td>$\frac{10}{36}$</td>
<td>$\frac{12}{36}$</td>
<td>$\frac{9}{36}$</td>
</tr>
</tbody>
</table>

gives the values of $g(y)$ for $y = 2, 3, 4, 5, 6$. For all other values of y, $g(y) = 0$.

What we have actually done is to define a new random variable Y by $Y = X_1 + X_2$, and we have found the p.d.f. $g(y)$ of this random variable Y. We shall now solve the same problem, and by the moment-generating-function technique.

Now the moment-generating function of Y is

$$M(t) = \mathbb{E}(e^{t(X_1 + X_2)})$$
$$= \mathbb{E}(e^{tx_1}e^{tx_2})$$
$$= \mathbb{E}(e^{tx_1})\mathbb{E}(e^{tx_2}),$$

$$E(e^{tx_1}) = E(e^{tx_2}) = \frac{1}{6}e^t + \frac{2}{6}e^{2t} + \frac{3}{6}e^{3t}.$$

$$M(t) = (\frac{1}{6}e^t + \frac{2}{6}e^{2t} + \frac{3}{6}e^{3t})^2$$
$$= \frac{1}{36}e^{2t} + \frac{4}{36}e^{3t} + \frac{10}{36}e^{4t} + \frac{12}{36}e^{5t} + \frac{9}{36}e^{6t}.$$

This form of $M(t)$ tells us immediately that the p.d.f. $g(y)$ of Y is zero except at $y = 2, 3, 4, 5, 6$, and that $g(y)$ assumes the values $\frac{1}{36}, \frac{4}{36}, \frac{10}{36}, \frac{12}{36}, \frac{9}{36}$, respectively, at these points where $g(y) > 0$. This is, of course, the same result that was obtained in the first solution.
Example 2. Let X_1 and X_2 be stochastically independent with normal distributions $n(\mu_1, \sigma_1^2)$ and $n(\mu_2, \sigma_2^2)$, respectively. Define the random variable Y by $Y = X_1 - X_2$. The problem is to find $g(y)$, the p.d.f. of Y. This will be done by first finding the moment-generating function of Y. It is

$$M(t) = E(e^{t(X_1 - X_2)})$$
$$= E(e^{tX_1}e^{-tX_2})$$
$$= E(e^{tX_1})E(e^{-tX_2}),$$

since X_1 and X_2 are stochastically independent. It is known that

$$E(e^{tX_1}) = \exp \left(\mu_1 t + \frac{\sigma_1^2 t^2}{2} \right)$$

and that

$$E(e^{tX_2}) = \exp \left(\mu_2 t + \frac{\sigma_2^2 t^2}{2} \right)$$

for all real t. Then $E(e^{-tX_2})$ can be obtained from $E(e^{tX_2})$ by replacing t by $-t$. That is,

$$E(e^{-tX_2}) = \exp \left(-\mu_2 t + \frac{\sigma_2^2 t^2}{2} \right).$$

Finally, then,

$$M(t) = \exp \left(\mu_1 t + \frac{\sigma_1^2 t^2}{2} \right) \exp \left(-\mu_2 t + \frac{\sigma_2^2 t^2}{2} \right)$$
$$= \exp \left((\mu_1 - \mu_2)t + \frac{(\sigma_1^2 + \sigma_2^2)t^2}{2} \right).$$

it is seen that Y has the p.d.f. $g(y)$, which is

$$n(\mu_1 - \mu_2, \sigma_1^2 + \sigma_2^2).$$
Theorem 1. Let X_1, X_2, \ldots, X_n be mutually stochastically independent random variables having, respectively, the normal distributions $n(\mu_1, \sigma_1^2), n(\mu_2, \sigma_2^2), \ldots, \text{and } n(\mu_n, \sigma_n^2).$ The random variable $Y = k_1X_1 + k_2X_2 + \cdots + k_nX_n$, where k_1, k_2, \ldots, k_n are real constants, is normally distributed with mean $k_1\mu_1 + \cdots + k_n\mu_n$ and variance $k_1^2\sigma_1^2 + \cdots + k_n^2\sigma_n^2$. That is, Y is $n\left(\sum_{1}^{n} k_i\mu_i, \sum_{1}^{n} k_i^2\sigma_i^2 \right)$.

Theorem 2. Let X_1, X_2, \ldots, X_n be mutually stochastically independent variables that have, respectively, the chi-square distributions $\chi^2(r_1), \chi^2(r_2), \ldots, \text{and } \chi^2(r_n).$ Then the random variable $Y = X_1 + X_2 + \cdots + X_n$ has a chi-square distribution with $r_1 + \cdots + r_n$ degrees of freedom; that is, Y is $\chi^2(r_1 + \cdots + r_n)$.

Theorem 3. Let X_1, X_2, \ldots, X_n denote a random sample of size n from a distribution that is $n(\mu, \sigma^2)$. The random variable

$$Y = \sum_{1}^{n} \left(\frac{X_i - \mu}{\sigma}\right)^2$$

has a chi-square distribution with n degrees of freedom.

EXERCISES

4.68. Let the stochastically independent random variables X_1 and X_2 have the same p.d.f. $f(x) = \frac{1}{6}, x = 1, 2, 3, 4, 5, 6$, zero elsewhere. Find the p.d.f. of $Y = X_1 + X_2$. Note, under appropriate assumptions, that Y may be interpreted as the sum of the spots that appear when two dice are cast.
4.69. Let \(X_1\) and \(X_2\) be stochastically independent with normal distributions \(n(6, 1)\) and \(n(7, 1)\), respectively. Find \(\Pr(X_1 > X_2)\). \textit{Hint.} Write \(\Pr(X_1 > X_2) = \Pr(X_1 - X_2 > 0)\) and determine the distribution of \(X_1 - X_2\).

4.70. Let \(X_1\) and \(X_2\) be stochastically independent random variables. Let \(X_1\) and \(Y = X_1 + X_2\) have chi-square distributions with \(r_1\) and \(r\) degrees of freedom, respectively. Here \(r_1 < r\). Show that \(X_2\) has a chi-square distribution with \(r - r_1\) degrees of freedom. \textit{Hint.} Write \(M(t) = E(e^{tX_1 + X_2})\) and make use of the stochastic independence of \(X_1\) and \(X_2\).

4.71. Let the stochastically independent random variables \(X_1\) and \(X_2\) have binomial distributions with parameters \(n_1, \rho_1 = \frac{1}{3}\) and \(n_2, \rho_2 = \frac{1}{3}\), respectively. Show that \(Y = X_1 - X_2 + n_2\) has a binomial distribution with parameters \(n = n_1 + n_2, \rho = \frac{1}{3}\).

4.72. Let \(X\) be \(n(0, 1)\). Use the moment-generating-function technique to show that \(Y = X^2\) is \(\chi^2(1)\). \textit{Hint.} Evaluate the integral that represents \(E(e^{tX^2})\) by writing \(w = x\sqrt{1 - 2t}, t < \frac{1}{2}\).

4.8 The Distributions of \(\bar{X}\) and \(nS^2/\sigma^2\)

Let \(X_1, X_2, \ldots, X_n\) denote a random sample of size \(n \geq 2\) from a distribution that is \(n(\mu, \sigma^2)\). In this section we shall investigate the distributions of the mean and the variance of this random sample, that is, the distributions of the two statistics \(\bar{X} = \frac{1}{n} \sum X_i\) and \(S^2 = \frac{1}{n-1} \sum (X_i - \bar{X})^2\).

The problem of the distribution of \(\bar{X}\), the mean of the sample, is solved by the use of Theorem 1 of Section 4.7. We have here, in the notation of the statement of that theorem, \(\mu_1 = \mu_2 = \cdots = \mu_n = \mu\),
\(\sigma_1^2 = \sigma_2^2 = \cdots = \sigma_n^2 = \sigma^2 \), and \(k_1 = k_2 = \cdots = k_n = 1/n \). Accordingly, \(Y = X \) has a normal distribution with mean and variance given by

\[
\sum_{1}^{n} \left(\frac{1}{n} \mu \right) = \mu, \quad \sum_{1}^{n} \left[\frac{1}{n} \sigma^2 \right] = \frac{\sigma^2}{n},
\]

respectively. That is, \(X \) is \(n(\mu, \sigma^2/n) \).

We now take up the problem of the distribution of \(S^2 \), the variance of a random sample \(X_1, \ldots, X_n \) from a distribution that is \(n(\mu, \sigma^2) \). To do this, let us first consider the joint distribution of \(Y_1 = X_1 \), \(Y_2 = X_2, \ldots, Y_n = X_n \). The corresponding transformation

\[
x_1 = n y_1 - y_2 - \cdots - y_n \\
x_2 = y_2 \\
\vdots \quad \vdots \\
x_n = y_n
\]

has Jacobian \(n \). Since

\[
\sum_{1}^{n} (x_i - \mu)^2 = \sum_{1}^{n} (x_i - \bar{x} + \bar{x} - \mu)^2 \\
= \sum_{1}^{n} (x_i - \bar{x})^2 + n(\bar{x} - \mu)^2
\]

because \(2(\bar{x} - \mu) \sum_{1}^{n} (x_i - \bar{x}) = 0 \), the joint p.d.f. of \(X_1, X_2, \ldots, X_n \) can be written

\[
\left(\frac{1}{\sqrt{2\pi\sigma}} \right)^n \exp \left[- \frac{\sum (x_i - \bar{x})^2}{2\sigma^2} - \frac{n(\bar{x} - \mu)^2}{2\sigma^2} \right],
\]
where \bar{x} represents $(x_1 + x_2 + \cdots + x_n)/n$ and $-\infty < x_i < \infty$, $i = 1, 2, \ldots, n$. Accordingly, with $y_1 = \bar{x}$, we find that the joint p.d.f. of Y_1, Y_2, \ldots, Y_n is

$$n \left(\frac{1}{\sqrt{2\pi}\sigma} \right)^n \exp \left\{ -\frac{n(y_1 - y_2 - \cdots - y_n - y_1)^2}{2\sigma^2} \right. \right.$$

$$\left. - \frac{\sum_{i=2}^{n} (y_i - y_1)^2}{2\sigma^2} - \frac{n(y_1 - \mu)^2}{2\sigma^2} \right\},$$

$-\infty < y_i < \infty$, $i = 1, 2, \ldots, n$. The quotient of this joint p.d.f. and the p.d.f.

$$\sqrt{n} \left(\frac{1}{\sqrt{2\pi}\sigma} \right)^{n-1} \exp \left(-\frac{q}{2\sigma^2} \right),$$

of $Y_1 = X$ is the conditional p.d.f. of Y_2, Y_3, \ldots, Y_n, given $Y_1 = y_1$,

$$\sqrt{n} \left(\frac{1}{\sqrt{2\pi}\sigma} \right)^{n-1} \exp \left(-\frac{q}{2\sigma^2} \right),$$

where $q = (ny_1 - y_2 - \cdots - y_n - y_1)^2 + \sum_{i=2}^{n} (y_i - y_1)^2$. Since this is a joint conditional p.d.f., it must be, for all $\sigma > 0$, that

$$\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \sqrt{n} \left(\frac{1}{\sqrt{2\pi}\sigma} \right)^{n-1} \exp \left(-\frac{q}{2\sigma^2} \right) \, dy_2 \cdots dy_n = 1.$$

Now consider

$$nS^2 = \sum_{1}^{n} (X_i - \bar{X})^2$$

$$= (nY_1 - Y_2 - \cdots - Y_n - Y_1)^2 + \sum_{2}^{n} (Y_i - Y_1)^2 = Q.$$

The conditional moment-generating function of $nS^2/\sigma^2 = Q/\sigma^2$, given $Y_1 = y_1$, is
\[
E(e^{tQ_1\sigma^2} | y_1) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \sqrt{n} \left(\frac{1}{\sqrt{2\pi\sigma}} \right)^{n-1} \exp \left[-\frac{(1 - 2t)q}{2\sigma^2} \right] dy_2 \cdots dy_n
\]

where \(0 < 1 - 2t\), or \(t < \frac{1}{2}\). However, this latter integral is exactly the same as that of the conditional p.d.f. of \(Y_2, Y_3, \ldots, Y_n\), given \(Y_1 = y_1\), with \(\sigma^2\) replaced by \(\sigma^2/(1 - 2t) > 0\), and thus must equal 1. Hence the conditional moment-generating function of \(nS^2/\sigma^2\), given \(Y_1 = y_1\) or equivalently \(\tilde{X} = \tilde{x}\), is

\[
E(e^{tnS^2/\sigma^2} | \tilde{x}) = (1 - 2t)^{-(n-1)/2}, \quad t < \frac{1}{2}.
\]

That is, the conditional distribution of \(nS^2/\sigma^2\), given \(\tilde{X} = \tilde{x}\), is \(\chi^2(n - 1)\). Moreover, since it is clear that this conditional distribution does not depend upon \(\tilde{x}\), \(\tilde{X}\) and \(nS^2/\sigma^2\) must be stochastically independent or, equivalently, \(\tilde{X}\) and \(S^2\) are stochastically independent.

To summarize, we have established, in this section, three important properties of \(\tilde{X}\) and \(S^2\) when the sample arises from a distribution which is \(n(\mu, \sigma^2)\):

(a) \(\tilde{X}\) is \(n(\mu, \sigma^2/n)\).
(b) \(nS^2/\sigma^2\) is \(\chi^2(n - 1)\).
(c) \(\tilde{X}\) and \(S^2\) are stochastically independent.
EXERCISES

4.83. Let \(\bar{X} \) be the mean of a random sample of size 5 from a normal distribution with \(\mu = 0 \) and \(\sigma^2 = 125 \). Determine \(c \) so that \(\Pr (\bar{X} < c) = 0.90 \).

4.84. If \(\bar{X} \) is the mean of a random sample of size \(n \) from a normal distribution with mean \(\mu \) and variance 100, find \(n \) so that \(\Pr (\mu - 5 < \bar{X} < \mu + 5) = 0.954 \).

4.86. Find the mean and variance of \(S^2 = \frac{1}{n} \sum (X_i - \bar{X})^2 \), where \(X_1, X_2, \ldots, X_n \) is a random sample from \(n(\mu, \sigma^2) \). *Hint.* Find the mean and variance of \(nS^2/\sigma^2 \).

Expectations of Functions of Random Variables

Example 2. Let \(X_i \) denote a random variable with mean \(\mu_i \) and variance \(\sigma_i^2 \), \(i = 1, 2, \ldots, n \). Let \(X_1, X_2, \ldots, X_n \) be mutually stochastically independent and let \(k_1, k_2, \ldots, k_n \) denote real constants. We shall compute the mean and variance of the linear function \(Y = k_1X_1 + k_2X_2 + \cdots + k_nX_n \). Because \(E \) is a linear operator, the mean of \(Y \) is given by

\[
\mu_Y = E(k_1X_1 + k_2X_2 + \cdots + k_nX_n) = k_1E(X_1) + k_2E(X_2) + \cdots + k_nE(X_n) = k_1\mu_1 + k_2\mu_2 + \cdots + k_n\mu_n = \sum_{i=1}^{n} k_i\mu_i.
\]
The variance of Y is given by

$$
\sigma_Y^2 = E\left\{ \left[(k_1 X_1 + \cdots + k_n X_n) - (k_1 \mu_1 + \cdots + k_n \mu_n) \right]^2 \right\}
= E\left\{ \left[k_1(X_1 - \mu_1) + \cdots + k_n(X_n - \mu_n) \right]^2 \right\}
= E\left\{ \sum_{i=1}^{n} k_i^2(X_i - \mu_i)^2 + 2 \sum_{i<j} k_i k_j(X_i - \mu_i)(X_j - \mu_j) \right\}
= \sum_{i=1}^{n} k_i^2 E[(X_i - \mu_i)^2] + 2 \sum_{i<j} k_i k_j E[(X_i - \mu_i)(X_j - \mu_j)].
$$

Consider $E[(X_i - \mu_i)(X_j - \mu_j)]$, $i < j$. Because X_i and X_j are stochastically independent, we have

$$
E[(X_i - \mu_i)(X_j - \mu_j)] = E(X_i - \mu_i)E(X_j - \mu_j) = 0.
$$

Finally, then,

$$
\sigma_Y^2 = \sum_{i=1}^{n} k_i^2 E[(X_i - \mu_i)^2] = \sum_{i=1}^{n} k_i^2 \sigma_i^2.
$$

$$
E[(X_i - \mu_i)(X_j - \mu_j)] = \rho_{ij} \sigma_i \sigma_j, \quad i < j.
$$

If we refer to Example 2, we see that again $\mu_Y = \sum_{i=1}^{n} k_i \mu_i$. But now

$$
\sigma_Y^2 = \sum_{i=1}^{n} k_i^2 \sigma_i^2 + 2 \sum_{i<j} k_i k_j \rho_{ij} \sigma_i \sigma_j.
$$

Thus we have the following theorem.

Theorem 4. Let X_1, \ldots, X_n denote random variables that have means μ_1, \ldots, μ_n and variances $\sigma_1^2, \ldots, \sigma_n^2$. Let ρ_{ij}, $i \neq j$, denote the correlation coefficient of X_i and X_j and let k_1, \ldots, k_n denote real constants. The mean and the variance of the linear function

$$
Y = \sum_{i=1}^{n} k_i X_i
$$

are, respectively,

$$
\mu_Y = \sum_{i=1}^{n} k_i \mu_i
$$

and

$$
\sigma_Y^2 = \sum_{i=1}^{n} k_i^2 \sigma_i^2 + 2 \sum_{i<j} k_i k_j \rho_{ij} \sigma_i \sigma_j.
$$
\[\sigma^2_Y = \sum_{i=1}^{n} k_i^2 \sigma^2_i + 2 \sum_{i<j} k_i k_j \rho_{ij} \sigma_i \sigma_j. \]

Corollary. Let \(X_1, \ldots, X_n \) denote the items of a random sample of size \(n \) from a distribution that has mean \(\mu \) and variance \(\sigma^2 \). The mean and the variance of \(Y = \sum_{i=1}^{n} k_i X_i \) are, respectively, \(\mu_Y = \left(\sum_{i=1}^{n} k_i \right) \mu \) and \(\sigma^2_Y = \left(\sum_{i=1}^{n} k_i^2 \right) \sigma^2. \)

Example 3. Let \(\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \) denote the mean of a random sample of size \(n \) from a distribution that has mean \(\mu \) and variance \(\sigma^2 \). In accordance with the Corollary, we have \(\mu_{\bar{X}} = \mu \sum_{i=1}^{n} (1/n) = \mu \) and \(\sigma^2_{\bar{X}} = \sigma^2 \sum_{i=1}^{n} (1/n)^2 = \sigma^2/n. \) We have seen, in Section 4.8, that if our sample is from a distribution that is \(n(\mu, \sigma^2) \), then \(\bar{X} \) is \(n(\mu, \sigma^2/n) \). It is interesting that \(\mu_{\bar{X}} = \mu \) and \(\sigma^2_{\bar{X}} = \sigma^2/n \) whether the sample is or is not from a normal distribution.

EXERCISES

4.90. Let \(X_1, X_2, X_3, X_4 \) be four mutually stochastically independent random variables having the same p.d.f. \(f(x) = 2x, \ 0 < x < 1, \) zero elsewhere. Find the mean and variance of the sum \(Y \) of these four random variables.

4.91. Let \(X_1 \) and \(X_2 \) be two stochastically independent random variables so that the variances of \(X_1 \) and \(X_2 \) are \(\sigma_1^2 = k \) and \(\sigma_2^2 = 2 \), respectively. Given that the variance of \(Y = 3X_2 - X_1 \) is 25, find \(k \).

4.92. If the stochastically independent variables \(X_1 \) and \(X_2 \) have means \(\mu_1, \mu_2 \) and variances \(\sigma_1^2, \sigma_2^2 \), respectively, show that the mean and variance of the product \(Y = X_1X_2 \) are \(\mu_1 \mu_2 \) and \(\sigma_1^2 \sigma_2^2 + \mu_1^2 \sigma_2^2 + \mu_2^2 \sigma_1^2 \), respectively.

4.93. Find the mean and variance of the sum \(Y \) of the items of a random sample of size 5 from the distribution having p.d.f. \(f(x) = 6x(1 - x), \ 0 < x < 1, \) zero elsewhere.
Distributions of Order Statistics

Let X_1, X_2, \ldots, X_n denote a random sample from a distribution of the *continuous type* having a p.d.f. $f(x)$ that is positive, provided that $a < x < b$. Let Y_1 be the smallest of these X_i, Y_2 the next X_i in order of magnitude, \ldots, and Y_n the largest X_i. That is, $Y_1 < Y_2 < \cdots < Y_n$ represent X_1, X_2, \ldots, X_n when the latter are arranged in ascending order of magnitude. Then Y_i, $i = 1, 2, \ldots, n$, is called the ith order statistic of the random sample X_1, X_2, \ldots, X_n. It will be shown that the joint p.d.f. of Y_1, Y_2, \ldots, Y_n is given by

$$g(y_1, y_2, \ldots, y_n) = (n!) f(y_1)f(y_2) \cdots f(y_n),$$

$$a < y_1 < y_2 < \cdots < y_n < b,$$

$$= 0 \text{ elsewhere.}$$

It will first be shown how the marginal p.d.f. of Y_n may be expressed in terms of the distribution function $F(x)$ and the p.d.f. $f(x)$ of the random variable X. If $a < y_n < b$, the marginal p.d.f. of y_n is given by

$$g_n(y_n) = n! \frac{[F(y_n)]^{n-1}}{(n-1)!} f(y_n)$$

$$= n[F(y_n)]^{n-1} f(y_n), \quad a < y_n < b,$$

$$= 0 \text{ elsewhere.}$$
\[g_1(y_1) = n[1 - F(y_1)]^{n-1}f(y_1), \quad a < y_1 < b, \]
\[= 0 \text{ elsewhere.} \]

\[(2) \quad g_k(y_k) = \frac{n!}{(k - 1)! (n - k)!} [F(y_k)]^{k-1}[1 - F(y_k)]^{n-k}f(y_k), \]
\[a < y_k < b, \]
\[= 0 \text{ elsewhere.} \]

Example 2. Let \(Y_1 < Y_2 < Y_3 < Y_4 \) denote the order statistics of a random sample of size 4 from a distribution having p.d.f.

\[f(x) = 2x, \quad 0 < x < 1, \]
\[= 0 \text{ elsewhere.} \]

We shall express the p.d.f. of \(Y_3 \) in terms of \(f(x) \) and \(F(x) \) and then compute \(\Pr \left(\frac{1}{2} < Y_3 \right) \). Here \(F(x) = x^2 \), provided that \(0 < x < 1 \), so that

\[g_3(y_3) = \frac{4!}{2! 1!} (y_3^2)(1 - y_3^2)(2y_3), \quad 0 < y_3 < 1, \]
\[= 0 \text{ elsewhere.} \]

\[\Pr \left(\frac{1}{2} < Y_3 \right) = \int_{1/2}^{\infty} g_3(y_3) \, dy_3 \]
\[= \int_{1/2}^{1} 24(y_3^5 - y_3^3) \, dy_3 = \frac{24}{255}. \]

Finally, the joint p.d.f. of any two order statistics, say \(Y_i < Y_j \), is as easily expressed in terms of \(F(x) \) and \(f(x) \). We have
Example 2. Let $Y_1 < Y_2 < Y_3 < Y_4$ denote the order statistics of a random sample of size 4 from a distribution having p.d.f.

$$f(x) = 2x, \quad 0 < x < 1,$$

$$= 0 \text{ elsewhere.}$$

We shall express the p.d.f. of Y_3 in terms of $f(x)$ and $F(x)$ and then compute $\Pr \left(\frac{1}{2} < Y_3 \right)$. Here $F(x) = x^2$, provided that $0 < x < 1$, so that

$$g_3(y_3) = \frac{4!}{2! \cdot 1!} (y_3^2)(1-y_3)(2y_3), \quad 0 < y_3 < 1,$$

$$= 0 \text{ elsewhere.}$$

$$\Pr \left(\frac{1}{2} < Y_3 \right) = \int_{1/2}^{\infty} g_3(y_3) \, dy_3$$

$$= \int_{1/2}^{1/3} 24(y_3^3 - y_3^2) \, dy_3 = \frac{2}{15}.$$

Example 3. Let Y_1, Y_2, Y_3 be the order statistics of a random sample of size 3 from a distribution having p.d.f.

$$f(x) = 1, \quad 0 < x < 1,$$

$$= 0 \text{ elsewhere.}$$

We seek the p.d.f. of the sample range $Z_1 = Y_3 - Y_1$.

Since $F(x) = x$, $0 < x < 1$, the joint p.d.f. of Y_1 and Y_3 is

$$g_{13}(y_1, y_3) = 6(y_3 - y_1), \quad 0 < y_1 < y_3 < 1,$$

$$= 0 \text{ elsewhere.}$$

In addition to $Z_1 = Y_3 - Y_1$, let $Z_2 = Y_3$. Consider the functions $z_1 = y_3 - y_1$, $z_2 = y_3$, and their inverses $y_1 = z_2 - z_1$, $y_3 = z_2$, so that the corresponding Jacobian of the one-to-one-transformation is
\[J = \begin{vmatrix} \frac{\partial y_1}{\partial z_1} & \frac{\partial y_1}{\partial z_2} \\ \frac{\partial y_3}{\partial z_1} & \frac{\partial y_3}{\partial z_2} \end{vmatrix} = \begin{vmatrix} -1 & 1 \\ 0 & 1 \end{vmatrix} = -1. \]

Thus the joint p.d.f. of \(Z_1 \) and \(Z_2 \) is
\[h(z_1, z_2) = \begin{vmatrix} -1 \end{vmatrix} \cdot 6z_1 = 6z_1, \quad 0 < z_1 < z_2 < 1. \]
\[= 0 \text{ elsewhere.} \]

Accordingly, the p.d.f. of the range \(Z_1 = Y_3 - Y_1 \) of the random sample of size 3 is
\[h_1(z_1) = \int_{z_1}^{1} 6z_1 \, dz_2 = 6z_1(1 - z_1), \quad 0 < z_1 < 1, \]
\[= 0 \text{ elsewhere.} \]

EXERCISES

4.50. Let \(Y_1 < Y_2 < Y_3 < Y_4 \) be the order statistics of a random sample of size 4 from the distribution having p.d.f. \(f(x) = e^{-x}, \) \(0 < x < \infty, \) zero elsewhere. Find \(\Pr(3 \leq Y_4). \)

4.51. Let \(X_1, X_2, X_3 \) be a random sample from a distribution of the continuous type having p.d.f. \(f(x) = 2x, \) \(0 < x < 1, \) zero elsewhere. Compute the probability that the smallest of these \(X_i \) exceeds the median of the distribution.

4.53. Let \(Y_1 < Y_2 < Y_3 < Y_4 < Y_5 \) denote the order statistics of a random sample of size 5 from a distribution having p.d.f. \(f(x) = e^{-x}, \) \(0 < x < \infty, \) zero elsewhere. Show that \(Z_1 = Y_2 \) and \(Z_2 = Y_4 - Y_2 \) are stochastically independent. *Hint.* First find the joint p.d.f. of \(Y_2 \) and \(Y_4. \)

4.54. Let \(Y_1 < Y_2 < \cdots < Y_n \) be the order statistics of a random sample of size \(n \) from a distribution with p.d.f. \(f(x) = 1, \) \(0 < x < 1, \) zero elsewhere. Show that the \(k \)th order statistic \(Y_k \) has a beta p.d.f. with parameters \(\alpha = k \) and \(\beta = n - k + 1. \)
number of degrees of freedom of the random variable that has the chi-square distribution. Some approximate values of

\[\Pr (T \leq t) = \int_{-\infty}^{t} g_1(w) \, dw \]

for selected values of \(r \) and \(t \), can be found in Table IV in Appendix B.

Next consider two stochastically independent chi-square random variables \(U \) and \(V \) having \(r_1 \) and \(r_2 \) degrees of freedom, respectively. The joint p.d.f. \(\varphi(u, v) \) of \(U \) and \(V \) is then

\[
\varphi(u, v) = \frac{1}{\Gamma(r_1/2) \Gamma(r_2/2) 2^{(r_1+r_2)/2}} \frac{u^{r_1/2-1}v^{r_2/2-1} e^{-(u+v)/2}}{u^{r_1/2}v^{r_2/2}},
\]

\[0 < u < \infty, \; 0 < v < \infty, \]

\[= 0 \text{ elsewhere}. \]

4.4 The \(t \) and \(F \) Distributions

It is the purpose of this section to define two additional distributions quite useful in certain problems of statistical inference. These are called, respectively, the (Student's) \(t \) distribution and the \(F \) distribution.

\(T \) Distribution

Let \(W \) denote a random variable that is \(n(0, 1) \); let \(V \) denote a random variable that is \(\chi^2(r) \); and let \(W \) and \(V \) be stochastically independent. Then the joint p.d.f. of \(W \) and \(V \), say \(\varphi(w, v) \), is the product of the p.d.f. of \(W \) and that of \(V \) or

\[
\varphi(w, v) = \frac{1}{\sqrt{2\pi}} e^{-w^2/2} \frac{1}{\Gamma(r/2) 2^{r/2}} \frac{v^{r/2-1} e^{-v/2}}{u^{r/2}},
\]

\[-\infty < w < \infty, \; 0 < v < \infty, \]

\[= 0 \text{ elsewhere}. \]
\[g(t, u) = \varphi \left(\frac{t\sqrt{u}}{\sqrt{r}}, \frac{u}{\sqrt{r}} \right) |J| \]

\[= \frac{1}{\sqrt{2\pi \Gamma(r/2)2^{r/2}}} u^{r/2-1} \exp \left[-\frac{u}{2} \left(1 + \frac{t^2}{r} \right) \right] \frac{\sqrt{u}}{\sqrt{r}}, \]

\[-\infty < t < \infty, 0 < u < \infty, \]

\[= 0 \text{ elsewhere.} \]

The marginal p.d.f. of \(T \) is then

\[g_1(t) = \int_{-\infty}^{\infty} g(t, u) \, du \]

\[= \int_{0}^{\infty} \frac{1}{\sqrt{2\pi \Gamma(r/2)2^{r/2}}} u^{(r+1)/2-1} \exp \left[-\frac{u}{2} \left(1 + \frac{t^2}{r} \right) \right] \, du. \]

In this integral let \(z = u[1 + (t^2/r)]/2 \), and it is seen that

\[g_1(t) = \int_{0}^{\infty} \frac{1}{\sqrt{2\pi \Gamma(r/2)2^{r/2}}} \left(\frac{2z}{1 + t^2/r} \right)^{(r+1)/2-1} e^{-z} \left(\frac{2}{1 + t^2/r} \right) \, dz \]

\[= \frac{\Gamma[(r + 1)/2]}{\sqrt{\pi r \Gamma(r/2)}} \frac{1}{(1 + t^2/r)^{(r+1)/2}}, \quad -\infty < t < \infty. \]

Thus, if \(W \) is \(n(0, 1) \), if \(V \) is \(\chi^2(r) \), and if \(W \) and \(V \) are stochastically independent, then

\[T = \frac{W}{\sqrt{V/r}} \]

has the immediately preceding p.d.f. \(g_1(t) \). The distribution of the random variable \(T \) is usually called a \emph{t distribution}. It should be observed that a \(t \) distribution is completely determined by the parameter \(r \), the
number of degrees of freedom of the random variable that has the chi-square distribution. Some approximate values of
\[
\Pr (T \leq t) = \int_{-\infty}^{t} g_1(w) \, dw
\]
for selected values of \(\tau \) and \(t \), can be found in Table IV in Appendix B.

Next consider two stochastically independent chi-square random variables \(U \) and \(V \) having \(r_1 \) and \(r_2 \) degrees of freedom, respectively. The joint p.d.f. \(\varphi(u, v) \) of \(U \) and \(V \) is then
\[
\varphi(u, v) = \frac{1}{\Gamma(r_1/2)\Gamma(r_2/2)2^{(r_1+r_2)/2}} u^{r_1/2-1}v^{r_2/2-1}e^{-(u+v)/2},
\]
\[0 < u < \infty, \, 0 < v < \infty,\]
\[= 0 \text{ elsewhere.}\]

F Distribution

We define the new random variable
\[
F = \frac{U}{r_1} / \frac{V}{r_2}
\]
and we propose finding the p.d.f. \(g_1(f) \) of \(F \). The equations
\[
f = \frac{u/r_1}{v/r_2}, \quad z = v,
\]
define a one-to-one transformation that maps the set \(\mathscr{A} = \{(u, v); \, 0 < u < \infty, \, 0 < v < \infty\} \) onto the set \(\mathscr{B} = \{(f, z); \, 0 < f < \infty, \, 0 < z < \infty\} \). Since \(u = (r_1/r_2)f \), \(v = z \), the absolute value of the Jacobian of the transformation is \(|J| = (r_1/r_2)z \). The joint p.d.f. \(g(f, z) \) of the random variables \(F \) and \(Z = V \) is then
\[g(f, z) = \frac{1}{\Gamma(r_1/2) \Gamma(r_2/2) 2^{(r_1 + r_2)/2}} \left(\frac{r_1 f}{r_2} \right)^{r_1/2 - 1} z^{r_2/2 - 1} \]

\[\times \exp \left[-\frac{z}{2} \left(\frac{r_1 f}{r_2} + 1 \right) \right] \frac{r_1 z}{r_2} \]

provided that \((f, z) \in \mathcal{B}\), and zero elsewhere. The marginal p.d.f. \(g_1(f)\) of \(F\) is then

\[g_1(f) = \int_{-\infty}^{\infty} g(f, z) \, dz \]

\[= \int_{0}^{\infty} \frac{(r_1/r_2)^{r_1/2}(f)^{r_1/2 - 1}}{\Gamma(r_1/2) \Gamma(r_2/2) 2^{(r_1 + r_2)/2}} z^{(r_1 + r_2)/2 - 1} \exp \left[-\frac{z}{2} \left(\frac{r_1 f}{r_2} + 1 \right) \right] \, dz. \]

If we change the variable of integration by writing

\[y = \frac{z}{2} \left(\frac{r_1 f}{r_2} + 1 \right), \]

it can be seen that

\[g_1(f) = \int_{0}^{\infty} \frac{(r_1/r_2)^{r_1/2}(f)^{r_1/2 - 1}}{\Gamma(r_1/2) \Gamma(r_2/2) 2^{(r_1 + r_2)/2}} \left(\frac{2y}{r_1 f/r_2 + 1} \right)^{(r_1 + r_2)/2 - 1} e^{-y} \]

\[\times \left(\frac{2}{r_1 f/r_2 + 1} \right) \, dy \]

\[= \frac{\Gamma[(r_1 + r_2)/2] (r_1/r_2)^{r_1/2}}{\Gamma(r_1/2) \Gamma(r_2/2)} \frac{(f)^{r_1/2 - 1}}{(1 + r_1 f/r_2)^{(r_1 + r_2)/2}}, \quad 0 < f < \infty, \]

\[= 0 \text{ elsewhere.} \]
Accordingly, if U and V are stochastically independent chi-square variables with r_1 and r_2 degrees of freedom, respectively, then

$$F = \frac{U/r_1}{V/r_2}$$

has the immediately preceding p.d.f. $g_1(f)$. The distribution of this random variable is usually called an F distribution. It should be observed that an F distribution is completely determined by the two parameters r_1 and r_2. Table V in Appendix B gives some approximate values of

$$\Pr (F \leq f) = \int_0^f g_1(w) \, dw$$

for selected values of r_1, r_2, and f.

EXERCISES

4.34. Let T have a t distribution with 10 degrees of freedom. Find $\Pr (|T| > 2.228)$ from Table IV.

4.35. Let T have a t distribution with 14 degrees of freedom. Determine b so that $\Pr (-b < T < b) = 0.90$.

4.36. Let F have an F distribution with parameters r_1 and r_2. Prove that $1/F$ has an F distribution with parameters r_2 and r_1.